Articles | Volume 26, issue 4 
            
                
                    
            
            
            https://doi.org/10.5194/hess-26-1145-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1145-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model
Adam P. Schreiner-McGraw
CORRESPONDING AUTHOR
                                            
                                    
                                            Department of Environmental Sciences, University of California,
Riverside, 92521, USA
                                        
                                    Hoori Ajami
                                            Department of Environmental Sciences, University of California,
Riverside, 92521, USA
                                        
                                    Related authors
No articles found.
Lena Wang, Sharon A. Billings, Li Li, Daniel R. Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla M. Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro N. Flores, Kenneth Williams, and Pamela L. Sullivan
                                    Biogeosciences, 22, 6097–6117, https://doi.org/10.5194/bg-22-6097-2025, https://doi.org/10.5194/bg-22-6097-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Our study looked at how different forest types and conditions affected soil microbes and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
                                            
                                            
                                        Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
                                    Geosci. Model Dev., 18, 7707–7734, https://doi.org/10.5194/gmd-18-7707-2025, https://doi.org/10.5194/gmd-18-7707-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Land models need reliable soil properties to simulate water, but these settings are uncertain. We analyzed Community Land Model version 5 simulations for the United States from 1980 to 2010 to see how different soil settings shape patterns of soil moisture. Compared with an independent global land dataset, patterns align in many regions but differ in water-limited areas such as the Great Plains. Our maps show where to improve settings and guide future tests with observations.
                                            
                                            
                                        Cited articles
                        
                        Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol., 33, 121–131,
https://doi.org/10.1002/joc.3413, 2013. 
                    
                
                        
                        Ajami, H., Troch, P. A., Maddock, T., Meixner, T., and Eastoe, C.:
Quantifying mountain block recharge by means of catchment-scale
storage-discharge relationships, Water Resour. Res., 47, 1–14,
https://doi.org/10.1029/2010WR009598, 2011. 
                    
                
                        
                        Ajami, H., Meixner, T., Dominguez, F., Hogan, J., and Maddock, T.:
Seasonalizing Mountain System Recharge in Semi-Arid Basins-Climate Change
Impacts, Hydrol. Process., 50, 585–597, https://doi.org/10.1111/j.1745-6584.2011.00881.x,
2012. 
                    
                
                        
                        Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact
of model spin-up on surface water-groundwater interactions using an
integrated hydrologic model, Water Resour. Res., 50, 2636–2656,
https://doi.org/10.1002/2013WR014258, 2014. 
                    
                
                        
                        Ajami, H., McCabe, M. F., and Evans, J. P.: Impacts of model initialization
on an integrated surface water-groundwater model, Ground Water, 29, 3790–3801,
https://doi.org/10.1002/hyp.10478, 2015. 
                    
                
                        
                        Anon: Tulare Lake basin hydrology and hydrography: A summary of the movement
of water and aquatic species, 136 pp., 2007. 
                    
                
                        
                        Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. 
                    
                
                        
                        Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. 
                    
                
                        
                        Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979. 
                    
                
                        
                        Bridget, R. S., Richard, W. H., and Peter, G. C.: Choosing
appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39,
https://doi.org/10.1007/s10040-0010176-2, 2002. 
                    
                
                        
                        Brush, C. F., Dogrul, E. C., and Kadir, T. N.: Development and calibration
of the California Central Valley groundwater-surface water simulation model
(C2VSim), Version 3.02-CG, Sacramento, 196 pp., 2013. 
                    
                
                        
                        Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W.,
Brungard, C. W., and Odgers, N. P.: POLARIS: A 30-meter probabilistic soil
series map of the contiguous United States, Geoderma, 274, 54–67,
https://doi.org/10.1016/j.geoderma.2016.03.025, 2016. 
                    
                
                        
                        Chow, V. T.: Open-Channel Hydraulics, The Blackburn Press, Caldwell, NJ, ISBN: 1932846182,
2009. 
                    
                
                        
                        Crosbie, R. S., Dawes, W. R., Charles, S. P., Mpelasoka, F. S., Aryal, S.,
Barron, O., and Summerell, G. K.: Differences in future recharge estimates
due to GCMs, downscaling methods and hydrological models, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2011GL047657, 2011. 
                    
                
                        
                        Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M.
G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W.,
Schlosser, C. A., and Yang, Z. L.: The common land model, B. Am. Meteorol. Soc., 84, 1013–1023,
https://doi.org/10.1175/BAMS-84-8-1013, 2003. 
                    
                
                        
                        Daly, C., Neilson, R., and Phillips, D. L.: A statistical-topographic model
for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140–158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994. 
                    
                
                        
                        Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous
United States, Int. J. Clim., 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008. 
                    
                
                        
                        Erler, A. R., Frey, S. K., Khader, O., d'Orgeville, M., Park, Y. J., Hwang,
H. T., Lapen, D. R., Peltier, W. R., and Sudicky, E. A.: Evaluating Climate
Change Impacts on Soil Moisture and Groundwater Resources Within a
Lake-Affected Region, Water Resour. Res., 55, 8142–8163, https://doi.org/10.1029/2018WR023822,
2019. 
                    
