Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Aix Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE
UM 34, 13545 Aix en Provence, France
Julio Gonçalvès
Aix Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE
UM 34, 13545 Aix en Provence, France
Bruno Hamelin
Aix Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE
UM 34, 13545 Aix en Provence, France
Thomas Stieglitz
Aix Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE
UM 34, 13545 Aix en Provence, France
Pierre Deschamps
Aix Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE
UM 34, 13545 Aix en Provence, France
Related authors
No articles found.
Jérôme Texier, Julio Gonçalvès, Thomas Stieglitz, Christine Vallet-Coulomb, Jérôme Labille, Vincent Marc, Angélique Poulain, and Philippe Dussouillez
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-239, https://doi.org/10.5194/hess-2023-239, 2024
Manuscript not accepted for further review
Short summary
Short summary
Understanding the relationship between rivers and alluvial aquifers is crucial, yet challenging. Through a combined approach of tracing and modeling in a French Rhône River site, we reveal significant insights. We quantify the impact of pumping on water flow and identify the primary water sources. Our findings aid sustainable water management in regions facing similar challenges, offering practical guidance for policymakers on groundwater use.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Clément Flaux, Matthieu Giaime, Valérie Pichot, Nick Marriner, Mena el-Assal, Abel Guihou, Pierre Deschamps, Christelle Claude, and Christophe Morhange
E&G Quaternary Sci. J., 70, 93–104, https://doi.org/10.5194/egqsj-70-93-2021, https://doi.org/10.5194/egqsj-70-93-2021, 2021
Short summary
Short summary
Lake Mareotis (NW Nile delta, Egypt) was a gateway between the Nile valley and the Mediterranean during Greco-Roman times. The hydrological evolution of Lake Mareotis was reconstructed using lake sediments and archaeological archives. The data show both a rise in Nile inputs to the basin during the first millennia BC and AD and a lake-level rise of ca. 1.5 m during the Roman period. A high-energy deposit such as a tsunami also possibly affected Alexandria's lacustrine hinterland.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Chloé Poulin, Bruno Hamelin, Christine Vallet-Coulomb, Guinbe Amngar, Bichara Loukman, Jean-François Cretaux, Jean-Claude Doumnang, Abdallah Mahamat Nour, Guillemette Menot, Florence Sylvestre, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 23, 1705–1724, https://doi.org/10.5194/hess-23-1705-2019, https://doi.org/10.5194/hess-23-1705-2019, 2019
Short summary
Short summary
This study investigates the water budget of two intertropical lake systems in the absence of long-term hydrological monitoring. By coupling dry season isotopic data with satellite imagery, we were able to provide quantitative constrains on the hydrological balance and show that these two lake systems can be considered miniature analogs of Lake Chad, making them important targets in the future setup of any large-scale program on the hydro-climatic evolution in the Sahel region.
Camille Bouchez, Julio Goncalves, Pierre Deschamps, Christine Vallet-Coulomb, Bruno Hamelin, Jean-Claude Doumnang, and Florence Sylvestre
Hydrol. Earth Syst. Sci., 20, 1599–1619, https://doi.org/10.5194/hess-20-1599-2016, https://doi.org/10.5194/hess-20-1599-2016, 2016
Short summary
Short summary
Flows out of Lake Chad are constrained by a modeling of the hydrological, chemical, and isotopic budgets, based on a review of existing data along with new data. This innovative approach allows one to determine the proportions of evaporation, transpiration, and infiltration out of the lake while the two last flows are often neglected in semi-arid environments. Moreover, it allows to investigate the lake hydrological and chemical regulations under the large climatic changes in Sahel since 1950.
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Estimating long-term groundwater storage and its controlling factors in Alberta, Canada
Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products
Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach
How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions
Statistical analysis to characterize transport of nutrients in groundwater near an abandoned feedlot
Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations
Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description
Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS
Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data
Groundwater use for irrigation – a global inventory
Claire Pascal, Sylvain Ferrant, Adrien Selles, Jean-Christophe Maréchal, Abhilash Paswan, and Olivier Merlin
Hydrol. Earth Syst. Sci., 26, 4169–4186, https://doi.org/10.5194/hess-26-4169-2022, https://doi.org/10.5194/hess-26-4169-2022, 2022
Short summary
Short summary
This paper presents a new validation method for the downscaling of GRACE (Gravity Recovery and Climate Experiment) data. It measures the improvement of the downscaled data against the low-resolution data in both temporal and, for the first time, spatial domains. This validation method offers a standardized and comprehensive framework to interpret spatially and temporally the quality of the downscaled products, supporting future efforts in GRACE downscaling methods.
