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Abstract. Belowground urban stormwater networks
(BUSNs) are critical for removing excess rainfall from
impervious urban areas and preventing or mitigating urban
flooding. However, available BUSN data are sparse, prevent-
ing the modeling and analysis of urban hydrologic processes
at regional and larger scales. We propose a novel algorithm
for estimating BUSNs by drawing on concepts from graph
theory and existing, extensively available land surface data,
such as street network, topography, and land use/land cover.
First, we derive the causal relationships between the topol-
ogy of BUSNs and urban surface features based on graph
theory concepts. We then apply the causal relationships and
estimate BUSNs using web-service data retrieval, spatial
analysis, and high-performance computing techniques.
Finally, we validate the derived BUSNs in the metropolitan
areas of Los Angeles, Seattle, Houston, and Baltimore in the
US, where real BUSN data are partly available to the public.
Results show that our algorithm can effectively capture
59 %–76 % of the topology of real BUSN data, depending
on the supporting data quality. This algorithm has promising
potential to support large-scale urban hydrologic modeling
and future urban drainage system planning.

1 Introduction

Urban flooding events pose an escalating threat to urban ar-
eas at regional and larger scales. The worsening of the urban
flooding issue can first be attributed to urbanization and as-
sociated regional population migration. The United Nations
estimates that, globally, the urban population will grow to
more than two-thirds of the total population by 2050 (United

Nations Department of Economic and Social Affairs, 2019).
This worsening can also be due to climate change, partic-
ularly accelerated extreme precipitation and sea-level rise,
which have posed an increasing threat to urban populations
(Schreider et al., 2000; Yang et al., 2013; Hettiarachchi et al.,
2018; Rosenberger et al., 2021). Both urbanization and cli-
mate change are widely considered large-scale phenomena
and have been studied mostly at regional and larger scales
(e.g., Ajaaj et al., 2017; Ntelekos et al., 2010; Teuling et al.,
2019; Pang et al., 2022; Qian et al., 2022). As such, it is nec-
essary to understand, predict, and mitigate urban flooding at
regional and larger scales.

Generally, there are two types of systems for transporting
stormwater from urban areas to local water bodies: combined
sewer systems (CSSs) and separate sewer systems (SSSs).
CSSs collect domestic sewage and/or industrial wastewater
in addition to stormwater, whereas SSSs have two separate
systems for collecting stormwater and sewage/wastewater.
During heavy rainfalls, the overflows from CSSs are a major
source of pollution; therefore, at the end of the 20th century,
many major countries around the globe started adopting SSSs
in their urban development plans and partially or fully trans-
forming their existing CSSs into SSSs (Mannina and Viviani,
2009). Although there are still many cities around the world
with CSSs, SSSs are more common in many major countries.
For example, there are over 700 communities in the US that
use CSSs, whereas over 80 % of the US population resides
in areas with SSSs (EPA, 2018). In China, the percentage of
SSS and CSS usage varies by region, but SSSs are predom-
inant overall, accounting for 58 %–87 % of the total sewer
line length in different regions of China (Huang et al., 2018).

The US Environmental Protection Agency (EPA) uses the
term “municipal separate storm sewer system” (MS4) to re-
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fer to the stormwater collection part of SSSs. In this study,
we focus on MS4s because they are the most dominant type
of stormwater transport systems in the US. The EPA de-
fines an MS4 as a publicly owned urban stormwater con-
veyance system that directly receives excess surface runoff
from urban areas during storm events and delivers it to lakes,
rivers, or oceans. Thus, MS4s play an irreplaceable role in
preventing or mitigating urban floods. However, due to a
lack of good-quality MS4 data, most urban modules in exist-
ing hydrological models focus on surface hydrological pro-
cesses (e.g., those associated with impervious areas and com-
pacted soils) and do not explicitly account for MS4s (e.g.,
Rafee et al., 2019; Qian et al., 2022; Cuo et al., 2008; Yang
et al., 2011). One of the few exceptions is the Storm Water
Management Model (SWMM) (Rossman and Simon, 2022).
However, SWMM can only apply to a local, small-city level
due to its intensive computational demand and requirement
for detailed MS4 data, which are typically not available to
the public (e.g., Nanía et al., 2015; Meyers et al., 2021; Fraga
et al., 2016; Naves et al., 2019; Yang et al., 2011). More-
over, some studies, instead of using the actual urban drainage
network, generate synthetic networks based on probabilistic
methods that can capture the hydrologic responses of urban
watersheds (e.g., Seo and Schmidt, 2014; Kim et al., 2021).
Generating such synthetic networks requires parameter cal-
ibration based on hydrological observations such as stream-
flow. Therefore, MS4 data sparsity remains a grand challenge
in urban hydrology, preventing us from understanding and
modeling belowground urban hydrologic processes at the re-
gional or larger scales that are compatible with the impacts
of urbanization and climate change.

In this study, we focus on the belowground urban
stormwater network (BUSN) elements of MS4s, i.e., above-
ground elements such as street inlets, manholes, and ditches
are not the subject of this study. We attempt to address the
data scarcity challenge based on two premises. The first
premise is the topological relationship between street/road
networks and BUSNs. Generally, BUSNs are required to pro-
tect streets/roads from flooding; thus, they are often con-
structed parallel to street/road networks, particularly for im-
portant streets, as illustrated in Fig. 1. The Urban Drainage
Design Manual by the US federal government (Brown et al.,
2013) states that the main design objective of BUSNs is
to collect the stormwater runoff and convey it along and
through streets toward suitable water bodies without ad-
versely impacting the streets’ intended functions. The second
premise is that aboveground urban geospatial data are now
extensively available. For example, OpenStreetMap (Open-
StreetMap, 2021) provides a vector-format, global map of
street/road networks freely accessible to the public. By cap-
turing and utilizing this topological relationship, we can de-
rive the topological properties of BUSNs (e.g., geographic
locations of stormwater pipes and their spatial connections)
based on the existing street/road network and other above-
ground data.

Figure 1. A schematic of an urban drainage system adapted from
Town of Gilbert, AZ (2022).

Table 1. The shortest paths in the two graphs shown in Fig. 2.