                
                        
                        Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis,
D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim,
J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis,
M., and Tarboton, D.: An overview of current applications, challenges, and
future trends in distributed process-based models in hydrology, J. Hydrol., 537, 45–60,
https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016. 
                    
                
                        
                        Faunt, C. C.: Groundwater Availability of the Central Valley Aquifer,
California, United States Geological Survey, http://pubs.usgs.gov/pp/1766/, 2009. 
                    
                
                        
                        Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National
Elevation Dataset, American Society for Photogrammetry and Remote Sensing,
83–110, 2018. 
                    
                
                        
                        Hall, W. H.: Physical data and statistics of California – Tables and
memoranda relating to rainfall, temperature, winds, evaporation, and other
atmospheric phenomena; drainage areas and basins, flows of streams,
descriptions and flows of artesian wells, and other fact, State Printing,
Sacramento, CA, 560 pp., 1886. 
                    
                
                        
                        Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater
recharge rates and altered recharge sensitivity to climate variability
through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847,
https://doi.org/10.1073/pnas.1614941114, 2017. 
                    
                
                        
                        Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An
assessment of differences in gridded precipitation datasets in complex
terrain, J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008,
2018. 
                    
                
                        
                        Holbrook, W. S., Riebe, C. S., Elwaseif, M., Hayes, J. L., Basler-Reeder,
K., Harry, D. L., Malazian, A., Dosseto, A., Hartsough, P. C., and Hopmans,
J. W.: Geophysical constraints on deep weathering and water storage
potential in the Southern Sierra Critical Zone Observatory, Earth Surf. Proc. Land., 39, 366–380,
https://doi.org/10.1002/esp.3502, 2014. 
                    
                
                        
                        Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K.
E., and Marshall, L. A.: Hydrologic connectivity between landscapes and
streams: Transferring reach- and plot-scale understanding to the catchment
scale, Water Resour. Res., 45, 1–16, https://doi.org/10.1029/2008WR007225, 2009. 
                    
                
                        
                        Jennings, C. W.: Geologic map of California:, Sacramento, 1 pp., 1977. 
                    
                
                        
                        Kollet, S. J. and Maxwell, R. M.: Integrated surface-groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Res., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. 
                    
                
                        
                        Kollet, S. J., Cvijanovic, I., Schüttemeyer, D., Maxwell, R. M., Moene,
A. F., and Bayer, P.: The Influence of Rain Sensible Heat and Subsurface
Energy Transport on the Energy Balance at the Land Surface, Vadose Zone J., 8, 846–857,
https://doi.org/10.2136/vzj2009.0005, 2009. 
                    
                
                        
                        Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis,
K. M., Maurer, E. P., and Lettenmaier, D. P.: A long-term hydrologically
based dataset of land surface fluxes and states for the conterminous United
States: Update and extensions, J. Climate, 26, 9384–9392,
https://doi.org/10.1175/JCLI-D-12-00508.1, 2013. 
                    
                
                        
                        Lundquist, J. D., Cayan, D. R., and Dettinger, M. D.: Meteorology and
Hydrology in Yosemite National Park: A Sensor Network Application BT –
Information Processing in Sensor Networks, 518–528, 2003. 
                    
                
                        
                        Lundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B., Dozier,
J., and Neiman, P.: High-elevation precipitation patterns: Using snow
measurements to assess daily gridded datasets across the Sierra Nevada,
California, J. Hydrometeorol., 16, 1773–1792, https://doi.org/10.1175/JHM-D-15-0019.1, 2015. 
                    
                
                        
                        Mailloux, B. J., Person, M., Kelley, S., Dunbar, N., Cather, S., Strayer,
L., and Hudleston, P.: Tectonic controls on the hydrogeology of the Rio
Grande Rift, New Mexico, Water Resour. Res., 35, 2641–2659,
https://doi.org/10.1029/1999WR900110, 1999. 
                    
                
                        
                        Manning, A. H. and Solomon, D. K.: Using noble gases to investigate
mountain-front recharge, J. Hydrol., 275, 194–207,
https://doi.org/10.1016/S0022-1694(03)00043-X, 2003. 
                    
                
                        
                        Margulis, S. A., Cortés, G., Girotto, M., and Durand, M.: A landsat-era
Sierra Nevada snow reanalysis (1985–2015), J. Hydrometeorol., 17, 1203–1221,
https://doi.org/10.1175/JHM-D-15-0177.1, 2016. 
                    
                
                        
                        Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water Res., 53, 109–117,
https://doi.org/10.1016/j.advwatres.2012.10.001, 2013. 
                    
                
                        
                        Maxwell, R. M. and Kollet, S. J.: Interdependence of groundwater dynamics
and land-energy feedbacks under climate change, Nat. Geosci., 1, 665–669,
https://doi.org/10.1038/ngeo315, 2008. 
                    