Víctor Gómez-Escalonilla, Pedro Martínez-Santos, and Miguel Martín-Loeches
Hydrol. Earth Syst. Sci., 26, 221–243, https://doi.org/10.5194/hess-26-221-2022, https://doi.org/10.5194/hess-26-221-2022, 2022
Short summary
Short summary
Many communities in the Sahel rely solely on groundwater. We develop a machine learning technique to map areas of groundwater potential. Algorithms are trained to detect areas where there is a confluence of factors that facilitate groundwater occurrence. Our contribution focuses on using variable scaling to minimize expert bias and on testing our results beyond standard metrics. This approach is illustrated through its application to two administrative regions of Mali.
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Mathias Maillot, Nicolas Flipo, Agnès Rivière, Nicolas Desassis, Didier Renard, Patrick Goblet, and Marc Vincent
Hydrol. Earth Syst. Sci., 23, 4835–4849, https://doi.org/10.5194/hess-23-4835-2019, https://doi.org/10.5194/hess-23-4835-2019, 2019
Soumendra N. Bhanja, Xiaokun Zhang, and Junye Wang
Hydrol. Earth Syst. Sci., 22, 6241–6255, https://doi.org/10.5194/hess-22-6241-2018, https://doi.org/10.5194/hess-22-6241-2018, 2018
Short summary
Short summary
The paper presents groundwater storage conditions in all the major river basins across Alberta, Canada. We used remote-sensing data and investigate their performance using available ground-based data of groundwater level monitoring, storage coefficients, aquifer thickness, and surface water measurements. The water available for groundwater recharge has been studied in detail. Separate approaches have been followed for confined and unconfined aquifers for estimating groundwater storage.
Mohammad Shamsudduha, Richard G. Taylor, Darren Jones, Laurent Longuevergne, Michael Owor, and Callist Tindimugaya
Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, https://doi.org/10.5194/hess-21-4533-2017, 2017
Short summary
Short summary
This study tests the phase and amplitude of GRACE TWS signals in the Upper Nile Basin from five commonly used gridded products (NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS) using in situ data and soil moisture from the Global Land Data Assimilation System. Resolution of changes in groundwater storage (ΔGWS) from GRACE is greatly constrained by the uncertain simulated soil moisture storage and the low amplitude in ΔGWS observed in deeply weathered crystalline rocks in the Upper Nile Basin.
Y. Altchenko and K. G. Villholth
Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, https://doi.org/10.5194/hess-19-1055-2015, 2015
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
P. Gbolo and P. Gerla
Hydrol. Earth Syst. Sci., 17, 4897–4906, https://doi.org/10.5194/hess-17-4897-2013, https://doi.org/10.5194/hess-17-4897-2013, 2013
A. Pryet, N. d'Ozouville, S. Violette, B. Deffontaines, and E. Auken
Hydrol. Earth Syst. Sci., 16, 4571–4579, https://doi.org/10.5194/hess-16-4571-2012, https://doi.org/10.5194/hess-16-4571-2012, 2012
F. Alkhaier, G. N. Flerchinger, and Z. Su
Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, https://doi.org/10.5194/hess-16-1817-2012, 2012
F. Alkhaier, Z. Su, and G. N. Flerchinger
Hydrol. Earth Syst. Sci., 16, 1833–1844, https://doi.org/10.5194/hess-16-1833-2012, https://doi.org/10.5194/hess-16-1833-2012, 2012
U. Mallast, R. Gloaguen, S. Geyer, T. Rödiger, and C. Siebert
Hydrol. Earth Syst. Sci., 15, 2665–2678, https://doi.org/10.5194/hess-15-2665-2011, https://doi.org/10.5194/hess-15-2665-2011, 2011
S. Siebert, J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann
Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, https://doi.org/10.5194/hess-14-1863-2010, 2010
Cited articles
Abu-Jaber, N. S., Ali, A. J., and Al Qudah, K.: Use of Solute and Isotopic
Composition of Ground Water to Constrain the Ground Water Flow System of the
Azraq Area, Jordan, Groundwater, 36, 361–365, https://doi.org/10.1111/j.1745-6584.1998.tb01101.x, 1998.