P u
ij

∑
Wu
ij

Pw
ij

∑
Ww
ij

a→ d 1 a→ d 1
a→ d→ e 2 a→ d→ e 2
a→ d→ e→ g 3 a→d→e→ f 5
a→ d→ e→ g→ h 4 a→ d→ e→ g 3
a→d→ f 2 a→ d→ e→ g→ h 4
b→ d 1 b→ d 1
b→ d→ e 2 b→ d→ e 2
b→ d→ e→ g 3 b→d→e→ f 5
b→ d→ e→ g→ h 4 b→ d→ e→ g 3
b→d→ f 2 b→ d→ e→ g→ h 4
c→ e 1 c→ e 1
c→ e→ f 2 c→ e→ f 4
c→ e→ g 2 c→ e→ g 2
c→ e→ g→ h 3 c→ e→ g→ h 3
d→ e 1 d→ e 1
d→ e→ g 2 d→e→ f 4
d→ e→ g→ h 3 d→ e→ g 2
d→ f 1 d→ e→ g→ h 3
e→ f 1 e→ f 3
e→ g 1 e→ g 1
e→ g→ h 2 e→ g→ h 2
f→ g 1 f→ g 1
f→ g→ h 2 f→ g→ h 2
g→ h 1 g→ h 1

Paths in bold indicate the paths that are in one graph and not in the other.

Thus, our primary objective is to propose, develop, and
validate a novel algorithm for deriving BUSN topological
properties from ubiquitous existing aboveground data. The
rest of the article is structured as follows: Sect. 2 describes
the conceptual basis and technical details of the new algo-
rithm, Sect. 3 lists four metropolitan areas in the US as the
case studies, Sect. 4 illustrates this algorithm in these case
studies, and Sect. 5 closes with a summary and discussions
on the limitations and future implications.
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Figure 2. A comparison of unweighted (a, b) and weighted (c, d) betweenness centrality (BC) for two directed graphs. Panels (a) and (c)
show the edge weights. Panels (b) and (d) illustrate the importance of edge weights in determining the shortest paths. The line colors in
panels (b) and (d) represent the BC values.

2 Methodology

In this section, we first explain the conceptual framework of
our algorithm for deriving the topology of BUSNs, including
the following:

1. complex network analysis concepts (which are transfer-
able and not specific to any location) from graph theory
that we adapt to capture the topological relationships
between BUSNs and street/road networks,

2. a generic procedure for BUSN derivation,

3. a simple yet effective way of validating the BUSNs de-
rived by the algorithm,

4. the technical details of implementing the algorithm in
the US based on the US the federal and local urban
drainage design criteria as well as publicly available
land surface data.

2.1 Generic and conceptual framework

2.1.1 Complex network analysis

BUSNs and street networks are both complex, hierarchical
networks. The function of such networks largely depends on
their nontrivial topological structure (Strogatz, 2001). There-
fore, analyzing complex networks is usually carried out by
measuring their structural properties. Graph theory intro-
duces different types of structural properties for quantifying

the function of complex networks from different perspec-
tives such as clustering (grouping elements based on their at-
tributes), connectivity (resilience to removing elements), and
centrality (relative importance of elements). As our proposed
algorithm is based on the relative importance of elements of
a complex network, centrality-based metrics are suitable for
our algorithm. Moreover, as we are interested in analyzing
flow paths in street and storm drain networks in this study, we
opt for using betweenness centrality (BC; Freeman, 1977) as
a metric for measuring the relative importance of edges in a
complex network such as a BUSN.

The mathematical definition of BC is as follows:

BC(i)=
∑

v6=i 6=w

σvw(i)
σvw

, (1)

where σvw is the total number of the shortest paths from
Node v to Node w, and σvw(i) is the subset of paths that
pass through Node i (Brandes, 2001). In other words, the BC
value of an edge is the ratio of the total number of the short-
est paths that pass through the edge to the total number of
the shortest paths in the entire network. In general, the short-
est path between two nodes in a network is the path with the
minimum number of edges that connect the two nodes. The
specific definition of the shortest path closely depends on the
network type. A network can be either undirected or directed.
In an undirected network, there is a symmetric relationship
between a pair of connected nodes, whereas, in a directed
network, there could be a one-way relationship between a
pair of connected nodes. For example, pedestrian pathways
in a street network can be considered as an undirected graph
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Figure 3. A schematic diagram of a generic procedure for estimating BUSNs using publicly available aboveground datasets.

because pedestrians can cross any path in the network in both
directions. Car pathways, on the other hand, cannot be con-
sidered undirected because there are one-way and two-way
streets. Therefore, in this case, the street network can be
considered as a directed graph. A BUSN, nonetheless, is a
directed network because the pipes in a BUSN are always
one-way by design (i.e., stormwater moves in the pipes un-
der gravity towards surface water bodies). In addition to di-
rection, network edges can have numeric properties, such as

length and width. These numeric properties, which are called
edge weights, can be used to differentiate the importance or
capacity of the edges. Within a directed network, BC can be
calculated with or without the edge weights and denoted as
weighted or unweighted BC, respectively.

We demonstrate the difference between weighted and un-
weighted BC in a directed graph using a simple example.
Figure 2a shows an unweighted directed network in which,
for simplicity, we assume that the network is uniformly
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Figure 4. A simple case demonstrating the validation method. Real
BUSN elements with more than 60 % coverage percentage are con-
sidered as “covered”.

weighted (i.e., all edge weights are 1). Figure 2c is the same
graph, but two edges have different weights (i.e., edges d→ f
and e→ f have weights of 9 and 3, respectively).

Table 1 shows all of the paths in the network and the sum
of edge weights along the paths. In the table,

∑
W u
ij and∑

Ww
ij are the sums of edge weights in a path for the uni-

formly weighted and weighted graphs, respectively. We note
that, as all edge weights are 1 in the uniformly weighted
graph,

∑
W u
ij becomes the number of edges in a path.

The paths highlighted using bold font in Table 1 are the
shortest paths unique to each graph. For example, there are
two paths between nodes a and f, namely a→ d→ f and
a→ d→ e→ f. In the uniformly weighted graph, the sum
of weights for these two paths are 2 and 3, respectively; thus,
a→ d→ f is the shortest path. On the other hand, in the
weighted graph, the sum of weights for these two paths be-
comes 10 and 5, respectively; thus, a→ d→ e→ f becomes
the shortest path from a to f. By repeating this procedure for
all of the edges in the two networks, we can identify all of
the shortest paths passing through each edge and compute
their BC values (Fig. 2b, d). From this example, we conclude
that edges with lower weights are more likely to have higher
BC values because the shortest paths are more likely to pass
through them.

