Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-4033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Tanja Liesch
Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Andreas Wunsch
Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Related authors
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Fabienne Doll, Tanja Liesch, Maria Wetzel, Stefan Kunz, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2025-3539, https://doi.org/10.5194/egusphere-2025-3539, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With the growing use of machine learning for groundwater level (GWL) prediction, proper performance estimation is crucial. This study compares three validation strategies—blocked cross-validation (bl-CV), repeated out-of-sample (repOOS), and out-of-sample (OOS)—for 1D-CNN models using meteorological inputs. Results show that bl-CV offers the most reliable performance estimates, while OOS is the most uncertain, highlighting the need for careful method selection.
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Cited articles
Alizadeh, Z. and Mahjouri, N.: A spatiotemporal Bayesian maximum
entropy-based methodology for dealing with sparse data in revising groundwater quality monitoring networks: the Tehran region experience, Environ. Earth Sci., 76, 436, https://doi.org/10.1007/s12665-017-6767-6, 2017. a
Alizadeh, Z., Yazdi, J., and Moridi, A.: Development of an Entropy Method for Groundwater Quality Monitoring Network Design, Environ. Process., 5, 769–788, https://doi.org/10.1007/s40710-018-0335-2, 2018. a
Ammar, K., Khalil, A., McKee, M., and Kaluarachchi, J.: Bayesian deduction for redundancy detection in groundwater quality monitoring networks, Water
Resour. Res., 44, W08412, https://doi.org/10.1029/2006WR005616, 2008. a
Annoni, J., Taylor, T., Bay, C., Johnson, K., Pao, L., Fleming, P., and Dykes, K.: Sparse-Sensor Placement for Wind Farm Control, J. Phys.: Conf. Ser., 1037, W08412, https://doi.org/10.1088/1742-6596/1037/3/032019, 2018. a, b
Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M., and Khalil, A.: Support
vectors-based groundwater head observation networks design, Water Resour.
Res., 40, W11509, https://doi.org/10.1029/2004WR003304, 2004. a
Ayvaz, M. T. and Elçi, A.: Identification of the optimum groundwater quality
monitoring network using a genetic algorithm based optimization approach, J. Hydrol., 563, 1078–1091, https://doi.org/10.1016/j.jhydrol.2018.06.006, 2018. a
Bashi-Azghadi, S. N. and Kerachian, R.: Locating monitoring wells in
groundwater systems using embedded optimization and simulation models, Sci. Total Environ., 408, 2189–2198, https://doi.org/10.1016/j.scitotenv.2010.02.004, 2010. a
Bhat, S., Motz, L. H., Pathak, C., and Kuebler, L.: Geostatistics-based
groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA, Environ. Monit. Assess., 187, 4183, https://doi.org/10.1007/s10661-014-4183-x, 2015. a
Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Sparse
Sensor Placement Optimization for Classification, SIAM J. Appl. Math., 76, 2099–2122, https://doi.org/10.1137/15M1036713, 2016. a, b
Brunton, S. L. and Kutz, J. N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, https://doi.org/10.1017/9781108380690, 2017. a, b, c
Candes, E. and Wakin, M.: An Introduction To Compressive Sampling, IEEE Signal Process. Mag., 25, 21–30, https://doi.org/10.1109/MSP.2007.914731, 2008. a, b
Candes, E., Romberg, J., and Tao, T.: Stable Signal Recovery from Incomplete and Inaccurate Measurements, arXiv:math/0503066, p. 15castillo, https://doi.org/10.48550/arXiv.math/0503066, 2005. a, b
Castillo, A. and Messina, A. R.: Data‐driven sensor placement for state