Ahmed, I., Nazzal, Y., Zaidi, F. K., Al-Arifi, N. S. N., Ghrefat, H., and
Naeem, M.: Hydrogeological vulnerability and pollution risk mapping of the
Saq and overlying aquifers using the DRASTIC model and GIS techniques, NW Saudi Arabia, Environ. Earth Sci., 74, 1303–1318, https://doi.org/10.1007/s12665-015-4120-5, 2015.
Al-Hasan, A. A. S. and Mattar, Y.: Mean runoff coefficient estimation for
ungauged streams in the Kingdom of Saudi Arabia, Arab. J. Geosci., 7, 2019–2029, https://doi.org/10.1007/s12517-013-0892-7, 2013.
Alhassan, A. A., McCluskey, A., Alfaris, A., and Strzepek, K.: Scenario
Based Regional Water Supply and Demand Model: Saudi Arabia as a Case Study,
Int. J. Environ. Sci. Dev., 7, 46–51, https://doi.org/10.7763/IJESD.2016.V7.739, 2016.
Al-Homoud, A. S., Allison, R. J., Sunna, B. F., and White, K.: Geology,
Geomorphology, Hydrology, Groundwater and Physical Resources of the
Desertified Badia Environment in Jordan, GeoJ., 37, 51–67,
https://doi.org/10.1007/BF00814885, 1995.
Al-Jasser, A. O.: Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance, J. King Saud Univ.
– Eng. Sci., 23, 1–8, https://doi.org/10.1016/j.jksues.2009.06.001, 2011.
Almomani, T., Almomani, M., Subah, A., and Hammad, N.: Jordan Water Sector
Facts and Figures 2013, 2015, 2017, Dtsch. Ges. Für Int. Zusammenarbeit
GIZ GmbH, https://doi.org/10.13140/RG.2.1.3419.4088, 2015.
Al-Sagaby, A. and Moallim, A.: Isotopes based assessment of groundwater
renewal and related anthropogenic effects in water scarce areas: Sand dunes
study in Qasim area, Saudi Arabia, IAEA-TECDOC-1246, IAEA – International Atomic Energy Agency, Vienna,
https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/003/33003275.pdf (last access: 10 November 2022), 2001.
Alsharhan, A. S. and Nairn, A. E. M.: Sedimentary basins and petroleum
geology of the Middle East, Elsevier, 843 pp., https://doi.org/10.1016/B978-0-444-82465-3.X5000-1, 1997.
Al-Zyoud, S.: Geothermal Cooling in Arid Regions: An Investigation of the
Jordanian Harrat Aquifer System, PhD Thesis, Technische Universität
Darmstadt, Darmstadt, https://doi.org/10.13140/RG.2.2.36447.20640, 2012.
Al-Zyoud, S., Rühaak, W., Forootan, E., and Sass, I.: Over Exploitation
of Groundwater in the Centre of Amman Zarqa Basin – Jordan: Evaluation of
Well Data and GRACE Satellite Observations, Resources, 4, 819–830,
https://doi.org/10.3390/resources4040819, 2015.
Banks, E. W., Cook, P. G., Owor, M., Okullo, J., Kebede, S., Nedaw, D., Mleta, P., Fallas, H., Gooddy, D., John MacAllister, D., Mkandawire, T., Makuluni, P., Shaba, C. E., and MacDonald, A. M.: Environmental tracers to
evaluate groundwater residence times and water quality risk in shallow
unconfined aquifers in sub Saharan Africa, J. Hydrol., 598, 125753,
https://doi.org/10.1016/j.jhydrol.2020.125753, 2021.
Barthélemy, Y., Béon, O., Nindre, Y.-M., Munaf, S., Poitrinal, D.,
Gutierrez, A., Vandenbeusch, M., Shoaibi, A., and Wijnen, M.: Modelling of
the Saq aquifer system (Saudi Arabia), in: IAH Hydrogeology Selected Papers
vol. 10, Taylor & Francis, 175–190, https://www.researchgate.net/publication/332189029_Modelling_of_the_Saq_aquifer_system_Saudi_Arabia (last access: 10 November 2022), 2006.