Furthermore, the weights of edges can be calculated in var-
ious ways depending on their network function. Kirkley et al.
(2018) adapted the BC concept in street network analysis to
study traffic congestion (i.e., slower movement of vehicles
due to the imbalance of street capacity and traffic volume).
Considering a street network as a directed graph, street seg-
ments are edges and street junctions are nodes, and a higher
weight associated with a street segment implies the lower im-
portance of this street segment. As travel time is central to
quantifying congestion, Kirkley et al. (2018) assigned street
length as the edge weight for computing BC. As such, for any
street, a lower weight implies a shorter travel time, a higher
chance of this street being on an optimum traffic route, and
thus higher importance. They showed that, in a street net-

work, streets with high BC values are guaranteed to be a part
of the backbone structure of the network and, thus, more im-
portant to traffic analysis. Nevertheless, they pointed out that
using street length as the only edge weight was a limitation
in their analysis, as the length is not the only factor affecting
traffic congestion.

For adapting the BC concept to BUSNs, we rely on two
facts: (1) a BUSN is also a complex network and a directed
graph, and (2) BUSNs are well connected to street networks
through some connecting elements such as street inlets and
catch basins, as shown in Fig. 1, as required by federal and
state regulations (Brown et al., 2013). As these connecting
elements are primarily aligned with streets, we consider that
belowground stormwater pipes, for the most part, are laid be-
neath streets. Therefore, we assume that a BUSN’s topology
is analogous to a street network’s topology in an urban area,
and we can infer the former from the latter. We also note that,
in a BUSN, pipes are edges and pipe junctions are nodes.

Moreover, it is neither necessary nor feasible to have a
belowground stormwater pipe below each street. For ex-
ample, a country road or a street in a very sparsely popu-
lated area may not need a belowground stormwater pipe be-
cause the corresponding surface infrastructures, such as flood
buffering zones, may be sufficient to protect it from floods.
Those streets in residential and commercial areas are rela-
tively more important and will need BUSNs for flood pro-
tection due to two possible reasons: (1) the streets are so im-
portant that extra flood protection is needed in addition to
existing surface infrastructure (e.g., buffering zone and reten-
tion ponds), or (2) there is not enough space for surface in-
frastructure in heavily populated urban areas, where BUSNs
are the most economical and feasible option. Indeed, within
a street/road network, some streets are more important than
others depending on several factors, such as road type, urban
form (e.g., street circulation system and buildings’ arrange-
ment, distribution, and spatial accessibility), land use (e.g.,
residential, commercial, and industrial), and land cover (e.g.,
open spaces, parks, and impervious surfaces). Thus, streets
with more importance are more likely to have BUSNs under-
lying them. In this study, we quantify the relative importance
of streets by incorporating the aforementioned factors into
the BC concept.

To address the single-weight-factor limitation pointed out
in the Kirkley et al. (2018) study, for BUSN derivation, we
propose incorporating multiple stormwater-relevant factors,
such as street topography and land use/land cover, into edge
weights. In other words, instead of using only one attribute
as an edge weight, we compute an integrated weight from
multiple attributes. The resulting weighted BC reflects the
integrated impacts of various urban factors on the required
stormwater transport capacity of the BUSN pipe, and it is
denoted as the integrated weighted BC (IWBC) hereinafter.
Intuitively, a street with a higher weight will have a lower re-
quirement for stormwater transport due its lower importance
and, thus, a lower IWBC value. Correspondingly, this street
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will be less likely to have a BUSN pipe underlying it. In this
study, we assign street weights based on the following rules:

– As an edge should have a single integrated weight for
computing the BC, different street/pipe attributes should
be summarized into a single value.

– We transform the values of street/pipe attributes into
edge weights such that streets/pipes with more signifi-
cance have lower weights. The reason for this is that we
measure the street/pipe significance based on their BC
values, and edges with lower weights are more likely to
have higher BC values.

– Considering that street/pipe attributes can have differ-
ent ranges or even data types, we normalize their values
before assigning them as edge weights.

In this study, we consider four street attributes, namely,
land cover type, road type, the discharge capacity of its as-
sociated storm drain pipe, and the building footprint, using
integer, string, float, and float data types, respectively. First,
we normalize each attribute by data binning (i.e., dividing
the values into five categories and assigning each category
an integer number from 1 through 5). These integer values
correspond to different levels of relative importance starting
from very high (1) to very low (5). For example, we normal-
ize building footprints such that streets with higher building
footprints have lower weights. The reason for this is that a
higher building footprint value indicates that the street is lo-
cated in a high-density residential area or a business center;
therefore, the stormwater should be drained quicker. We note
that the only requirement for a normalized weight is that it
should be greater than zero, as zero edge weights may lead
to infinity paths with equal lengths, meaning that the shortest
path cannot be determined. After transforming all of the at-
tributes into edge weights by normalizing them to the range
[1, 5], we compute the integrated weight of edges by tak-
ing the average of four weights. The same relative impor-
tance logic applies to the integrated weight (i.e., a lower in-
tegrated weight value for a street increases the probability of
the street having a higher BC value). Consequently, the street
has a higher relative significance and requires more stormwa-
ter transport capacity. We provide more details on the imple-
mentation of these rules in our algorithm in the following
section.

2.1.2 Generic procedure for deriving a BUSN

In this subsection, we outline a generic procedure to derive
a BUSN based on IWBC that can be conceptually applicable
to any urban area. Figure 6 illustrates the major steps in this
generic procedure, which are explained in the following:

1. Step 1 entails the calculation of the surface slopes of all
streets in the street network of interest (Fig. 3a) based
on the available digital elevation model (DEM) (Fig. 3b)

data. The DEM data should ideally have the highest spa-
tial resolution and a small error in vertical elevation val-
ues when possible, to minimize the errors in estimating
street slopes. When necessary, lidar data can be used in-
stead for better accuracy.

2. Step 2 involves setting the flow directions between
streets based on the surface slopes obtained in Step 1.
At this stage, we assume street length is the only weight-
ing factor. Now the street network becomes a directed,
weighted network, as shown in Fig. 3c.

3. Step 3 entails the initial estimation of relative street im-
portance by calculating the weighted betweenness, as
shown in Fig. 3d. In this study, we use two Python
packages for performing these operations: “Networkit”
(Staudt et al., 2015) for running computationally expen-
sive network operations, such as computing BC in par-
allel, and “Networkx” (Hagberg et al., 2008) for other
network operations, such as community detection and
measuring network connectivity.

4. Step 4 requires the estimation of streets’ right-of-way
(ROW) based on local/federal regulations. ROW is a
part of the land that is reserved by local/federal authori-
ties for construction, maintenance, and future expansion
of transportation elements, such as highways and public
utilities (Brown et al., 2013).

5. Step 5 entails the estimation of the hydraulic properties
of the potential BUSN pipes (e.g., pipe size and slope)
by accounting for both the weighted betweenness from
Step 3 and the recommendations from the street-/road-
relevant regulations at the federal, state, or local levels
(see Fig. 3e). Steps 4 and 5 are where the site-specific
factors come into play, as different cities under different
jurisdictions may have site-specific requirements with
respect to ROW and the hydraulic properties of BUSNs.

