Articles | Volume 26, issue 14
https://doi.org/10.5194/hess-26-3753-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3753-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
Pedro V. G. Batista
CORRESPONDING AUTHOR
Department of Environmental Sciences, Universität Basel,
Bernoullistraße 30, 4056 Basel, Switzerland
now at: Institute for Geography, Universität Augsburg, Alter Postweg 118, 86159 Augsburg, Germany
Peter Fiener
Institute for Geography, Universität Augsburg, Alter Postweg 118, 86159 Augsburg, Germany
Simon Scheper
Department of Environmental Sciences, Universität Basel,
Bernoullistraße 30, 4056 Basel, Switzerland
Dr. Simon Scheper – Research – Consulting – Teaching,
Eickhorst 3, 29413 Dähre, Germany
Christine Alewell
Department of Environmental Sciences, Universität Basel,
Bernoullistraße 30, 4056 Basel, Switzerland
Related authors
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-509, https://doi.org/10.5194/essd-2024-509, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Fallout radionuclides such as 137Cs and 239+240Pu are considered as critical tools in various environmental research. Here, we compiled reference soil data on these fallout radionuclides from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine-learning algorithm.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2024-1702, https://doi.org/10.5194/egusphere-2024-1702, 2024
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, are likely more significant for water losses by runoff leading to flooding and water scarcity and are therefore an important part the solution to mitigate floods, droughts, and heatwaves.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Maral Khodadadi, Christine Alewell, Mohammad Mirzaei, Ehssan Ehssan-Malahat, Farrokh Asadzadeh, Peter Strauss, and Katrin Meusburger
SOIL Discuss., https://doi.org/10.5194/soil-2021-2, https://doi.org/10.5194/soil-2021-2, 2021
Revised manuscript not accepted
Short summary
Short summary
Forest soils store carbon and therefore play an important role in mitigating climate change impacts. Yet again, deforestation for farming and grazing purposes has grown rapidly over the last decades. Thus, its impacts on soil erosion and soil quality should be understood in order to adopt sustainable management measures. The results of this study indicated that deforestation can prompt soil loss by multiple orders of magnitude and deteriorate the soil quality in both topsoil and subsoil.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Pranav Hirave, Guido L. B. Wiesenberg, Axel Birkholz, and Christine Alewell
Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, https://doi.org/10.5194/bg-17-2169-2020, 2020
Short summary
Short summary
Sediment input into water bodies is a prominent threat to freshwater ecosystems. We tested the stability of tracers employed in freshwater sediment tracing based on compound-specific isotope analysis during early degradation in soil. While bulk δ13C values showed no stability, δ13C values of plant-derived fatty acids and n-alkanes were stably transferred to the soil without soil particle size dependency after an early degradation in organic horizons, thus indicating their suitability as tracers.
Peter Fiener, Florian Wilken, and Karl Auerswald
Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, https://doi.org/10.5194/adgeo-48-31-2019, 2019
Short summary
Short summary
An 8-year dataset of erosion monitoring (e.g. agricultural management, rainfall, runoff, sediment delivery) is made available. It covers 14 adjoining and partly nested watersheds (sizes 1–14 ha) that were cultivated following integrated (4 crops) and organic farming (7 crops and grassland) practices. Drivers of erosion and runoff were determined and with high spatial and temporal detail. The data set closes the gap between plot research and watershed research.
Marlène Lavrieux, Axel Birkholz, Katrin Meusburger, Guido L. B. Wiesenberg, Adrian Gilli, Christian Stamm, and Christine Alewell
Biogeosciences, 16, 2131–2146, https://doi.org/10.5194/bg-16-2131-2019, https://doi.org/10.5194/bg-16-2131-2019, 2019
Short summary
Short summary
A fingerprinting approach using compound-specific stable isotopes was applied to a lake sediment core to reconstruct erosion processes over the past 150 years in a Swiss catchment. Even though the reconstruction of land use and eutrophication history was successful, the observation of comparatively low δ13C values of plant-derived fatty acids in the sediment suggests their alteration within the lake. Thus, their use as a tool for source attribution in sediment cores needs further investigation.