Bazuhair, A. S. and Wood, W. W.: Chloride mass-balance method for estimating
ground water recharge in arid areas: examples from western Saudi Arabia, J.
Hydrol., 186, 153–159, https://doi.org/10.1016/S0022-1694(96)03028-4, 1996.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model
L4 monthly 1.0×1.0 degree V2.1, Goddard Earth Sci. Data Inf. Serv. Cent. GES DISC, Greenbelt, Maryland, USA, https://doi.org/10.5067/LWTYSMP3VM5Z,
2020a.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS VIC Land Surface Model
L4 monthly 1.0×1.0 degree V2.1, Goddard Earth Sci. Data Inf. Serv. Cent. GES DISC, Greenbelt, Maryland, USA, https://doi.org/10.5067/VWTH7S6218SG, 2020b.
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
Blazquez, A., Meyssignac, B., Lemoine, J., Berthier, E., Ribes, A., and Cazenave, A.: Exploring the uncertainty in GRACE estimates of the mass
redistributions at the Earth surface: implications for the global water and
sea level budgets, Geophys. J. Int., 215, 415–430,
https://doi.org/10.1093/gji/ggy293, 2018.
Bonsor, H., Shamsudduha, M., Marchant, B., MacDonald, A., and Taylor, R.:
Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs, Remote Sens., 10, 904,
https://doi.org/10.3390/rs10060904, 2018.
BRGM and Abunayyan Trading Corp.: Investigations for updating groundwater
mathematical model(s) of the Saq and overlying aquifers, Ministry of Water
and Electricity, Saudi Arabia, https://fr.scribd.com/document/16845648/Saq-Aquifer-Saudi-Arabia-2008 (last access: 10 November 2022), 2008.
Chekireb, A., Gonçalvès, J., Hamelin, B., Deschamps, P., and Séraphin, P.: Analytical Expressions of Radiocarbon Distribution in
Transient State Unconfined Aquifers and Their Application to Determination
of Past and Present Recharges of North Africa Aquifers, Water Resour. Res.,
57, e2021WR030018, https://doi.org/10.1029/2021WR030018, 2021.
Chowdhury, S. and Al-Zahrani, M.: Reuse of treated wastewater in Saudi
Arabia: an assessment framework, J. Water Reuse Desalin., 3, 297–314,
https://doi.org/10.2166/wrd.2013.082, 2013.
Chowdhury, S. and Al-Zahrani, M.: Characterizing water resources and trends
of sector wise water consumptions in Saudi Arabia, J. King Saud Univ. – Eng.
Sci., 27, 68–82, https://doi.org/10.1016/j.jksues.2013.02.002, 2015.
Coudrain-Ribstein, A., Pratx, B., Talbi, A., and Jusserand, C.: L'évaporation des nappes phréatiques sous climat aride est-elle
indépendante de la nature du sol?, Comptes Rendus Académie Sci. –
Ser. IIA – Earth Planet. Sci., 326, 159–165, https://doi.org/10.1016/S1251-8050(00)89030-8, 1998.
CSR: CSR GRACE/GRACE-FO RL06 Mascon Solutions (version 02), https://www2.csr.utexas.edu/grace/RL06_mascons.html, last access: 14 November 2022.
Dafny, E., Gvirtzman, H., Burg, A., and Fleischerc, L.: The hydrogeology of
the Golan basalt aquifer, Israel, Isr. J. Earth Sci., 52, 139–153, 2003.
de Vries, J. J. and Simmers, I.: Groundwater recharge: an overview of processes and challenges, Hydrogeol. J., 10, 5–17, https://doi.org/10.1007/s10040-001-0171-7, 2002.
Dogramaci, S., Firmani, G., Hedley, P., Skrzypek, G., and Grierson, P. F.:
Evaluating recharge to an ephemeral dryland stream using a hydraulic model
and water, chloride and isotope mass balance, J. Hydrol., 521, 520–532,
https://doi.org/10.1016/j.jhydrol.2014.12.017, 2015.