reconstruction via POD analysis, IET Generat. Transmiss. Distribut., 14, 656–664, https://doi.org/10.1049/iet-gtd.2019.0199, 2020. a
Dasgupta, S.: Experiments with Random Projection, in: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, 30 June–3 July 2000, Stanford, 143–151, 2000. a
De Jesus, K. L. M., Senoro, D. B., Dela Cruz, J. C., and Chan, E. B.: A Hybrid Neural Network-Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines, Toxics, 9, 273, https://doi.org/10.3390/toxics9110273, 2021. a
Derer, C. E.: Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany), with special regard to the early syn-rift stage, PhD thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, https://nbn-resolving.org/urn:nbn:de:hbz:5n-02633 (last access: 3 August 2022), 2003. a
de Silva, B. M., Manohar, K., Clark, E., Brunton, B. W., Kutz, J. N., and Brunton, S. L.: PySensors: A Python Package for Sparse Sensor Placement (v0.3.3), Zenodo [code], https://doi.org/10.5281/zenodo.4542530, 2021b. a
Dhar, A. and Patil, R. S.: Multiobjective Design of Groundwater Monitoring Network Under Epistemic Uncertainty, Water Resour. Manage., 26, 1809–1825, https://doi.org/10.1007/s11269-012-9988-1, 2012. a
Donoho, D.: Compressed sensing, IEEE T. Inform. Theory, 52, 1289–1306, https://doi.org/10.1109/TIT.2006.871582, 2006. a
EC: Council Directive 91/676/EC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources, Official Journal of the European Communities, L375, Vol. 34, ISSN 0378-6978, 1991. a
EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Official Journal of the European Communities, L 327, Vol. 43, ISSN 0378-6978, 2000. a
Emmert, M., Zigelli, N., Haakh, F., Bode, F., and Nowak, W.: Risikiobasiertes
Grundwassermonitoring für Wasserschutzgebiete, energie/wasser-praxis,
68–73,
https://www.dvgw.de/medien/dvgw/sicherheit/wasser/ewp-risikomanagement-wasserschutzgebiete (last access: 3 August 2022), 2016. a
Gaur, S., Ch, S., Graillot, D., Chahar, B. R., and Kumar, D. N.: Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources, Water Resour. Manage., 27, 927–941, https://doi.org/10.1007/s11269-012-0226-7, 2013. a
Golub, G. and Kahan, W.: Calculating the Singular Value and Pseudo-Inverse of a Matrix, J. SIAM Numer. Anal. Ser. B, 2, 205–224, 1965. a
Guneshwor, L., Eldho, T. I., and Vinod Kumar, A.: Identification of Groundwater Contamination Sources Using Meshfree RPCM Simulation and Particle Swarm Optimization, Water Resour. Manage., 32, 1517–1538, https://doi.org/10.1007/s11269-017-1885-1, 2018. a
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration, J. Hydrol. Eng., 4, 135–143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135), 1999. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Halko, N., Martinsson, P.-G., and Tropp, J. A.: Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM Rev., Survey and Review section, 53, 217–288, https://doi.org/10.48550/arXiv.0909.4061, 2011. a, b, c
Hosseini, M. and Kerachian, R.: A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks,
Environ. Monit. Assess., 189, 433, https://doi.org/10.1007/s10661-017-6129-6, 2017. a
Hussain, Z. and Muhammad, A.: Sample size reduction in groundwater surveys via sparse data assimilation, in: 2013 IEEE 10th International Conference
on Networking, Sensing and Control (ICNSC 2013), 10–12 April 2013, Evry, France, 176–182, https://doi.org/10.1109/ICNSC.2013.6548732, 2013. a
Júnez-Ferreira, H. E., Herrera, G. S., González-Hita, L., Cardona, A., and Mora-Rodríguez, J.: Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer, Environ. Monit. Assess., 188, 39, https://doi.org/10.1007/s10661-015-5036-y, 2016. a
Keum, J., Kornelsen, K., Leach, J., and Coulibaly, P.: Entropy Applications to Water Monitoring Network Design: A Review, Entropy, 19, 613, https://doi.org/10.3390/e19110613, 2017. a