Claudia Mignani, Jessie M. Creamean, Lukas Zimmermann, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, https://doi.org/10.5194/acp-19-877-2019, 2019
Short summary
Short summary
A snow crystal can be generated from an ice nucleating particle or from an ice splinter. In this study we made use of the fact that snow crystals with a particular shape (dendrites) grow within a narrow temperature range (−12 to −17 °C) and can be analysed individually for the presence of an ice nucleating particle. Our direct approach revealed that only one in eight crystals contained such a particle and was of primary origin. The other crystals must have grown from ice splinters.
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Emiliano Stopelli, Franz Conen, Caroline Guilbaud, Jakob Zopfi, Christine Alewell, and Cindy E. Morris
Biogeosciences, 14, 1189–1196, https://doi.org/10.5194/bg-14-1189-2017, https://doi.org/10.5194/bg-14-1189-2017, 2017
Short summary
Short summary
Based on the analysis of precipitation collected at high altitude, this study provides a relevant advancement in the assessment of the major factors responsible for the abundance and variability of airborne bacterial cells and Pseudomonas syringae in relation to ice nucleators. This is of prime importance to obtain a better understanding of the impact of ice-nucleation-active organisms on the development of precipitation and to determine the dispersal potential of airborne microorganisms.
Florian Wilken, Peter Fiener, and Kristof Van Oost
Earth Surf. Dynam., 5, 113–124, https://doi.org/10.5194/esurf-5-113-2017, https://doi.org/10.5194/esurf-5-113-2017, 2017
Short summary
Short summary
This study presents a model that accounts for preferential erosion and transport of sediment and soil organic carbon in agricultural landscapes. We applied the model to a small catchment in Belgium for a period of 100 years. After a thorough model evaluation, these simulations shows that sediment and carbon export are highly episodic and that the temporal variability is largely influenced by selective erosion and deposition.
Simon Schmidt, Christine Alewell, Panos Panagos, and Katrin Meusburger
Hydrol. Earth Syst. Sci., 20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, https://doi.org/10.5194/hess-20-4359-2016, 2016
Short summary
Short summary
We present novel research on the seasonal dynamics of the impact of rainfall (R-factor) on the mobilization of topsoil as soil erosion by water for Switzerland. A modeling approach was chosen that enables the dynamical mapping of the R-factor. Based on the maps and modeling results, we could investigate the spatial and temporal distribution of that factor, which is high for Switzerland. With these results, agronomists can introduce selective erosion control measures.
Emiliano Stopelli, Franz Conen, Cindy E. Morris, Erik Herrmann, Stephan Henne, Martin Steinbacher, and Christine Alewell
Atmos. Chem. Phys., 16, 8341–8351, https://doi.org/10.5194/acp-16-8341-2016, https://doi.org/10.5194/acp-16-8341-2016, 2016
Short summary
Short summary
Knowing the variability of ice nucleating particles (INPs) helps determining their role in the formation of precipitation. Here we describe and predict the concentrations of INPs active at −8 °C in precipitation samples collected at Jungfraujoch (CH, 3580 m a.s.l.). A high abundance of these INPs can be expected whenever a coincidence of high wind speed and first precipitation from an air mass occurs. This expands the set of conditions where such INPs could affect the onset of precipitation.
Christine Alewell, Axel Birkholz, Katrin Meusburger, Yael Schindler Wildhaber, and Lionel Mabit
Biogeosciences, 13, 1587–1596, https://doi.org/10.5194/bg-13-1587-2016, https://doi.org/10.5194/bg-13-1587-2016, 2016
Short summary
Short summary
Origin of suspended sediments in rivers is of crucial importance for optimization of catchment management. Sediment source attribution to a lowland river in central Switzerland with compound specific stable isotopes analysis (CSIA) indicated that 65 % of the suspended sediments originated from agricultural land during base flow, while forest was the dominant source during high flow. We achieved significant differences in CSIA signature from land uses dominated by C3 plant cultivation.
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015, https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Short summary
Biogeochemical soil parameters are studied to detect peatland degradation along a land use gradient (intensive, extensive, near-natural). Stable carbon isotopes, radiocarbon ages and ash content confirm peat growth in the near-natural bog but also indicate previous degradation. When the bog is managed extensively or intensively as grassland, all parameters indicate degradation and substantial C loss of the order of 18.8 to 42.9 kg C m-2.