Fallatah, O. A., Ahmed, M., Cardace, D., Boving, T., and Akanda, A. S.:
Assessment of modern recharge to arid region aquifers using an integrated
geophysical, geochemical, and remote sensing approach, J. Hydrol., 569,
600–611, https://doi.org/10.1016/j.jhydrol.2018.09.061, 2019.
Fontes, J. C., Yousfi, M., and Allison, G. B.: Estimation of long-term,
diffuse groundwater discharge in the northern Sahara using stable isotope
profiles in soil water, J. Hydrol., 86, 315–327, https://doi.org/10.1016/0022-1694(86)90170-8, 1986.
Frenken, K. and UN-FAO: Irrigation in the Middle East Region in figures:
AQUASTAT survey – 2008, Food and Agriculture Organization of the United
Nations, Rome, https://www.fao.org/3/i0936e/i0936e00.pdf (last access: 10 November 2022), 2009.
General Authority for statistics: Statistical Yearbook of 1965–2018, Kingdom
of Saudi Arabia, https://www.stats.gov.sa/en/46 (last access: 10 November 2022), 2019.
Gleeson, T., Cuthbert, M., Ferguson, G., and Perrone, D.: Global Groundwater
Sustainability, Resources, and Systems in the Anthropocene, Annu. Rev. Earth
Planet. Sci., 48, 431–463, https://doi.org/10.1146/annurev-earth-071719-055251, 2020.
Gonçalvès, J., Petersen, J., Deschamps, P., Hamelin, B., and Baba-Sy, O.: Quantifying the modern recharge of the “fossil” Sahara aquifers, Geophys. Res. Lett., 40, 2673–2678, https://doi.org/10.1002/grl.50478, 2013.
Gonçalvès, J., Séraphin, P., Stieglitz, T., Chekireb, A., Hamelin, B., and Deschamps, P.: Coastal aquifer recharge and groundwater–seawater exchanges using downscaled GRACE data: case study of
the Djeffara plain (Libya–Tunisia), Comptes Rendus Géoscience, 353,
297–318, https://doi.org/10.5802/crgeos.74, 2021.
Gonçalvès, J., Seraphin, P., and Nutz, A.: Dealing with hydrologic
data scarcity: the case of the Tindouf Basin, Comptes Rendus Géoscience, submitted, 2022.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Kamai, T. and Assouline, S.: Evaporation From Deep Aquifers in Arid Regions:
Analytical Model for Combined Liquid and Vapor Water Fluxes, Water Resour.
Res., 54, 4805–4822, https://doi.org/10.1029/2018WR023030, 2018.
Konikow, L. F. and Kendy, E.: Groundwater depletion: A global problem, Hydrogeol. J., 13, 317–320, https://doi.org/10.1007/s10040-004-0411-8, 2005.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Lenczuk, A., Leszczuk, G., Klos, A., and Bogusz, J.: Comparing variance of
signal contained in the most recent GRACE solutions, Geod. Cartogr., 19–37,
https://doi.org/10.24425/gac.2020.131084, 2020.
Li, B., Beaudoing, H., and Rodell, M.: GLDAS Catchment Land Surface Model L4
monthly 1.0×1.0 degree V2.1, Goddard Earth Sci. Data Inf. Serv. Cent. GES DISC, Greenbelt, Maryland, USA, https://doi.org/10.5067/FOUXNLXFAZNY, 2020.
Lloyd, J. W. and Pim, R. H.: The hydrogeology and groundwater resources
development of the Cambro-Ordovician sandstone aquifer in Saudi Arabia and
Jordan, J. Hydrol., 121, 1–20, https://doi.org/10.1016/0022-1694(90)90221-I, 1990.
Loomis, B. D.: GSFC GRACE and GRACE-FO RL06 v1 OBP-ICE6GD, MD, USA, https://earth.gsfc.nasa.gov/geo/data/grace-mascons (last access: 10 November 2022), 2020.
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.: Regularization and error
characterization of GRACE mascons, J. Geod., 93, 1381–1398,
https://doi.org/10.1007/s00190-019-01252-y, 2019.