6. Step 6 involves the calculation of IWBC by assigning
different weights to different streets and integrating sev-
eral weighting factors, such as road type, land use/land
cover (LULC), surface topography, and building den-
sity.

7. Step 7 requires the derivation of the BUSN by remov-
ing those relatively unimportant streets based on IWBC.
We assume that BUSN pipes are only needed for those
remaining streets. Thus, the topology of the BUSN is
the same as that of the remaining, relatively important
streets.

8. Finally, Step 8 involves checking the connectivity of the
remaining network based on the concept of weakly con-
nected components from graph theory. In graph theory,
network connectivity is an important measure of a net-
work’s resilience to losing edges or nodes (i.e., the im-
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Figure 5. Comparing the Fisher–Jenks (a, c, e, g) and quantile (b, d, f, h) classification methods for integrated weighted betweenness
centrality (IWBC) values of baseline networks. Panels (a) and (b), (c) and (d), (e) and (f), and (g) and (h) correspond to the Los Angeles,
Houston, Baltimore, and Seattle cases, respectively. In each plot, IWBC values are on the left y axis (red), and the number of elements in
each class is on the right y axis (purple).
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Figure 6. A flowchart demonstrating details of the proposed framework.

pact that removing edges and nodes has on the over-
all network flow). For this purpose, after removing the
unimportant streets, we first detect the isolated subnet-
works by determining the weakly connected compo-
nents (i.e., those components that are unreachable af-
ter converting the network to an undirected graph by
ignoring edge directions). We then find the number of
streets for each subnetwork and remove those subnet-
works whose number of streets is less than the average
street count of the subnetworks.

In Step 5, we proposed a weight integration strategy for
combining continuous and discrete weighting factors into a
unified discrete weight system. Some urban features, such as
road type and land use/land cover, are only quantified with
discrete values and cannot be represented by continuous val-
ues. The integrated weight ranges from 1 to 5. For any edge, a
smaller weight indicates higher relative importance because

the edge will have a higher chance of being on the short-
est path. First, we transform all continuous weighting factors
into discrete values in two possible ways: (1) the quantile
method, which is based on the equal number of features in
each class, and (2) the Fisher–Jenks (Jenks, 1977) method,
which minimizes the total within-class variance of features.
Upon transforming all weighting factors to discrete values,
we integrate them via arithmetic mean. Note that, by using
arithmetic mean, we equally account for different weighting
factors because no data are available for objectively quanti-
fying the relative importance of each weighting factor.

2.1.3 Validation

Due to the scarcity of publicly available real BUSN data and
their low quality, we can only validate the topology of the
derived BUSNs. Therefore, although our proposed algorithm
provides hydraulically feasible approximations for the size
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Figure 7. A map of urban areas that are the subject of this study as
well as their area.

and slope of the BUSN pipes, we cannot validate them. Our
topology validation strategy is based on the principle of spa-
tial proximity for the places where some real BUSN data
are available. As shown in Fig. 4, on each side of a derived
BUSN edge, we set a buffer zone as wide as the correspond-
ing ROW. We then perform spatial analysis to judge how
much of a pipe from the real BUSN is located within the
buffer zones. If 60 % of a pipe length from the real BUSN is
within this buffer zone, the pipe is considered “covered”. We
determined this 60 % threshold based on a sensitivity anal-
ysis which showed that the total coverage percentage value
does not change by more than 2 % for threshold values from
50 % to 80 %. For any area, we denote Lcovered as the to-
tal length of the “covered” BUSN pipes and Lall as the total
length of all of the BUSN pipes. To measure the algorithm’s
performance over an urban area, we define a successful cov-
ering percentage as

ω =
Lcovered

Lall
· 100. (2)

Obviously, the higher the ω value, the higher the percentage
of the real BUSN pipes successfully covered by the algorithm
and, thus, the better the algorithm’s performance.

There are often non-negligible uncertainties in both street
network and real BUSN data. For instance, over any urban
area, one may estimate both the total length values of the
real BUSN pipes and the streets, respectively, from the avail-
able data. In principle, the real BUSN’s total length should
not exceed that of the corresponding street network. In re-
ality, however, this may not be the case if there are notably
fewer missing data from the real BUSN dataset compared
with the corresponding street network dataset. To account
for this situation in our validation, we first discretize the tar-
geted urban domain into 1 km resolution grid cells. For each
grid cell, we then calculate the ratio of the total length of the
real BUSN pipes to the total length of the street network el-
ements. Theoretically, this ratio should be no more than 1.0.

We discard those cells with a ratio larger than the theoretical
maximum (1.0) and only calculate ω in the remaining grid
cells. Finally, the spatial average of ω values over the grid
cells within an urban area (ω) is the metric we use to mea-
sure the algorithm’s performance for this area.

2.2 Technical implementation of the US

This subsection describes the detailed implementation of the
previously outlined algorithm over the US.

2.2.1 Data gathering and processing

We retrieve the raw input data that are available at least in the
US from the following sources:

– Street network data are retrieved from OpenStreetMap
(OpenStreetMap, 2021) using an open-source Python
package called “OSMnx” (Boeing, 2017). OSMnx re-
trieves street network data and their attributes, such as
road type and street length, for any region of interest and
can perform some post-processing operations for clean-
ing up the raw street network data

– Digital elevation model (DEM) data at a 10 m resolution
are retrieved from the 3D Elevation Program (3DEP) of
the US Geologic Survey (USGS) (U.S. Geological Sur-
vey, 2017) using an open-source Python package called
“Py3DEP” (Chegini et al., 2021). Py3DEP provides ac-
cess to the highest-quality and highest-resolution DEM
data that are publicly available in the US.

– Land use/land cover (LULC) data at a 30 m resolution
are sourced from the Multi-Resolution Land Character-
istics (MRLC) consortium (Dewitz and U.S. Geologi-
cal Survey, 2021) using an open-source Python pack-
age called “PyGeoHydro” (Chegini et al., 2021). This
package provides access to many hydroclimate datasets,
such as streamflow observations from USGS stream
gauges and the National Inventory of Dam, in addition
to LULC data.

– Building footprints are retrieved from the Microsoft
Building Footprints (MSBF) dataset (Microsoft, 2018)
using an open-source Python package called “Py-
GeoOGC” (Chegini et al., 2021). Building footprints
are the perimeter of buildings that outlines their exterior
walls. In total, this dataset includes about 130 million
building footprints over the US. Moreover, PyGeoOGC
is a low-level interface to many geospatial web services.

