Articles | Volume 26, issue 4
https://doi.org/10.5194/hess-26-1145-2022
https://doi.org/10.5194/hess-26-1145-2022
Research article
 | 
28 Feb 2022
Research article |  | 28 Feb 2022

Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model

Adam P. Schreiner-McGraw and Hoori Ajami

Related authors

Soil Parameterization in Land Surface Models Drives Large Discrepancies in Soil Moisture Predictions Across Hydrologically Complex regions of the Contiguous United States
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-713,https://doi.org/10.5194/egusphere-2025-713, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Soils signal key mechanisms driving greater protection of organic carbon under aspen compared to spruce forests in a North American montane ecosystem
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70,https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective
Hoori Ajami, Ashish Sharma, Lawrence E. Band, Jason P. Evans, Narendra K. Tuteja, Gnanathikkam E. Amirthanathan, and Mohammed A. Bari
Hydrol. Earth Syst. Sci., 21, 281–294, https://doi.org/10.5194/hess-21-281-2017,https://doi.org/10.5194/hess-21-281-2017, 2017
Short summary
Technical Note: Reducing the spin-up time of integrated surface water–groundwater models
H. Ajami, J. P. Evans, M. F. McCabe, and S. Stisen
Hydrol. Earth Syst. Sci., 18, 5169–5179, https://doi.org/10.5194/hess-18-5169-2014,https://doi.org/10.5194/hess-18-5169-2014, 2014
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 
Ajami, H., Troch, P. A., Maddock, T., Meixner, T., and Eastoe, C.: Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships, Water Resour. Res., 47, 1–14, https://doi.org/10.1029/2010WR009598, 2011. 
Ajami, H., Meixner, T., Dominguez, F., Hogan, J., and Maddock, T.: Seasonalizing Mountain System Recharge in Semi-Arid Basins-Climate Change Impacts, Hydrol. Process., 50, 585–597, https://doi.org/10.1111/j.1745-6584.2011.00881.x, 2012. 
Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model, Water Resour. Res., 50, 2636–2656, https://doi.org/10.1002/2013WR014258, 2014. 
Ajami, H., McCabe, M. F., and Evans, J. P.: Impacts of model initialization on an integrated surface water-groundwater model, Ground Water, 29, 3790–3801, https://doi.org/10.1002/hyp.10478, 2015. 
Download
Short summary
We assess the impact of uncertainty in measurements of precipitation and air temperature on simulated groundwater processes in a mountainous watershed. We illustrate the role of topography in controlling how uncertainty in the input datasets propagates through the soil and into the groundwater. While the focus of previous investigations has been on the impact of precipitation uncertainty, we show that air temperature uncertainty is equally important in controlling the groundwater recharge.
Share