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, A. Walter, and C. Alewell
Hydrol. Earth Syst. Sci., 18, 3763–3775, https://doi.org/10.5194/hess-18-3763-2014, https://doi.org/10.5194/hess-18-3763-2014, 2014
S. Stanchi, M. Freppaz, E. Ceaglio, M. Maggioni, K. Meusburger, C. Alewell, and E. Zanini
Nat. Hazards Earth Syst. Sci., 14, 1761–1771, https://doi.org/10.5194/nhess-14-1761-2014, https://doi.org/10.5194/nhess-14-1761-2014, 2014
J. P. Krüger, J. Leifeld, and C. Alewell
Biogeosciences, 11, 3369–3380, https://doi.org/10.5194/bg-11-3369-2014, https://doi.org/10.5194/bg-11-3369-2014, 2014
E. Stopelli, F. Conen, L. Zimmermann, C. Alewell, and C. E. Morris
Atmos. Meas. Tech., 7, 129–134, https://doi.org/10.5194/amt-7-129-2014, https://doi.org/10.5194/amt-7-129-2014, 2014
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
K. Meusburger, L. Mabit, J.-H. Park, T. Sandor, and C. Alewell
Biogeosciences, 10, 5627–5638, https://doi.org/10.5194/bg-10-5627-2013, https://doi.org/10.5194/bg-10-5627-2013, 2013
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, and C. Alewell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9505-2013, https://doi.org/10.5194/hessd-10-9505-2013, 2013
Preprint withdrawn
M. H. Mueller, R. Weingartner, and C. Alewell
Hydrol. Earth Syst. Sci., 17, 1661–1679, https://doi.org/10.5194/hess-17-1661-2013, https://doi.org/10.5194/hess-17-1661-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Projections of streamflow intermittence under climate change in European drying river networks
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Extended range forecasting of stream water temperature with deep learning models
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: An analysis based on 63 catchments in southeast China
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric-hydrological model
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-3355, https://doi.org/10.5194/egusphere-2024-3355, 2024
Short summary
Short summary
Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modeling. However, most studies focus on daily-scale predictions, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use input of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-221, https://doi.org/10.5194/hess-2024-221, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what it truly reflects in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and time scales for accurate drought characterization and monitoring.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147, https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall-runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions we test their generalization capabilities for extreme hydrological events.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1438, https://doi.org/10.5194/egusphere-2024-1438, 2024
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conducted simulation experiments using data with various temporal resolutions across multiple catchments, and found that higher resolution data does not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-136, https://doi.org/10.5194/hess-2024-136, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
In mountainous areas, the relationship between slope and annual hydrological processes is pronounced. However, at lower elevations, this relationship is weak in steeper watersheds. In addition, urbanization leads to an increase in annual surface runoff in all watersheds, especially in steep-slope watersheds. Flatter watersheds exhibit a buffering capacity against urbanization. However, this buffering capacity is diminishing as annual rainfall intensity increases.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Cited articles
Alder, S., Prasuhn, V., Liniger, H., Herweg, K., Hurni, H., Candinas, A., and
Gujer, H. U.: A high-resolution map of direct and indirect connectivity of
erosion risk areas to surface waters in Switzerland-A risk assessment tool
for planning and policy-making, Land Use Policy, 48, 236–249,
https://doi.org/10.1016/j.landusepol.2015.06.001, 2015.
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J. M.: Random forests for
global sensitivity analysis: A selective review, Reliab. Eng. Syst. Safe., 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021.
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C.,
Degré, A., Cantreul, V., Cerdan, O., Grangeon, T., Fiener, P., Wilken,
F., Schindewolf, M., and Wainwright, J.: What do models tell us about water
and sediment connectivity?, Geomorphology, 367, 107300,
https://doi.org/10.1016/j.geomorph.2020.107300, 2020.
BAFU: Faktenblatt: Der Greifensee, Zustand bezüglich Wasserqualität,
1–8, http://www.bafu.admin.ch (last access” 14 February 2021), 2016.
Bakker, M. M., Govers, G., van Doorn, A., Quetier, F., Chouvardas, D., and
Rounsevell, M.: The response of soil erosion and sediment export to land-use
change in four areas of Europe: The importance of landscape pattern,
Geomorphology, 98, 213–226, https://doi.org/10.1016/j.geomorph.2006.12.027, 2008.