MacDonald, A. M., Lark, R. M., Taylor, R. G., Abiye, T., Fallas, H. C., Favreau, G., Goni, I. B., Kebede, S., Scanlon, B., Sorensen, J. P. R., Tijani, M., Upton, K. A., and West, C.: Mapping groundwater recharge in
Africa from ground observations and implications for water security, Environ. Res. Lett., 16, 034012, https://doi.org/10.1088/1748-9326/abd661, 2021.
Mahamid, J. A.: Integration of Water Resources of the Upper Aquifer in Amman-Zarqa Basin Based on Mathematical Modeling and GIS, Jordan, Freib.
Online Geosci., 12, 223 pp., https://doi.org/10.23689/fidgeo-879, 2005.
Messerschmid, C. and Aliewi, A.: Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine, Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, 2022.
Mohamed, A. and Gonçalvès, J.: Hydro-geophysical monitoring of the
North Western Sahara Aquifer System's groundwater resources using gravity
data, J. Afr. Earth Sci., 178, 104188, https://doi.org/10.1016/j.jafrearsci.2021.104188, 2021.
Mohamed, A., Sultan, M., Ahmed, M., Yan, E., and Ahmed, E.: Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data, Geol. Soc. Am. Bull., 129, 534–546, https://doi.org/10.1130/B31460.1, 2017.
Multsch, S., Al-Rumaikhani, Y. A., Frede, H.-G., and Breuer, L.: A Site-sPecific Agricultural water Requirement and footprint Estimator
(SPARE:WATER 1.0), Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013, 2013.
NASA: JPL GRACE/GRACE-FO RL06 Mascon Solutions (version 02), https://search.earthdata.nasa.gov/search?q=JPL CRI&fpj=GRACE-FO (last access: 14 November 2022), 2022a.
NASA: GSFC GRACE/GRACE-FO RL06 Mascon Solutions (version 02), https://earth.gsfc.nasa.gov/geo/data/grace-mascons (last access: 14 November 2022), 2022b.
NASA: GLDAS Land Surface Model Products (CLSM, VIC, NOAH),
https://search.earthdata.nasa.gov/search?fpj=GLDAS (last access: 14 November 2022), 2022c.
Othman, A., Sultan, M., Becker, R., Alsefry, S., Alharbi, T., Gebremichael,
E., Alharbi, H., and Abdelmohsen, K.: Use of Geophysical and Remote Sensing
Data for Assessment of Aquifer Depletion and Related Land Deformation, Surv.
Geophys., 39, 543–566, https://doi.org/10.1007/s10712-017-9458-7, 2018.
Persits, F. M., Ahlbrandt, T. S., Tuttle, M. L., Charpentier, R. R., Brownfield, M. E., and Takahashi, K. I.: Maps showing geology, oil and gas
fields and geological provinces of Africa, Maps showing geology, oil and gas
fields and geological provinces of Africa, US Geological Survey, Reston,
VA, https://doi.org/10.3133/ofr97470A, 1997.
Pollastro, R. M., Karshbaum, A. S., and Viger, R. J.: Maps showing geology,
oil and gas fields and geologic provinces of the Arabian Peninsula, Maps
showing geology, oil and gas fields and geologic provinces of the Arabian
Peninsula, US Geological Survey, Reston, VA, https://doi.org/10.3133/ofr97470B, 1999.
Ramillien, G., Frappart, F., and Seoane, L.: Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water
Management in Africa, Remote Sens., 6, 7379–7405, https://doi.org/10.3390/rs6087379, 2014.
Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S.,
Voss, K., Swenson, S., and Rodell, M.: Quantifying renewable groundwater
stress with GRACE, Water Resour. Res., 51, 5217–5238, https://doi.org/10.1002/2015WR017349, 2015.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Save, H.: CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, TX, USA,
https://www2.csr.utexas.edu/grace/RL06_mascons.html (last access: 10 November 2022), 2020.
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Solid, 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B.,
Edmunds, W. M., and Simmers, I.: Global synthesis of groundwater recharge in
semiarid and arid regions, Hydrol. Process., 20, 3335–3370,
https://doi.org/10.1002/hyp.6335, 2006.
Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., Longuevergne, L., and Chen, J.: Global evaluation of new GRACE mascon products for hydrologic applications, Water Resour. Res., 52, 9412–9429,
https://doi.org/10.1002/2016WR019494, 2016.
