Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4279-2022
https://doi.org/10.5194/hess-26-4279-2022
Research article
 | 
22 Aug 2022
Research article |  | 22 Aug 2022

An algorithm for deriving the topology of belowground urban stormwater networks

Taher Chegini and Hong-Yi Li

Related authors

Transformation rate maps of dissolved organic carbon in the contiguous US
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025,https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Causal relationships of vegetation productivity with root zone water availability and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025,https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood Modeling within a Coupled Earth System Model
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785,https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024,https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Disentangling the hydrological and hydraulic controls on streamflow variability in Energy Exascale Earth System Model (E3SM) V2 – a case study in the Pantanal region
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024,https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary

Cited articles

Ajaaj, A. A., Mishra, A. K., and Khan, A. A.: Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods, Theor. Appl. Climatol., 132, 403–418, https://doi.org/10.1007/s00704-017-2096-7, 2017. a
Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban, 65, 126–139, https://doi.org/10.1016/j.compenvurbsys.2017.05.004, 2017. a
Brandes, U.: A faster algorithm for betweenness centrality, J. Math. Sociol., 25, 163–177, https://doi.org/10.1080/0022250x.2001.9990249, 2001. a
Brown, S. A., Schall, J. D., Morris, J. L., Doherty, C. L., Stein, S. M., and Warner, J. C.: Urban Drainage Design Manual, Hydraulic Engineering Circular 22, Third Edition, Federal Highway Administration Press, Publication No. FHWA-NHI-10-009, 2013. a, b, c, d, e
Chegini, T., Li, H.-Y., and Leung, L. R.: HyRiver: Hydroclimate Data Retriever, Journal of Open Source Software, 6, 3175, https://doi.org/10.21105/joss.03175, 2021. a, b, c
Download
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Share