Batista, P. V. G., Fiener, P., Scheper, S., and Alewell, C.: Data and code for: A conceptual model-based sediment connectivity assessment for patchy agricultural catchments, Zenodo [data set], https://doi.org/10.5281/zenodo.6560226, 2022.
Batista, P. V. G., Laceby, J. P., Davies, J., Carvalho, T. S., Tassinari, D., Silva, M. L. N., Curi, N., and Quinton, J. N.: A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing
with uncertainty in models and the observational data, Environ. Model. Softw., 137, 104961, https://doi.org/10.1016/j.envsoft.2021.104961, 2021.
Bauer, M., Dostal, T., Krasa, J., Jachymova, B., David, V., Devaty, J., Strouhal, L., and Rosendorf, P.: Risk to residents, infrastructure, and water
bodies from flash floods and sediment transport, Environ. Monit. Assess., 191, 1–19, https://doi.org/10.1007/s10661-019-7216-7, 2019.
Benaud, P., Anderson, K., Evans, M., Farrow, L., Glendell, M., James, M. R.,
Quine, T. A., Quinton, J. N., Rickson, R. J., and Brazier, R. E.:
Reproducibility, open science and progression in soil erosion research. A
reply to “Response to `National-scale geodata describe widespread
accelerated soil erosion' Benaud et al. (2020) Geoderma 271, 114378” by
Evans and Boardman (2021), Geoderma, 402, 115181, https://doi.org/10.1016/j.geoderma.2021.115181, 2021.
Bircher, P., Liniger, H., and Prasuhn, V.: Aktualisierung und Optimierung der
Erosionsrisikokarte (ERK2) Die neue ERK2 (2019) für das Ackerland
der Schweiz, https://www.blw.admin.ch/dam/blw/de/dokumente/Nachhaltige Produktion/Umwelt/Boden/Bericht zur Erosionsrisikokarte.pdf.download.pdf/Erosionsrisikokarte 2019.pdf (last access: 20 January 2021), 2019.
Bispo, D. F. A., Batista, P. V. G., Guimarães, D. V., Silva, M. L. N.,
Curi, N., and Quinton, J. N.: Monitoring land use impacts on sediment
production: a case study of the pilot catchment from the Brazilian program
of payment for environmental services, Rev. Bras. Ciência do Solo, 44,
e0190167, https://doi.org/10.36783/18069657rbcs20190167, 2020.
Boardman, J.: A 38-year record of muddy flooding at Breaky Bottom: Learning
from a detailed case study, Catena, 189, 104493, https://doi.org/10.1016/j.catena.2020.104493, 2020.
Borrelli, P., Meusburger, K., Ballabio, C., Panagos, P., and Alewell, C.: Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments, Land. Degrad. Dev., 29, 1270–1281, https://doi.org/10.1002/ldr.2898, 2018.
Borselli, L., Cassi, P., and Torri, D.: Prolegomena to sediment and flow
connectivity in the landscape: A GIS and field numerical assessment, Catena,
75, 268–277, https://doi.org/10.1016/j.catena.2008.07.006, 2008.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Brenning, A., Bangs, D., and Becker, M.: RSAGA: SAGA geoprocessing and terrain analysis, R package version 1.3.0, https://cran.r-project.org/web/packages/RSAGA/index.html (last access: 20 January 2021), 2018.
Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., Calvo-Cases, A., and
Estrany, J.: Effects of agricultural drainage systems on sediment
connectivity in a small Mediterranean lowland catchment, Geomorphology, 318,
162–171, https://doi.org/10.1016/j.geomorph.2018.06.011, 2018a.
Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M.
E., Calvo-Cases, A., and Estrany, J.: Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment
sensitivity, Land. Degrad. Dev., 29, 1198–1210, https://doi.org/10.1002/ldr.2840, 2018b.
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric
assessment of spatial sediment connectivity in small Alpine catchments,
Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.