– BUSN design criteria and recommended parameters are
sourced from the Urban Drainage Design Manual by
the Federal Highway Administration, US Department of
Transportation (Brown et al., 2013), and other state or
local governments (e.g., UDFC, 2018).
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Figure 8. Input data for the Los Angeles case: (a) digital elevation model, (b) land use/land cover, (c) street network, (d) existing BUSN,
and (e) building footprints.

Figure 9. Examples demonstrating the quality of publicly available datasets. (a) Existing BUSN data for Houston are published by the
Houston Public Works (City of Houston, 2021), and (b) street data for a part of Snohomish, Seattle, WA, are from OpenStreetMap (Open-
StreetMap, 2021) and Google Maps (commercial) (Gorelick et al., 2017) (© OpenStreetMap contributors YEAR. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0. and © Google Maps).
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We perform the following post-processing operations on
the raw input data:

– We retrieve the “Road type” and “length” attributes for
each street directly from OpenStreetMap (see Table 2).

– We calculate the surface slope and flow direction of
each street in four steps. First, within any street net-
work, we remove intersection points that are closer than
the DEM resolution and, therefore, cannot be effec-
tively used. Second, we hydrologically condition the
DEM data to more accurately represent the flow di-
rection of surface runoff. Third, we compute the street
slope using the conditioned DEM data and set the slope
value to 0.4 % if the computed slope is less than 0.4 %,
as streets must have a minimum longitudinal slope of
0.4 % (UDFC, 2018). Finally, we set the flow directions
between streets (assuming that the flow directions in the
underlying BUSN pipes are the same as the streets).

– We also estimate the streets’ ROW in four steps. First,
we assign the number of lanes to each street based on its
road type defined in OpenStreetMap (OpenStreetMap,
2021) (see Table 2). As the remaining road types that are
not listed in Table 2 are mostly local access roads, we
assign them two lanes. Second, we set the width of an
individual lane to 5.0 m, which is based on the minimum
recommended street lane width of 3.6 m and the mini-
mum sidewalk width of 1.5 m (UDFC, 2018). Third, we
calculate the total width of each street by multiplying
the number of lanes by the lane width. Finally, we as-
sign one buffer zone on each side of the street that is as
wide as the street itself.

– We determine the dominant land cover type in the buffer
zone of each street by computing the dominant cover
type within the buffer zone from the high-resolution
LULC data.

– We estimate the total area of building footprints within
the buffer zone of each street by summing up the foot-
prints of the buildings with more than 30 % of their ar-
eas within the buffer zone.

Upon performing these post-processing operations, each
street has seven attributes: road type, length, ROW, surface
slope, flow direction, land cover type, and building foot-
prints’ area. Once all of the input data are ready, we consider
four weighting factors for IWBC: road type, LULC, building
footprint area, and stormwater pipe flow capacity, as shown
in Table 3. We note that, in this study, we transform these
street attributes into edge weights in such a way that higher
IWBC values correspond to higher significance for transport-
ing stormwater. Here, stormwater pipe flow capacity (Qf) is
the maximum discharge for a pipe full of water (more details
are provided later). These four weighting factors are chosen

Table 2. Road type definitions (OpenStreetMap, 2021) and their
corresponding number of lanes.

Road type Definition∗ No. of
lanes

Motorway A restricted access major divided high-
way, normally with 2 or more running
lanes plus emergency hard shoulder.
Equivalent to the Freeway, Autobahn,
etc.

6

Trunk The most important roads in a country’s
system that aren’t motorways. (Need
not necessarily be a divided highway.)

4

Primary The next most important roads in a
country’s system. (Often link larger
towns.)

4

Secondary The next most important roads in a
country’s system. (Often link towns.)

3

Tertiary The next most important roads in a
country’s system. (Often link smaller
towns and villages)

2

Residential Roads which serve as an access to hous-
ing, without function of connecting set-
tlements. Often lined with housing.

2

Busway A dedicated roadway for bus rapid tran-
sit systems.

1

Link The link roads (sliproads/ramps) lead-
ing to/from a higher class road from/to
the same or lower class toad.

1

∗ Definitions are direct quotes from the OpenStreetMap Wiki (© OpenStreetMap
contributors, 2022).

for two reasons: (1) they all impact urban stormwater trans-
port, and (2) they can be estimated in the US from the ex-
isting data. Other weighting factors may also impact urban
stormwater, but insufficient supporting data exist to translate
them into quantitative weight.

We group each weighting factor into five classes and as-
sign a provisional weight to each class. We set a higher provi-
sional weight to a class with less importance and vice versa.
Recall that, for any edge in a weighted network, a higher
weight implies a lower probability to be included in the short-
est path and, thus, a smaller IWBC value.

The weighting factors in Table 3 include both discrete
(road type and LULC) and continuous (building footprints
and pipe flow capacity) variables. For consistent weight cal-
culation, we group each weighting factor into five classes.
Road type and LULC are already discrete, so the grouping is
straightforward. For building footprints and pipe flow capac-
ity, we use the Fisher–Jenks natural breaks method to group
them into five classes. We then assign provisional weights to
these classes (i.e., a higher provisional weight to a class with
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Table 3. Ranges and scores of the weighting factors.

Score Land cover Road type Building Pipe flow
type area∗ (m2) capacity∗ (m3 s−1)

Very high (1) 24 Residential and tertiary >J4 >J4
High (2) 23 Secondary J4–J3 J4–J3
Moderate (3) 22 Primary J3–J2 J3–J2
Low (4) 21 Motorway and trunks J2–J1 J2–J1
Very low (5) Other types Other types <J1 <J1

∗ Ji corresponds to bin values obtained from the Fisher–Jenks natural breaks’ classification algorithm.

less importance and vice versa). This way, each street will
have four provisional weights, and its final weight is taken as
the arithmetic mean of these provisional weights.

We derive Qf from the existing information using Eq. (3)
(Thomason, 2019). This equation is for a circular concrete
pipe with a diameter of less than 24 in. (0.6 m) which is one
of the most commonly used stormwater pipes in the US.
(Heilman, 2022).

Qf =
0.3116
n

D8/3S1/2, (3)

where n, D, and S are the pipe’s Manning’s roughness co-
efficient, diameter (m), and slope (m m−1), respectively. Al-
though the maximum discharge capacity of a circular pipe
occurs at 94 % of a pipe diameter (Chow, 1959), it does not
make a difference in our proposed algorithm because we are
only concerned with the relative discharge capacity of pipes
in the network. The recommended n value for stormwater
pipes with a diameter less than or equal to 24 in. (0.6 m)
is 0.013 (Heilman, 2022). D and S are determined during
a two-stage, predictor–corrector procedure to compute the
IWBC values as follows:

– Compute the provisional BC values (B̂C) for the entire
network using Eq. (3) by only considering length as the
street weight.