Scanlon, B. R., Zhang, Z., Rateb, A., Sun, A., Wiese, D., Save, H., Beaudoing, H., Lo, M. H., Müller-Schmied, H., Döll, P., Beek, R., Swenson, S., Lawrence, D., Croteau, M., and Reedy, R. C.: Tracking Seasonal
Fluctuations in Land Water Storage Using Global Models and GRACE Satellites,
Geophys. Res. Lett., 46, 5254–5264, https://doi.org/10.1029/2018GL081836, 2019.
Scanlon, B. R., Rateb, A., Pool, D. R., Sanford, W., Save, H., Sun, A., Long, D., and Fuchs, B.: Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers, Environ. Res. Lett., 16, 094009, https://doi.org/10.1088/1748-9326/ac16ff, 2021.
Schilling, O. S., Cook, P. G., Grierson, P. F., Dogramaci, S., and Simmons, C. T.: Controls on Interactions Between Surface Water, Groundwater, and Riverine Vegetation Along Intermittent Rivers and Ephemeral Streams in Arid
Regions, Water Resour. Res., 57, e2020WR028429, https://doi.org/10.1029/2020WR028429, 2021.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review
of applied methods, J. Hydrol., 511, 518–529, https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An
overview of the hydrology of non-perennial rivers and streams, WIREs Water,
8, e1504, https://doi.org/10.1002/wat2.1504, 2021.
Sharaf, M. A. and Hussein, M. T.: Groundwater quality in the Saq aquifer,
Saudi Arabia, Hydrolog. Sci. J., 41, 683–696, https://doi.org/10.1080/02626669609491539, 1996.
Siebert, C., Rödiger, T., Mallast, U., Gräbe, A., Guttman, J., Laronne, J. B., Storz-Peretz, Y., Greenman, A., Salameh, E., Al-Raggad, M.,
Vachtman, D., Zvi, A. B., Ionescu, D., Brenner, A., Merz, R., and Geyer, S.:
Challenges to estimate surface- and groundwater flow in arid regions: The
Dead Sea catchment, Sci. Total Environ., 485–486, 828–841,
https://doi.org/10.1016/j.scitotenv.2014.04.010, 2014.
Sun, A. Y.: Predicting groundwater level changes using GRACE data:
Predicting Groundwater Level Changes Using Grace Data, Water Resour. Res.,
49, 5900–5912, https://doi.org/10.1002/wrcr.20421, 2013.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in
GRACE data, Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285, 2006.
UN-ESCWA and BGR: Inventory of Shared Water Resources in Western Asia,
United Nations, Beirut, https://doi.org/10.18356/48e4072c-en, 2013.
United Nations: World Population Prospects 2019, Online Edition, Rev. 1,
https://population.un.org/wpp/ (last access: 10 November 2022), 2019.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Solid, 120, 2648–2671, 2015.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Solid, 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution: GRACE JPL RL05M
LEAKAGE ERROR REDUCTION, Water Resour. Res., 52, 7490–7502,
https://doi.org/10.1002/2016WR019344, 2016.
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.:
JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water
Height JPL RL06 Version 02. Ver. 2, PO.DAAC, CA, USA, https://doi.org/10.5067/TEMSC-3MJ62, 2019.
Zaidi, F. K., Nazzal, Y., Ahmed, I., Naeem, M., and Jafri, M. K.: Identification of potential artificial groundwater recharge zones in
Northwestern Saudi Arabia using GIS and Boolean logic, J. Afr. Earth Sci.,
111, 156–169, https://doi.org/10.1016/j.jafrearsci.2015.07.008, 2015.
Zammouri, M.: Case Study of Water Table Evaporation at Ichkeul Marshes
(Tunisia), J. Irrig. Drain. Eng., 127, 265–271,
https://doi.org/10.1061/(ASCE)0733-9437(2001)127:5(265), 2001.
Short summary
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite gravity data. Spatial heterogeneities regarding the groundwater recharge were identified: (i) irrigation excess is great enough to artificially recharge the aquifer; and (ii) volcanic lava deposits, which cover 8% of the domain, contribute to more than 50% of the total natural recharge. This indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto.
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite...