Articles | Volume 26, issue 16
Research article
22 Aug 2022
Research article |  | 22 Aug 2022

An algorithm for deriving the topology of belowground urban stormwater networks

Taher Chegini and Hong-Yi Li

Related authors

Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss.,,, 2024
Preprint under review for ESSD
Short summary
Disentangling the hydrological and hydraulic controls on streamflow variability in Energy Exascale Earth System Model (E3SM) V2 – a case study in the Pantanal region
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215,,, 2024
Short summary
GCAM-GLORY v1.0: Representing Global Reservoir Water Storage in a Multisector Human-Earth System Model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472,,, 2023
Short summary
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995,,, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258,,, 2024
Short summary
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122,,, 2024
Short summary
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105,,, 2024
Short summary
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686,,, 2024
Short summary
A network approach for multiscale catchment classification using traits
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651,,, 2024
Short summary

Cited articles

Ajaaj, A. A., Mishra, A. K., and Khan, A. A.: Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods, Theor. Appl. Climatol., 132, 403–418,, 2017. a
Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban, 65, 126–139,, 2017. a
Brandes, U.: A faster algorithm for betweenness centrality, J. Math. Sociol., 25, 163–177,, 2001. a
Brown, S. A., Schall, J. D., Morris, J. L., Doherty, C. L., Stein, S. M., and Warner, J. C.: Urban Drainage Design Manual, Hydraulic Engineering Circular 22, Third Edition, Federal Highway Administration Press, Publication No. FHWA-NHI-10-009, 2013. a, b, c, d, e
Chegini, T., Li, H.-Y., and Leung, L. R.: HyRiver: Hydroclimate Data Retriever, Journal of Open Source Software, 6, 3175,, 2021. a, b, c
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.