Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6427-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6427-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Wencong Yang
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Changming Li
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Taihua Wang
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Ziwei Liu
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Qingfang Hu
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering & Science, Nanjing Hydraulic Research Institute, Nanjing
210029, China
Dawen Yang
Department of Hydraulic Engineering, Tsinghua University, Beijing
100084, China
State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China
Related authors
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data, 17, 3835–3855, https://doi.org/10.5194/essd-17-3835-2025, https://doi.org/10.5194/essd-17-3835-2025, 2025
Short summary
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various timescales. This comprehensive dataset can strongly support ET modeling, water–carbon cycle monitoring, and long-term climate change analysis.
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Huilan Shen, Hanbo Yang, and Changming Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2152, https://doi.org/10.5194/egusphere-2025-2152, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Climate change, rising CO2, and vegetation changes are reshaping global water cycle, but their impacts remain unclear. We improved the coupled carbon and water model to analyze China’s water yield (WY) change (1982–2017). Our results showed that climate change was the dominant driver nationally, vegetation/CO2 most affected in 400–1600 mm precipitation zones. Projections indicate CO2 may increase WY 1.3 % annually by 2100, surpassing other drivers. This work informs sustainable water management.
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349, https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Short summary
Our research presents an improved method to enhance the understanding and prediction of water flows in rivers and streams, focusing on key runoff components: surface flow, baseflow, and total runoff. Using a streamlined model, the MPS model, we analyzed over 600 catchments in China and the U.S., demonstrating its accuracy in capturing the spatial and temporal variability of these components. This model offers a practical tool for water resource management.
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024, https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary
Short summary
The determination of the coefficient α in the Priestley–Taylor equation is empirical. Based on an atmospheric boundary layer model, we derived a physically clear and parameter-free expression to investigate the behavior of α. We showed that the temperature dominates changes in α and emphasized that the variation of α with temperature should be considered for long-term hydrological predictions. Our works advance and promote the most classical models in the field.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Cited articles
Abelen, S., Seitz, F., Abarca-del-Rio, R., and Guntner, A.: Droughts and
Floods in the La Plata Basin in Soil Moisture Data and GRACE, Remote
Sens.-Basel, 7, 7324–7349, https://doi.org/10.3390/rs70607324, 2015.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1
degrees Precipitation: Methodology and Quantitative Assessment, B. Am.
Meteorol. Soc., 100, 473–502, https://doi.org/10.1175/Bams-D-17-0138.1, 2019.
Beck, H. E., Pan, M., Lin, P., Seibert, J., van Dijk, A. I., and Wood, E.
F.: Global fully distributed parameter regionalization based on observed
streamflow from 4,229 headwater catchments, J. Geophys. Res.-Atmos., 125, e2019JD031485, https://doi.org/10.1029/2019jd031485, 2020.
Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., and Wood, E. F.: Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors, Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, 2021.
Bergström, S.: The HBV model – its structure and applications, SMHI
Reports RH 4, Swedish Meteorological and Hydrological Institute (SMHI),
Norrköping, Sweden, https://www.smhi.se/polopoly_fs/1.83592!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RH_4.pdf (last access: 20 October 2021), 1992.
Blöschl, G., Hall, J., Viglione, A., Perdigao, R. A. P., Parajka, J., Merz,
B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Bohac, M.,
Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B.,
Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J.,
Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela,
J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L.,
Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V.,
Radevski, I., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E.,
Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate both increases and
decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Che, T. and Dai, L.: Long-term series of daily snow depth dataset in China
(1979–2020), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geogra.tpdc.270194, 2015.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D.,
Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y.,
Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C.,
Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and
Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding:
State-of-the art and future directions, Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Foresee, F. D. and Hagan, M. T.: Gauss-Newton approximation to Bayesian
learning, in: Proceedings of international conference on neural networks,
IEEE, Houston, TX, USA, June 1997, 3, 1930–1935, https://doi.org/10.1109/icnn.1997.614194, 1997.
Gao, H. K., Dong, J. Z., Chen, X., Cai, H. Y., Liu, Z. Y., Jin, Z. H., Mao,
D. H., Yang, Z. J., and Duan, Z.: Stepwise modeling and the importance of
internal variables validation to test model realism in a data scarce glacier
basin, J. Hydrol., 591, 125457, https://doi.org/10.1016/j.jhydrol.2020.125457, 2020.