Chartin, C., Evrard, O., Salvador-Blanes, S., Hinschberger, F., Van Oost,
K., Lefèvre, I., Daroussin, J., and Macaire, J. J.: Quantifying and
modelling the impact of land consolidation and field borders on soil redistribution in agricultural landscapes (1954–2009), Catena, 110, 184–195, https://doi.org/10.1016/j.catena.2013.06.006, 2013.
Cohn, T. A., Caulder, D. L., Gilroy, J., Zynjuk, L. D., and Summers, R. M.:
The Validity of a Simple Statistical Model for Estimating, Water Resour. Res., 28, 2353–2363, 1992.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Croke, J., Mockler, S., Fogarty, P., and Takken, I.: Sediment concentration
changes in runoff pathways from a forest road network and the resultant
spatial pattern of catchment connectivity, Geomorphology, 68, 257–268, https://doi.org/10.1016/j.geomorph.2004.11.020, 2005.
Desmet, P. and Govers, G.: A GIS procedure for automatically calculating the
USLE LS factor on topographically complex landscape units, J. Soil Water
Conserv., 51, 427–433, 1996.
Eekhout, J. P. C., Millares-Valenzuela, A., Martínez-Salvador, A.,
García-Lorenzo, R., Pérez-Cutillas, P., Conesa-García, C., and
de Vente, J.: A process-based soil erosion model ensemble to assess model
uncertainty in climate-change impact assessments, Land. Degrad. Dev., 32,
2409–2422, https://doi.org/10.1002/ldr.3920, 2021.
Evrard, O., Cerdan, O., van Wesemael, B., Chauvet, M., Le Bissonnais, Y.,
Raclot, D., Vandaele, K., Andrieux, P., and Bielders, C.: Reliability of an
expert-based runoff and erosion model: Application of STREAM to different
environments, Catena, 78, 129–141, https://doi.org/10.1016/j.catena.2009.03.009, 2009.
Fiener, P. and Auerswald, K.: Measurement and modeling of concentrated runoff in grassed waterways, J. Hydrol., 301, 198–215, https://doi.org/10.1016/j.jhydrol.2004.06.030, 2005.
Fiener, P., Auerswald, K., and Van Oost, K.: Spatio-temporal patterns in land
use and management affecting surface runoff response of agricultural catchments – A review, Earth-Sci. Rev., 106, 92–104,
https://doi.org/10.1016/j.earscirev.2011.01.004, 2011.
Fiener, P., Wilken, F., and Auerswald, K.: Filling the gap between plot and landscape scale – eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany, Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, 2019.
Fryirs, K.: (Dis)Connectivity in catchment sediment cascades: A fresh look
at the sediment delivery problem, Earth Surf. Proc. Land., 38, 30–46, https://doi.org/10.1002/esp.3242, 2013.
Gelman, A. and Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models, R package version 1.12.2, Cambridge Univeristy Press, New York, ISBN 9780511268786, 2007.
Govers, G.: Misapplications and misconceptions of erosion models, in:
Handbook of erosion modelling, edited by: Morgan, R. P. C. and Nearing, M. A., Blackwell Publishing Ltd., Chichester, UK, 117–134, ISBN 9781405190107, 2011.
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E.,
Smetanová, A., Vericat, D., and Brardinoni, F.: Indices of sediment
connectivity: opportunities, challenges and limitations, Earth-Sci. Rev., 187, 77–108, https://doi.org/10.1016/j.earscirev.2018.08.004, 2018.
IUSS Working Group WRB: World Reference Base for Soil Resources, IUSS
Working Group WRB, Wageningen, the Netherlands, 1–128, https://www.fao.org/3/i3794en/I3794en.pdf (last access: 14 February 2021), 2006.
Keller, B.: Lake Lucerne and its spectacular landscape, in: Landscapes and
landforms of Switzerland, edited by: Reynard, E., Springer Nature, Cham, Switzerland, 305–324, ISBN 9783030432034, 2021.
Krasa, J., Dostal, T., Jachymova, B., Bauer, M., and Devaty, J.: Soil erosion
as a source of sediment and phosphorus in rivers and reservoirs – Watershed
analyses using WaTEM/SEDEM, Environ. Res., 171, 470–483,
https://doi.org/10.1016/j.envres.2019.01.044, 2019.