Khader, A. I. and McKee, M.: Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty, Environ. Model. Softw., 57, 115–126, https://doi.org/10.1016/j.envsoft.2014.02.015, 2014. a
Khalil, A., Almasri, M. N., McKee, M., and Kaluarachchi, J. J.: Applicability
of statistical learning algorithms in groundwater quality modeling, Water Resour. Res., 41, W05010, https://doi.org/10.1029/2004WR003608, 2005. a
Kim, K.-H. and Lee, K.-K.: Optimization of groundwater-monitoring networks for identification of the distribution of a contaminant plume, Stoch. Environ. Res. Risk A., 21, 785–794, https://doi.org/10.1007/s00477-006-0094-x, 2007. a
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a, b
Kollat, J., Reed, P., and Maxwell, R.: Many-objective groundwater monitoring
network design using bias-aware ensemble Kalman filtering, evolutionary
optimization, and visual analytics, Water Resour. Res., 47, W02529, https://doi.org/10.1029/2010WR009194, 2011. a
Komasi, M. and Goudarzi, H.: Multi-objective optimization of groundwater
monitoring network using a probability Pareto genetic algorithm and entropy
method (case study: Silakhor plain), J. Hydroinform., 23, 136–150, https://doi.org/10.2166/hydro.2020.061, 2021. a
Krivoruchko, K.: Spatial Statistical Data Analysis for GIS Users, Esri Press, Redlands, California,
https://downloads.esri.com/esripress/pdfs/spatial-statistical-data-analysis-for-gis-users.pdf
(last access: 3 August 2022), 2011. a
Lee, T.-W., Lee, J. Y., Park, J. E., Bellerova, H., and Raudensky, M.:
Reconstructive Mapping from Sparsely-Sampled Groundwater Data Using Compressive Sensing, J. Geogr. Inform. Syst., 13, 287–301, https://doi.org/10.4236/jgis.2021.133016, 2021. a
Li, J., Bárdossy, A., Guenni, L., and Liu, M.: A Copula based observation
network design approach, Environ. Model. Softw., 26, 1349–1357,
https://doi.org/10.1016/j.envsoft.2011.05.001, 2011. a
Li, P., Hastie, T. J., and Church, K. W.: Very sparse random projections, in:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining – KDD'06, ACM Press, Philadelphia, PA, USA, p. 287, https://doi.org/10.1145/1150402.1150436, 2006. a
Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, G. E., Hobbs, B. F., and Rouhani, S.: Review of Ground-Water Quality Monitoring Network Design, J. Hydraul. Eng., 118, 11–37, https://doi.org/10.1061/(ASCE)0733-9429(1992)118:1(11), 1992. a
LUBW: Hydrogeologischer Bau und hydraulische Eigenschaften – INTERREG III A-Projekt MoNit “Modellierung der Grundwasserbelastung durch Nitrat im Oberrheingraben”, https://pudi.lubw.de/detailseite/-/publication/92102-INTERREG_III_A-Projekt_MoNit__Modellierung_der_Grundwasserbelastung_durch_Nitrat_im_Oberrheingraben_.pdf
(last access: 3 August 2022), 2006. a
Moore, G. E.: Cramming more components onto integrated circuits, Proc. IEEE, 86, 82–85, 1998. a
Moriasi, D., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007. a
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models
part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a
Nunes, L. M., Cunha, M. C., and Ribeiro, L.: Groundwater Monitoring Network
Optimization with Redundancy Reduction, J. Water Resour. Pl. Manage., 130, 33–43, https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(33), 2004. a
Ohmer, M.: marcohmer/GMNO: Initial Release, Zenodo [code], https://doi.org/10.5281/zenodo.6075863, 2022. a
Ohmer, M., Liesch, T., and Goldscheider, N.: On the Optimal Spatial Design for Groundwater Level Monitoring Networks, Water Resour. Res., 55, 9454–9473, https://doi.org/10.1029/2019WR025728, 2019. a
Pollard, A., Castillo, L., Danaila, L., and Glauser, M. (Eds.): Whither
Turbulence and Big Data in the 21st Century?, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-41217-7, 2017. a
Pourshahabi, S., Talebbeydokhti, N., Rakhshandehroo, G., and Nikoo, M. R.:
Spatio-Temporal Multi-Criteria Optimization of Reservoir Water Quality Monitoring Network Using Value of Information and Transinformation Entropy, Water Resour. Manage., 32, 3489–3504, https://doi.org/10.1007/s11269-018-2003-8, 2018. a
Przyrowski, R. and Schäfer, A.: Quaternary fluvial basin of northern Upper Rhine Graben, Z. Deutsch. Gesell. Geowissen., 166, 71–98, https://doi.org/10.1127/1860-1804/2014/0080, 2015. a
Puri, D., Borel, K., Vance, C., and Karthikeyan, R.: Optimization of a Water
Quality Monitoring Network Using a Spatially Referenced Water Quality Model and a Genetic Algorithm, Water, 9, 704, https://doi.org/10.3390/w9090704, 2017. a
Reed, P. M. and Kollat, J. B.: Visual analytics clarify the scalability and
effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example, Adv. Water Resour., 56, 1–13, https://doi.org/10.1016/j.advwatres.2013.01.011, 2013. a
Shannon, C.: Communication in the Presence of Noise, Proc. IRE, 37, 10–21, https://doi.org/10.1109/JRPROC.1949.232969, 1949. a
Singh, D. and Datta, B.: Linked Optimization Model for Groundwater Monitoring Network Design, in: Urban Hydrology, Watershed Management and Socio-Economic Aspects, vol. 73, Springer International Publishing, Cham, 107–125, https://doi.org/10.1007/978-3-319-40195-9_9, 2016. a
Sreekanth, J., Lau, H., and Pagendam, D. E.: Design of optimal groundwater
monitoring well network using stochastic modeling and reduced-rank spatial
prediction: Optimal Monitoring Network Design , Water Resour. Res., 53, 6821–6840, https://doi.org/10.1002/2017WR020385, 2017. a
Thakur, J.: Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches, Hydrology, 2, 148–175, https://doi.org/10.3390/hydrology2030148, 2015. a
Thakur, J. K.: Hydrogeological modeling for improving groundwater monitoring
network and strategies, Appl. Water Sci., 7, 3223–3240,
https://doi.org/10.1007/s13201-016-0469-1, 2017. a
Ushijima, T. T., Yeh, W. W. G., and Wong, W. K.: Constructing robust and
efficient experimental designs in groundwater modeling using a Galerkin
method, proper orthogonal decomposition, and metaheuristic algorithms, PLOS
ONE, 16, e0254620, https://doi.org/10.1371/journal.pone.0254620, 2021. a, b
Varouchakis, E. A. and Hristopulos, D.: Comparison of stochastic and
deterministic methods for mapping groundwater level spatial variability in
sparsely monitored basins, Environ. Monit. Assess., 185, 1–19, https://doi.org/10.1007/s10661-012-2527-y, 2013.
a
Wirsing, G. and Luz, A.: Hydrogeologischer Bau und Aquifereigenschaften der Lockergesteine im Oberrheingraben (Baden-Württemberg), LGRB Informationen 19, Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, p. 130, ISSN 1619-5329, 2007. a
Wunsch, A., Liesch, T., and Broda, S.: Feature-based Groundwater Hydrograph
Clustering Using Unsupervised Self-Organizing Map-Ensembles, Water Resour. Manage., 36, 39–54, https://doi.org/10.1007/s11269-021-03006-y, 2022.
a
Yildirim, B., Chryssostomidis, C., and Karniadakis, G.: Efficient sensor
placement for ocean measurements using low-dimensional concepts, Ocean Model., 27, 160–173, https://doi.org/10.1016/j.ocemod.2009.01.001, 2009. a
Yudina, E., Petrovskaia, A., Shadrin, D., Tregubova, P., Chernova, E.,
Pukalchik, M., and Oseledets, I.: Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: Moscow Region Use Case, Water, 13, 888, https://doi.org/10.3390/w13070888, 2021. a
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
We present a data-driven approach to select optimal locations for groundwater monitoring wells....