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Snow Cover Daily L3 Global 0.05Deg
CMG, Version 61, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], Boulder, Colorado USA, https://doi.org/10.5067/MODIS/MYD10C1.061, 2021a.
Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover Daily L3 Global 0.05Deg
CMG, Version 61, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], Boulder, Colorado USA, https://doi.org/10.5067/MODIS/MOD10C1.061,
2021b.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr,
K. J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194, https://doi.org/10.1016/S0034-4257(02)00095-0, 2002.
He, J., Yang, K., Tang, W. J., Lu, H., Qin, J., Chen, Y. Y., and Li, X.: The
first high-resolution meteorological forcing dataset for land process
studies over China, Sci. Data, 7, 1–11, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/jhm560.1, 2007.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. P.: CMORPH: A
method that produces global precipitation estimates from passive microwave
and infrared data at high spatial and temporal resolution, J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:Camtpg>2.0.Co;2, 2004.
Li, D. Y., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.: The Role
of Rain-on-Snow in Flooding Over the Conterminous United States, Water
Resour. Res., 55, 8492–8513, https://doi.org/10.1029/2019wr024950, 2019.
Liang, S. L., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z. Q., Yao, Y.
J., Yuan, W. P., Zhang, X. T., Zhao, X., and Zhou, J.: The Global Land
Surface Satellite (GLASS) Product Suite, B. Am. Meteorol. Soc., 102, E323–E337, https://doi.org/10.1175/Bams-D-18-0341.1, 2021.
Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer, C.,
Derksen, C., Mudryk, L., Moisander, M., Hiltunen, M., Smolander, T., Ikonen,
J., Cohen, J., Salminen, M., Norberg, J., Veijola, K., and Venalainen, P.:
GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset, Sci. Data,
8, 163, https://doi.org/10.1038/s41597-021-00939-2, 2021.
Mao, G. and Liu, J.: WAYS v1: a hydrological model for root zone water storage simulation on a global scale, Geosci. Model Dev., 12, 5267–5289, https://doi.org/10.5194/gmd-12-5267-2019, 2019.
Miao, Y. and Wang, A. H.: A daily 0.25∘ × 0.25∘
hydrologically based land surface flux dataset for conterminous China,
1961–2017, J. Hydrol., 590, 125413, https://doi.org/10.1016/j.jhydrol.2020.125413, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Myers, D. E.: Matrix Formulation of Co-Kriging, J. Int. Ass. Math. Geol., 14,
249–257, https://doi.org/10.1007/Bf01032887, 1982.
Parajka, J., Merz, R., and Blöschl, G.: Uncertainty and multiple objective
calibration in regional water balance modelling: case study in 320 Austrian
catchments, Hydrol. Process., 21, 435–446, https://doi.org/10.1002/hyp.6253, 2007.
Priestley, C. H. B. and Taylor, R. J.: Assessment of Surface Heat-Flux and
Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:Otaosh>2.3.Co;2, 1972.
Qi, W., Feng, L., Yang, H., and Liu, J. G.: Spring and summer potential
flood risk in Northeast China, J. Hydrol.-Reg. Stud., 38, 100951,
https://doi.org/10.1016/j.ejrh.2021.100951, 2021.
Reager, J. T., Thomas, B. F., and Famiglietti, J. S.: River basin flood
potential inferred using GRACE gravity observations at several months lead
time, Nat. Geosci., 7, 589–593, https://doi.org/10.1038/Ngeo2203, 2014.
Reichle, R. H., Liu, Q., Koster, R. D., Crow, W., De Lannoy, G. J. M.,
Kimball, J. S., Ardizzone, J. V., Bosch, D., Colliander, A., Cosh, M.,
Kolassa, J., Mahanama, S. P., Prueger, J., Starks, P., and Walker, J. P.:
Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product, J.
Adv. Model Earth Sy., 11, 3106–3130, https://doi.org/10.1029/2019ms001729, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/Bams-85-3-381,
2004.
Seibert, J. and Bergström, S.: A retrospective on hydrological catchment modelling based on half a century with the HBV model, Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022, 2022.
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If Precipitation Extremes Are
Increasing, Why Aren't Floods?, Water Resour. Res., 54, 8545–8551, https://doi.org/10.1029/2018wr023749, 2018.
Shen, Y. and Xiong, A. Y.: Validation and comparison of a new gauge-based
precipitation analysis over mainland China, Int. J. Climatol., 36, 252–265, https://doi.org/10.1002/joc.4341, 2016.
Shen, Y., Zhao, P., Pan, Y., and Yu, J. J.: A high spatiotemporal
gauge-satellite merged precipitation analysis over China, J. Geophys. Res.-Atmos., 119, 3063–3075, https://doi.org/10.1002/2013jd020686, 2014.
Shen, Y., Hong, Z., Pan, Y., Yu, J. J., and Maguire, L.: China's 1 km Merged
Gauge, Radar and Satellite Experimental Precipitation Dataset, Remote
Sens.-Basel, 10, 264, https://doi.org/10.3390/rs10020264, 2018.
Stein, L., Clark, M. P., Knoben, W. J. M., Pianosi, F., and Woods, R. A.:
How Do Climate and Catchment Attributes Influence Flood Generating
Processes? A Large-Sample Study for 671 Catchments Across the Contiguous
USA, Water Resour. Res., 57, e2020WR028300, https://doi.org/10.1029/2020WR028300, 2021.
Tarasova, L., Basso, S., Wendi, D., Viglione, A., Kumar, R., and Merz, R.: A
Process-Based Framework to Characterize and Classify Runoff Events: The
Event Typology of Germany, Water Resour. Res., 56, e2019WR026951,
https://doi.org/10.1029/2019WR026951, 2020.
Van Steenbergen, N. and Willems, P.: Increasing river flood preparedness by
real-time warning based on wetness state conditions, J. Hydrol., 489, 227–237, https://doi.org/10.1016/j.jhydrol.2013.03.015, 2013.
Wolpert, D. H.: Stacked Generalization, Neural Networks, 5, 241–259, https://doi.org/10.1016/S0893-6080(05)80023-1, 1992.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073, https://doi.org/10.1029/2019wr024873, 2019.
Yang, J. W., Jiang, L. M., Wu, S. L., Wang, G. X., Wang, J., and Liu, X. J.:
Development of a Snow Depth Estimation Algorithm over China for the
FY-3D/MWRI, Remote Sens.-Basel, 11, 977, https://doi.org/10.3390/rs11080977, 2019.
Yang, J. W., Jiang, L. M., Lemmetyinen, J., Luojus, K., Takala, M., Wu, S.
L., and Pan, J. M.: Validation of remotely sensed estimates of snow water
equivalent using multiple reference datasets from the middle and high
latitudes of China, J. Hydrol., 590, 125499, https://doi.org/10.1016/j.jhydrol.2020.125499, 2020a.
Yang, W. C.: YANGOnion/Hydrological-Reconstruction-China (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7450278, 2022.
Yang, W. C., Yang, H. B., and Yang, D. W.: Classifying floods by quantifying
driver contributions in the Eastern Monsoon Region of China, J. Hydrol., 585,
124767, https://doi.org/10.1016/j.jhydrol.2020.124767, 2020b.
Yang, W. C., Yang, H. B., Li, C. M., Wang, T. H., Liu, Z. W., Hu, Q. F., and
Yang, D. W.: Long-term reconstruction of satellite-based precipitation, soil
moisture, and snow water equivalent in China (1.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.5811099, 2021.
Zhang, X. J., Tang, Q. H., Pan, M., and Tang, Y.: A Long-Term Land Surface
Hydrologic Fluxes and States Dataset for China, J. Hydrometeorol., 15,
2067–2084, https://doi.org/10.1175/Jhm-D-13-0170.1, 2014.
Zhu, B. W., Xie, X. H., Lu, C. Y., Lei, T. J., Wang, Y. B., Jia, K., and
Yao, Y. J.: Extensive Evaluation of a Continental-Scale High-Resolution
Hydrological Model Using Remote Sensing and Ground-Based Observations,
Remote Sens.-Basel, 13, 1247, https://doi.org/10.3390/rs13071247, 2021.
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in...