– Assign a suitable pipe size to each street in the network
based on the B̂C values. We achieve this by statistical
binning of these values into 10 intervals (the number of
permissible pipe sizes from Table 4). Considering that
streets with higher B̂C values are likely to receive more
stormwater, the largest pipe size is assigned to streets
in the class with the highest B̂C values. Similarly, the
smallest pipe size is assigned to streets in the class with
the lowest B̂C values.

– Set the pipe slopes based on the obtained street slopes
and the permissible slope ranges corresponding to each
pipe size given in Table 4 adopted from Brown et al.
(2013). A pipe slope usually follows the street slope un-
less the slope is outside of the permissible range, as it
can lead to pipe flow velocities below or above the de-
sign criterion (0.9–3 m s−1). Therefore, if a street slope

Table 4. Slope range based on storm drain pipe size.

Pipe size Minimum slope Maximum slope
(%) (%)

12 in. (0.30 m) 0.220 4.860
14 in. (0.35 m) 0.170 4.000
15 in. (0.38 m) 0.150 3.610
16 in. (0.40 m) 0.140 3.310
18 in. (0.45 m) 0.120 2.830
21 in. (0.53 m) 0.100 2.300
24 in. (0.60 m) 0.080 1.930
27 in. (0.68 m) 0.067 1.650
30 in. (0.75 m) 0.058 1.430
36 in. (0.90 m) 0.046 1.120

is less than the minimum permissible pipe slope, we set
the pipe slope to its minimum permissible value. Simi-
larly, if a street slope exceeds the maximum permissible
pipe slope, we set the pipe slope to its maximum per-
missible value. Subsequently, we compute the pipe flow
capacity using Eq. (3) and the obtained pipe sizes and
slopes.

– Compute the arithmetic mean of the four weighting fac-
tors and determine the corrected BC values for the net-
work (i.e., the final IWBC values).

Note that this predictor–corrector approach does not yet
change the baseline street network topology. The obtained
IWBC values are our basis to obtain the derived BUSN by
removing those relatively unimportant streets from the base-
line network. One may begin by removing those edges with
IWBC values of less than a threshold, as these edges repre-
sent less important streets that are less likely to require be-
lowground stormwater pipes. Intuitively, by increasing the
IWBC threshold, we remove more elements from the base-
line street network; thus, the drainage capacity of the BUSN
corresponding to the remaining part of the street network de-
creases. There is, nevertheless, a nonlinear relationship be-
tween increasing the IWBC threshold and decreasing the de-
rived BUSN. This is due to two reasons:
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Figure 10. Model performance with drainage adequacy classifier
index (DACI) values varying from 0.0 to 1.0 with a 0.05 interval for
the four case studies.

– In most street networks, the numbers of edges associ-
ated with lower IWBC values are nonlinearly larger than
those with higher IWBC values. Our analysis shows that
the lowest IWBC values have the highest frequency in
the network. For example, Fig. 5 compares the distribu-
tion of IWBC values using two classification methods,
namely Fisher–Jenks and quantile, for the four cities
that are subject of this study. As is evident from the fig-
ure, the first class based on the Fisher–Jenks method has
a significantly higher edge count, whereas the last class
based on the quantile method has significantly higher
within-class variance in IWBC values.

– The edges with lower IWBC values correspond to the
pipes with smaller diameters, and their removal has a
smaller impact on the total BUSN’s drainage capacity
compared with removing those edges corresponding to
pipes with larger diameters.

Therefore, IWBC cannot be directly used to guide this re-
moval operation. We carry out this operation in two steps:

– We use the first out of 10 classes based on the Fisher–
Jenks method (FJ1) to identify the group of streets with
the lowest IWBC values. FJ1 has the highest edge count
and the lowest within-class variance in IWBC values.

– Considering the small variance of IWBC values of the
streets in FJ1, the quantile method is suitable for cate-
gorizing the streets based on their IWBC values. Thus,
we use the quantile method as an indicator for removing
edges from the baseline network.

Our empirical analysis of the real BUSN data from the US
cities suggests that, for a baseline street network, those edges
with IWBC values belonging to the FJ2–FJ10 classes are im-
portant enough to have underlying BUSN pipes, whilst only

a fraction of the edges with IWBC values belonging to the
FJ1 class do not have underlying BUSN pipes and should be
removed. Hence, we define the Drainage Adequacy Classi-
fier Index (DACI) based on the IWBC quantiles within the
FJ1 class. Mathematically, DACI= 1− IWBC quantile. We
use the DACI as a direct indicator in guiding the removal of
relatively unimportant edges from a baseline street network
and deriving the final BUSN. For example, if the DACI value
is 0.8, we drop those edges with IWBC values less than the
20th quantile of the IWBC values in the FJ1 class. A DACI
value of 1.0 suggests retaining all of the edges in a baseline
network.

In this study, we use the DACI as an empirical parameter.
For a case study where real BUSN data are partially avail-
able, we increase the DACI value until there is no significant
increase in the average ω value. Figure 6 depicts a flowchart
of our proposed framework.

3 Results

3.1 Case studies and data

We choose the following four major cities in the US as the
case studies to demonstrate the algorithm (Fig. 7): Houston,
TX; Los Angeles, CA; Baltimore, MD; and Seattle, WA. The
primary reason for choosing them is that there are real BUSN
data available to the public over a fraction of the areas within
these cities with relatively decent data quality. For instance,
over the Los Angeles metropolitan area, we only obtain the
real BUSN data for a small town, San Fernando Valley.

Interestingly, the real BUSN and street network data show
different characteristics among these case studies. The street
network structure in the Baltimore and Seattle cases is quite
different from that in the Houston and Los Angeles cases. In
graph theory, a community refers to a group of nodes (street
intersections) in a network where the density of the connec-
tions among them is higher than the rest of the network. In
a street network, a community can be analogous to an ur-
ban cluster. Table 5 summarizes some real BUSN and street
network data for our four case studies. As is evident from
the real BUSN columns of the table, the quality, availability,
and types of real BUSN data vary on a case-by-case basis, as
local authorities produce the data based on their own rules,
regulations, and available resources. The table shows that the
number of element type categories in each case is different.
For example, in the Houston case, BUSN element types are
divided into seven categories (Trunk, Lead, Outfall, Culvert,
Trench Drain, Siphon, and Overflow), whereas there are four
categories (Detention Pipe, Driveway Culvert, Cross Culvert,
and Pipe) in the Seattle cases. Thus, not only the data quality
but also the level of detail that each real BUSN dataset pro-
vides is different. Nevertheless, as is evident from Table 5,
the main storm drain pipes (sometimes called trunks), which
are the focus of this study, are the most dominant elements
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Figure 11. Three different BUSNs estimated for the San Fernando Valley case with three different drainage adequacy classifier index (DACI)
values, showing (a) the full street network and DACI values of (b) 0.9, (c) 0.7, and (c) 0.5.

in BUSNs, both in terms of quantity and their role in the sys-
tem’s transport capacity. Moreover, according to Table 5, the
Baltimore and Seattle cases have smaller average community
sizes and, thus, smaller urban clusters.

We retrieve the input data for the four case studies follow-
ing the procedure described in Sect. 2.2.1. Figure 8 shows an
example of the input data that we collected for the Los Ange-
les case. Figure 8a and b plot the digital elevation model and
land use/land cover data that we retrieved from 3DEP (U.S.
Geological Survey, 2017) and MRLC (Dewitz and U.S. Ge-
ological Survey, 2021), respectively. Additionally, Fig. 8c, d,
and e represent the street network, existing BUSN, and build-
ing footprints that we obtained from OSM (OpenStreetMap,
2021), Los Angeles GeoHub (Los Angeles GeoHub, 2022),
and MSBF (Microsoft, 2018), respectively.

Furthermore, although the input data for the proposed
BUSN algorithm are generally available in the US, the data
quality might vary among different categories of input data
and different locations. For example, in the available real
BUSN data, there are often some missing edges. As is evi-
dent from Fig. 9a, the BUSN data are only available in some
urban areas in Houston, as indicated by the red color. How-
ever, there should be BUSNs in the other areas, but the real
data are not available. Our observation suggests that different

case studies may be subject to different levels of real BUSN
data quality issues, which lead to some uncertainty in the val-
idation of the derived BUSN. Moreover, it appears that the
quality of street network data is not consistent across loca-
tions either. Figure 9b shows the street network data from
OpenStreetMap overlaid with that from Google Maps for a
tiny portion of Seattle, WA (for better clarity); this aforemen-
tioned figure suggests that OpenStreetMap misses a consid-
erable number of streets and, thus, has certain data quality
issues as well. As the topology of our derived BUSNs is pri-
marily based on that of the underlying street networks, the
accuracy of the derived BUSN data is also subject to the qual-
ity of the underlying street network data.

3.2 BUSN derivation and validation

For each of the case studies, we run the algorithm with DACI
values varying from 0.0 to 1.0 at a 0.05 interval (Fig. 10). In-
tuitively, one would expect that ω increases with the DACI.
Interestingly, there is a plateau behavior for the Baltimore,
Seattle, and Houston cases, where ω stops increasing once
the DACI passes a threshold value (i.e., ω reaches its max-
imum and stabilizes). Recall that a higher DACI value im-
plies that more streets in a street network require underly-
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Figure 12. Results for the Los Angeles case. Panel (a) shows the coverage percentage, and panel (b) presents the length ratio maps at a 1 km
resolution, where the red pixels indicate the areas with poor street data quality. The white background pixels are grid cells that do not contain
street and/or existing BUSN elements. Panel (c) compares the estimated BUSN with the existing BUSN using a 0.9 DACI.

Table 5. Summary of real BUSN and street network data.

Real BUSN Street

Case Total length No. of Trunk Total length No. of Mean comm.
(km) types (%) (km) comm. size

Los Angeles 1612 12 79.2 5668 97 205.0
Houston 6352 7 71.7 41 989 266 538.1
Baltimore 2461 10 94.7 9946 126 258.2
Seattle 1857 4 83.5 5189 128 144.7

“No. of types” means the number of element type categories in a database (e.g., trunk and culvert), and “comm.”
stands for network communities.
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Figure 13. Results for the Houston case. Panel (a) shows the coverage percentage, and panel (b) presents length ratio maps at a 1 km
resolution, where the red pixels indicate the areas with poor street data quality. The white background pixels are grid cells that do not contain
street and/or existing BUSN elements. Panel (c) compares the estimated BUSN with the existing BUSN using a 0.8 DACI.

ing stormwater pipes. This plateau behavior confirms our
earlier statement that relatively unimportant streets will not
require underlying stormwater pipes. The DACI thresholds
(for this plateau behavior) are 0.9, 0.9, and 0.8 for the Bal-
timore, Seattle, and Houston cases, respectively, suggesting
that there are more unimportant streets in Houston that do
not require underlying stormwater pipes compared with the
Baltimore and Seattle cases. The Los Angeles case, how-
ever, does not seem to have such a plateau behavior (i.e.,
ω does not stop increasing with the DACI even when the

DACI= 1.0). The possible reason for this is that there are
stormwater pipes under most streets in the Los Angeles case.
Therefore, as we retain more edges from the baseline street
network (as the derived BUSN pipes), ω keeps increasing.
We note that, as the street network data quality is sufficiently
good for the Los Angeles case, data quality is not a reason
for not reaching a plateau. We further confirm the street net-
work data quality by retrieving higher-quality data from a
local source, Los Angeles GeoHub (2022), and comparing it
with the data obtained from the OSM.
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Figure 14. Results for the Seattle case. Panel (a) shows the coverage percentage, and panel (b) presents length ratio maps at a 1 km resolution,
where the red pixels indicate the areas with poor street data quality. The white background pixels are grid cells that do not contain street
and/or existing BUSN elements. Panel (c) compares the estimated BUSN with the existing BUSN using a 0.9 DACI.

Figure 11 illustrates the changing spatial patterns of the
baseline street network (Fig. 11a) and the derived BUSNs
when using DACI values of 0.9, 0.7, and 0.5, respectively
(Fig. 11b–d), for the Los Angeles case. As expected, by
decreasing the DACI value, the derived BUSN becomes
sparser, while there are no small isolated subnetworks. We
recall that, in Step 8 of our general procedure, the algorithm
removes the small isolated subnetworks if there are any. This
step is particularly important because the connectivity of a
network dictates its overall transport capacity.

Figures 12–15 show results of the four cases. Each of these
figures includes three panels. Panel a in Figs. 12–15 shows
the ω values at the grid cell level. Panel b in Figs. 12–15
shows the ratio of the total length of the real BUSN pipes to
the total length of the street network elements within each
grid cell. Note that, in the first panel, those grid cells with
a ratio exceeding 1.0 are highlighted with a red color and

excluded from the validation due to the poor quality of street
network data. Thus, a spatial average of the ω values from the
remaining grid cells is used as the algorithm’s overall perfor-
mance for each case study (see Table 6). Panel c in Figs. 12–
15 shows the derived BUSN overlaid by the corresponding
real BUSN.

The algorithm performs very well in the Los Angeles and
Houston cases, with ω values of 75.5 % and 72.9 %, respec-
tively. It only performs reasonably well in the Seattle and
Baltimore cases, with ω values of 65.6 % and 59.0 %, respec-
tively. There are two possible reasons for this difference in
the algorithm’s performance: (1) the street network and real
BUSN data quality is better in the Los Angeles and Hous-
ton cases than in the other two cases (there are far fewer grid
cells marked with the red color in Figs. 12b–13b compared
with Figs. 14b and 15b); (2) topographic features can affect
the model performance because they can have a significant
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Figure 15. Results for the Baltimore case. Panel (a) shows the coverage percentage, and panel (b) presents length ratio maps at a 1 km
resolution, where the red pixels indicate the areas with poor street data quality. The white background pixels are grid cells that do not contain
street and/or existing BUSN elements. Panel (c) compares the estimated BUSN with the existing BUSN using a 0.9 DACI.

impact on the design and construction cost of belowground
drainage elements. Notably, the slope of streets can pose sig-
nificant limitations on the construction of BUSNs. We recall
that urban design manuals provide permissible slope ranges
for BUSNs to maintain the pipes’ flow velocity within a cer-
tain range. Therefore, urban areas in hilly terrain that can
have higher street slope variability may require BUSN pipes
to be placed deeper into the ground as well as nonuniform
cover depths (the distance between the top of a BUSN pipe
and the street surface). These requirements can lead to sig-
nificantly higher construction costs because more excavation
needs to be carried out.

In this study, we do not account for the construction lim-
itations and difficulties that arise in BUSNs in hilly ter-
rain; therefore, we expect poorer performance in such ar-
eas. We quantify the slope variability of urban areas based
on the cumulative percent (CP) graph for slope, as shown in
Fig. 16a. For this purpose, as demonstrated in Fig. 16b, we
divide the slopes in the CP graph into four categories, namely
steep slopes with a 0 %–5 % exceedance probability, mod-
erate slopes with a 5 %–33 % exceedance probability, mild
slopes with a 33 %–66 % exceedance probability, and very
mild slopes with a 95 %–100 % exceedance probability. Sub-
sequently, we determine the slope variability by computing
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Figure 16. Comparison of the overland slope of urbanized areas for the four case studies based on (a) the cumulative percentage graph of
slopes and (b) the variability percentage of the slopes from steep slopes with a 0 %–5 % exceedance probability to moderate slopes with
a 5 %–33 % exceedance probability, from moderate to mild slopes with a 33 %–66 % exceedance probability, and from mild to very mild
slopes with a 95 %–100 % exceedance probability. The dashed lines in panel (b) represent the slope variability for the four cases and among
the four slope categories.

the gradient of the average slope values in each category (i.e.,
average slopes of the dashed lines in Fig. 16b) as follows:

γ ji =
1

1Eji
· log

(
Sj

Si

)
· 100, (4)

where γ ji is the gradient from category j to i, and 1Eji is
the difference between the exceedance probability percent-
ages of consecutive categories (e.g., 1E33,5 = 33− 5= 28).
Moreover, Si is the average of all of the slopes within cat-
egory i. The reason that we use a logarithm for computing
the difference between consecutive average slopes is that the
y axis of the cumulative percent graph (Fig. 16a) is on a log-
scale. Higher gradients correspond to less slope variability.

Table 6 summarizes the algorithm’s performance for the
four cases, in terms of ω values. Although the four selected
urban areas have different characteristics, the derived BUSNs
generally match the real BUSNs with acceptable accuracy
(i.e., with ω values above 60 % in all of them). Note that the
satisfactory validation of the derived BUSN from the algo-
rithm verifies the analogy assumption we make earlier (in
Section 2.2.1), i.e., the analogy between the BUSN and the
street network’s topology. As is evident from Table 6, the
average coverage percentage and slope variability follow the
same trend (i.e., the highest coverage percentage corresponds
to the lowest slope variability).

4 Summary and discussions

This study presents a novel algorithm for estimating below-
ground urban stormwater networks based on graph theory

Table 6. Summary of the model performance for the four cases.

Total real BUSN DACI ω γ

length (km) (%) (%) (%)

Los Angeles 1612 0.9 75.5 4.5
Houston 6352 0.8 72.7 4.1
Seattle 1857 0.9 65.6 3.9
Baltimore 2461 0.9 59.0 2.6

concepts and publicly available information. Most of the pro-
cedure is automatic, except for one empirical parameter that
is specified by the user. Inputs of the algorithm are mostly
land surface data, such as street network, topography, land
use/land cover, and building footprints, that are readily avail-
able to the public and cover at least the whole US. We suc-
cessfully validated the topology of the derived BUSNs for
four US cities on both the west and east coasts, with the av-
erage coverage percentage varying from 59 % to 76 %.

Although we developed our proposed framework based on
publicly available datasets and design manuals in the US, it
is flexible and can be adapted to other regions with differ-
ent design criteria and data availability. Moreover, despite
relying only on publicly available datasets, which are not the
most accurate available datasets, the model showed satisfac-
tory performance.

There are a few directions to further improve the algo-
rithm, including but not limited to the following:
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1. The quality and availability of input data for the algo-
rithm can be further enhanced at the regional or larger
scales (e.g., the street network data).

2. The DACI threshold for deriving BUSNs is an empir-
ical, user-specified parameter in this study. Estimating
it a priori based on the hydroclimatic conditions for
any urban watershed can be achieved via a rigorous hy-
draulic analysis involving estimating peak runoff and
adequately detailed BUSN hydraulic modeling.

3. We may generalize this DACI threshold parameter at the
regional or larger scales based on the regional hydrocli-
mate conditions (e.g., intensity, duration, and frequency
of extreme rainfall and peak runoff). However, these im-
provements are beyond the scope of this study and are
left for future work.

4. We may further expand our algorithm to account for
drainage catchments in urban areas and break down the
derived BUSNs into several subnetworks that follow the
catchments.

5. The BUSN algorithm in this study is designed for sep-
arate sewer systems. Considering that combined sewer
systems have different design criteria, the applicability
of the algorithm for such systems requires further re-
search.

Ultimately, our proposed algorithm for estimating BUSNs
is a valuable tool to support the parameterization of large-
scale urban hydrologic modeling, particularly in the areas
where BUSN data are not available. It may also provide deci-
sion support in regional-scale urban planning from the angle
of stormwater and flood management.
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