Kupferschmied, P.: CP-Tool: Ein Programm zur Berechnung des Fruchtfolge- und
Bewirtschaftungsfaktors (CP-Faktor) der Allgemeinen Bodenabtragsgleichung (ABAG), https://www.agroscope.admin.ch/dam/agroscope/de/dokumente (last access: 14 February 2021), 2019.
Laceby, J. P., Batista, P. V. G., Taube, N., Kruk, M. K., Chung, C., Evrard,
O., and Orwin, J. F.: Tracing total and dissolved material in a western
Canadian basin using quality control samples to guide the selection of
fingerprinting parameters for modelling, Catena, 200, 105095,
https://doi.org/10.1016/j.catena.2020.105095, 2021.
Lacoste, M., Michot, D., Viaud, V., Evrard, O., and Walter, C.: Combining 137Cs measurements and a spatially distributed erosion model to
assess soil redistribution in a hedgerow landscape in northwestern France
(1960–2010), Catena, 119, 78–89, https://doi.org/10.1016/j.catena.2014.03.004, 2014.
Lavrieux, M., Birkholz, A., Meusburger, K., Wiesenberg, G. L. B., Gilli, A.,
Stamm, C., and Alewell, C.: Plants or bacteria? 130 years of mixed imprints
in Lake Baldegg sediments (Switzerland), as revealed by compound-specific
isotope analysis (CSIA) and biomarker analysis, Biogeosciences, 16,
2131–2146, https://doi.org/10.5194/bg-16-2131-2019, 2019.
Ledermann, T., Herweg, K., Liniger, H. P., Schneider, F., Hurni, H., and
Prasuhn, V.: Applying erosion damage mapping to assess and quantify off-site
effects of soil erosion in Switzerland, Land. Degrad. Dev., 21, 353–366, 2010.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R package version 4.7.1, R News, 2, 18–22, 2002.
Mahoney, D. T., Fox, J. F., and Al-Aamery, N.: Watershed erosion modeling
using the probability of sediment connectivity in a gently rolling system,
J. Hydrol., 561, 862–883, https://doi.org/10.1016/j.jhydrol.2018.04.034, 2018.
Mahoney, D. T., Fox, J., Al-Aamery, N., and Clare, E.: Integrating
connectivity theory within watershed modelling part I: Model formulation and
investigating the timing of sediment connectivity, Sci. Total Environ., 740,
140385, https://doi.org/10.1016/j.scitotenv.2020.140385, 2020a.
Mahoney, D. T., Fox, J., Al-Aamery, N., and Clare, E.: Integrating connectivity theory within watershed modelling part II: Application and
evaluating structural and functional connectivity, Sci. Total Environ., 740,
140386, https://doi.org/10.1016/j.scitotenv.2020.140386, 2020b.
MeteoSwiss: SwissMetNet Surface Weather Stations, Mosen MOA, 2010–2019,
Switzerland, https://www.meteoswiss.admin.ch/home/measurement-values.html?param=messnetz-automatisch&station=MOA&chart=hour (last access: 13 July 2022), 2021.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Müller, B., Gächter, R., and Wüest, A.: Accelerated water quality
improvement during oligotrophication in peri-alpine lakes, Environ. Sci.
Technol., 48, 6671–6677, https://doi.org/10.1021/es4040304, 2014.
Notebaert, B., Vaes, B., Govers, G., Van Oost, K., Van Rompaey, A., and
Verstraeten, G.: WaTEM/SEDEM version 2006 Manual, https://ees.kuleuven.be/eng/geography/modelling/watemsedem2006/manual_watemsedem_122011.pdf
(last access: 1 March 2021), 2006.
Nunes, J. P., Wainwright, J., Bielders, C. L., Darboux, F., Fiener, P.,
Finger, D., and Turnbull, L.: Better models are more effectively connected
models, Earth Surf. Proc. Land., 43(, 1355–1360, https://doi.org/10.1002/esp.4323, 2018.
Owens, P. N.: Soil erosion and sediment dynamics in the Anthropocene: a
review of human impacts during a period of rapid global environmental change, J. Soils Sediments, 20, 4115–4143, https://doi.org/10.1007/s11368-020-02815-9, 2020.
Parsons, A. J., Wainwright, J., Brazier, R. E., and Powell, D. M.: Is
sediment delivery a fallacy? Reply, Earth Surf. Proc. Land., 34, 155–161, https://doi.org/10.1002/esp.1395, 2009.
Persichillo, M. G., Bordoni, M., Cavalli, M., Crema, S., and Meisina, C.: The
role of human activities on sediment connectivity of shallow landslides,
Catena, 160, 261–274, https://doi.org/10.1016/j.catena.2017.09.025, 2018.
Pfiffner, O. A.: The structural landscapes of Central Switzerland, in:
Landscapes and landforms of Switzerland, edited by: Reynard, E., Springer
Nature Switzerland, Cham, Switzerland, 159–172, ISBN 9783030432034, 2021.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D.
B., and Wagener, T.: Sensitivity analysis of environmental models: A
systematic review with practical workflow, Environ. Model. Softw., 79,
214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.
Prasuhn, V.: Twenty years of soil erosion on-farm measurement: annual
variation, spatial distribution and the impact of conservation programmes
for soil loss rates in Switzerland, Earth Surf. Proc. Land., 45, 1539–1554, https://doi.org/10.1002/esp.4829, 2020.
R Core Team: R: A language for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, https://www.R-project.org (last access: 13 July 2022), 2021.
Remund, D., Liebisch, F., Liniger, H. P., Heinimann, A., and Prasuhn, V.: The
origin of sediment and particulate phosphorus inputs into water bodies in the Swiss Midlands – A twenty-year field study of soil erosion, Catena, 203, 105290, https://doi.org/10.1016/j.catena.2021.105290, 2021.
Renard, K., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C.: Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE), U.S: Government Printing Office, Washington, ISBN 9780160489389, 1997.
Saggau, P., Kuhwald, M., and Duttmann, R.: Integrating soil compaction impacts of tramlines into soil erosion modelling: A field-scale approach, Soil Syst., 3, 1–28, https://doi.org/10.3390/soilsystems3030051, 2019.
Schmidt, S., Alewell, C., Panagos, P., and Meusburger, K.: Regionalization of
monthly rainfall erosivity patternsin Switzerland, Hydrol. Earth Syst. Sci.,
20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, 2016.
Schmidt, S., Ballabio, C., Alewell, C., Panagos, P., and Meusburger, K.:
Filling the European blank spot – Swiss soil erodibility assessment with
topsoil samples, J. Plant Nutr. Soil Sci., 181, 737–748,
https://doi.org/10.1002/jpln.201800128, 2018a.
Schmidt, S., Alewell, C., and Meusburger, K.: Mapping spatio-temporal
dynamics of the cover and management factor (C-factor) for grasslands in
Switzerland, Remote Sens. Environ., 211, 89–104,
https://doi.org/10.1016/j.rse.2018.04.008, 2018b.
Schönenberger, U. and Stamm, C.: Hydraulic shortcuts increase the
connectivity of arable land areas to surface waters, Hydrol. Earth Syst. Sci., 25, 1727–1746, https://doi.org/10.5194/hess-25-1727-2021, 2021.
Schürz, C., Mehdi, B., Kiesel, J., Schulz, K., and Herrnegger, M.: A
systematic assessment of uncertainties in large-scale soil loss estimation
from different representations of USLE input factors – a case study for Kenya and Uganda, Hydrol. Earth Syst. Sci., 24, 4463–4489,
https://doi.org/10.5194/hess-24-4463-2020, 2020.
Sherriff, S. C., Rowan, J. S., Fenton, O., Jordan, P., Melland, A. R.,
Mellander, P. E., and Huallacháin, D.: Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds:
Implications for Watershed Scale Sediment Management, Environ. Sci. Technol., 50, 1769–1778, https://doi.org/10.1021/acs.est.5b04573, 2016.
Starkloff, T. and Stolte, J.: Applied comparison of the erosion risk models
EROSION 3D and LISEM for a small catchment in Norway, Catena, 118, 154–167,
https://doi.org/10.1016/j.catena.2014.02.004, 2014.
Stenfert Kroese, J., Batista, P. V. G., Jacobs, S. R., Breuer, L., Quinton,
J. N., and Rufino, M. C.: Agricultural land is the main source of stream
sediments after conversion of an African montane forest, Sci. Rep., 10, 1–15, https://doi.org/10.1038/s41598-020-71924-9, 2020.
