Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4279-2022
https://doi.org/10.5194/hess-26-4279-2022
Research article
 | 
22 Aug 2022
Research article |  | 22 Aug 2022

An algorithm for deriving the topology of belowground urban stormwater networks

Taher Chegini and Hong-Yi Li

Related authors

Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood Modeling within a Coupled Earth System Model
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785,https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024,https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Causal relationships between vegetation productivity, water availability, and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1748,https://doi.org/10.5194/egusphere-2024-1748, 2024
Short summary
Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43,https://doi.org/10.5194/essd-2024-43, 2024
Preprint under review for ESSD
Short summary
Disentangling the hydrological and hydraulic controls on streamflow variability in Energy Exascale Earth System Model (E3SM) V2 – a case study in the Pantanal region
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024,https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024,https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024,https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024,https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
On the use of streamflow transformations for hydrological model calibration
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024,https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary

Cited articles

Ajaaj, A. A., Mishra, A. K., and Khan, A. A.: Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods, Theor. Appl. Climatol., 132, 403–418, https://doi.org/10.1007/s00704-017-2096-7, 2017. a
Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban, 65, 126–139, https://doi.org/10.1016/j.compenvurbsys.2017.05.004, 2017. a
Brandes, U.: A faster algorithm for betweenness centrality, J. Math. Sociol., 25, 163–177, https://doi.org/10.1080/0022250x.2001.9990249, 2001. a
Brown, S. A., Schall, J. D., Morris, J. L., Doherty, C. L., Stein, S. M., and Warner, J. C.: Urban Drainage Design Manual, Hydraulic Engineering Circular 22, Third Edition, Federal Highway Administration Press, Publication No. FHWA-NHI-10-009, 2013. a, b, c, d, e
Chegini, T., Li, H.-Y., and Leung, L. R.: HyRiver: Hydroclimate Data Retriever, Journal of Open Source Software, 6, 3175, https://doi.org/10.21105/joss.03175, 2021. a, b, c
Download
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.