Stoll, S., von Arb, C., Jorg, C., Kopp, S., and Prasuhn, V.: Evaluation der
stark zur Phosphor-Belastung des Baldeggersees beitragenden Flächen,
https://www.agroscope.admin.ch/agroscope/fr/home/a-propos/collaborateurs/_jcr_content/par/externalcontent (last access: 14 February 2021), 2019.
Swisstopo: SwissALTI3D, Das hoch aufgelöste Terrainmodell der Schweiz,
https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html
(last access: 26 November 2020), 2014a.
Swisstopo: Swissimage, Das digitale Farborthophotomosaik der Schweiz, https://www.swisstopo.admin.ch/de/geodata/images/ortho/swissimage10.html
(last access: 26 November 2020), 2014b.
Swisstopo: Swiss Map Vector 25 Beta, Das digitale Landschaftsmodell der
Schweiz, https://www.swisstopo.admin.ch/de/geodata/maps/smv/smv25.html
(last access: 26 November 2020), 2018.
Swisstopo: SwissTLM3D, Das grossmassstäbliche Topografische
Landschaftsmodell der Schweiz, https://www.swisstopo.admin.ch/de/geodata/landscape/tlm3d.html
(last access: 26 November 2020), 2020.
Teranes, J. L. and Bernasconi, S. M.: Factors controlling δ13C
values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and
implications for interpreting isotope excursions in lake sedimentary records, Limnol. Oceanogr., 50, 914–922, https://doi.org/10.4319/lo.2005.50.3.0914, 2005.
Turnbull, L. and Wainwright, J.: From structure to function: Understanding
shrub encroachment in drylands using hydrological and sediment connectivity,
Ecol. Indic., 98, 608–618, https://doi.org/10.1016/j.ecolind.2018.11.039, 2019.
Van Oost, K., Govers, G., and Desmet, P. J. J.: Evaluating the effects of
changes in landscape structure on soil erosion by water and tillage, Landsc.
Ecol., 15, 577–589, https://doi.org/10.1023/A:1008198215674, 2000.
Van Rompaey, A., Verstraeten, G., Van Oost, K., Govers, G., and Poesen, J.:
Modelling mean annual sediment yield using a distributed approach, Earth Surf. Proc. Land., 26, 1221–1236, https://doi.org/10.1002/esp.275, 2001.
Verstraeten, G., Van Oost, K., Van Rompaey, A. J. J., Poesen, J., and Govers,
G.: Evaluating an integrated approach to catchment management to reduce soil
loss and sediment pollution through modelling, Soil Use Manage., 18, 386–394, https://doi.org/10.1111/j.1475-2743.2002.tb00257.x, 2010.
Vigiak, O. and Bende-Michl, U.: Estimating bootstrap and Bayesian prediction
intervals for constituent load rating curves, Water Resour. Res., 49, 8565–8578, https://doi.org/10.1002/2013WR013559, 2013.
von Arb, C., Stoll, S., Frossard, E., Stamm, C., and Prasuhn, V.: The time it
takes to reduce soil legacy phosphorus to a tolerable level for surface waters: What we learn from a case study in the catchment of Lake Baldegg,
Switzerland, Geoderma, 403, 115257, https://doi.org/10.1016/j.geoderma.2021.115257, 2021.
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton,
S. F., and Brazier, R. E.: Linking environmental regimes, space and time:
Interpretations of structural and functional connectivity, Geomorphology,
126, 387–404, https://doi.org/10.1016/j.geomorph.2010.07.027, 2011.
Wehrli, B., Lotter, A. F., Schaller, T., and Sturm, M.: High-resolution varve
studies in Baldeggersee (Switzerland): Project overview and limnological
background data, Aquat. Sci., 59, 285–294, https://doi.org/10.1007/BF02522359, 1997.
Wilken, F., Fiener, P., and Van Oost, K.: Modelling a century of soil
redistribution processes and carbon delivery from small watersheds using a
multi-class sediment transport model, Earth Surf. Dynam., 5, 113–124,
https://doi.org/10.5194/esurf-5-113-2017, 2017.
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Patchy agricultural landscapes have a large number of small fields, which are separated by...