                
                        
                        Maxwell, R. M. and Miller, N. L.: On the development of a coupled land
surface and groundwater model, J. Hydrometeorol., 6, 233–247, 2005. 
                    
                
                        
                        Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H.,
Blasch, K. W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D.
J., Flint, A. L., Neff, K. L., Niraula, R., Rodell, M., Scanlon, B. R.,
Singha, K., and Walvoord, M. A.: Implications of projected climate change
for groundwater recharge in the western United States, J. Hydrol., 534, 124–138,
https://doi.org/10.1016/j.jhydrol.2015.12.027, 2016. 
                    
                
                        
                        Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N.,
Duffy, C. J., McDowell, N. G., Phillips, F. M., Scanlon, B. R., and Vivoni,
E. R.: Ecohydrology of water-limited environments: A scientific vision, Water Resour. Res., 42,
1–15, https://doi.org/10.1029/2005WR004141, 2006. 
                    
                
                        
                        Olmsted, F. H. and Davis, G. H.: Geologic features and ground-water storage
capacity of the Sacramento Valley, California, 241 pp., 1961. 
                    
                
                        
                        Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M., and Running, S. W.:
Creating a topoclimatic daily air temperature dataset for the conterminous
United States using homogenized station data and remotely sensed land skin
temperature, Int. J. Climatol., 35, 2258–2279, https://doi.org/10.1002/joc.4127, 2015. 
                    
                
                        
                        Pan, M., Cai, X., Chaney, N. W., Entekhabi, D., and Wood, E. F.: An initial
assessment of SMAP soil moisture retrievals using high-resolution model
simulations and in situ observations, Geophys. Res. Lett., 43, 9662–9668,
https://doi.org/10.1002/2016GL069964, 2016. 
                    
                
                        
                        Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G.
E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on
catchment storage, mixing, and release: A comparative analysis of 16 nested
catchments, Hydrol. Proc., 31, 1828–1845, https://doi.org/10.1002/hyp.11134, 2017. 
                    
                
                        
                        Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S.,
Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D.,
Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How well are we
measuring snow: The NOAA/FAA/NCAR winter precipitation test bed, B. Am. Meteorol. Soc., 93,
811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012. 
                    
                
                        
                        Schreiner-McGraw, A. P. and Vivoni, E. R.: Percolation observations in an
arid piedmont watershed and linkages to historical conditions in the
Chihuahuan Desert, Ecosphere, 8, https://doi.org/10.1002/ecs2.2000, 2017. 
                    
                
                        
                        Schreiner-McGraw, A. P. and Vivoni, E. R.: On the Sensitivity of Hillslope
Runoff and Channel Transmission Losses in Arid Piedmont Slopes, Water Resour. Res., 54,
https://doi.org/10.1029/2018WR022842, 2018. 
                    
                
                        
                        Schreiner-McGraw, A. P. and Ajami, H.: Impact of Uncertainty in
Precipitation Forcing Data Sets on the Hydrologic Budget of an Integrated
Hydrologic Model in Mountainous Terrain, Water Resour. Res., 56, e2020WR027639,
https://doi.org/10.1029/2020WR027639, 2020. 
                    
                
                        
                        Schreiner-McGraw, A. P. and Ajami, H.: Combined impacts of uncertainty in precipitation and air
temperature on simulated mountain system recharge
from an integrated hydrologic model, [data set], 2022. 
                    
                
                        
                        Schreiner-Mcgraw, A. P., Ajami, H., and Vivoni, E. R.: Extreme weather
events and transmission losses in arid streams, Environ. Res. Lett., 14,
https://doi.org/10.1088/1748-9326/ab2949, 2019. 
                    
                
                        
                        Smith, S., reedmaxwell, i-ferguson, Gasper, F., Engdahl, N., Hokkanen, J., Avery, P., Jourdain, S., grapp1, Condon, L., Kulkarni, K., xy124, basileh, Thompson, D., Swilley, J., Bansal, V., Chennault, C., Coon, E., Ian Bertolacci M. S., Beisman, J., Fonseca, J. A., Lührsarezai, S., icswoodward, alanquits: parflow/parflow: ParFlow Version 3.8.0, Zenodo [code], https://doi.org/10.5281/zenodo.4816885, 2021. 
                    
                
                        
                        Spencer, S. A., Silins, U., and Anderson, A. E.: Precipitation-Runoff and
Storage Dynamics in Watersheds Underlain by Till and Permeable Bedrock in
Alberta's Rocky Mountains, Water Resour. Res., 55, 10690–10706,
https://doi.org/10.1029/2019WR025313, 2019. 
                    
                
                        
                        Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada,
Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow,
L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald,
A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M.,
Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2013. 
                    
                
                        
                        Thayer, D., Parsekian, A. D., Hyde, K., Speckman, H., Beverly, D., Ewers,
B., Covalt, M., Fantello, N., Kelleners, T., Ohara, N., Rogers, T., and
Holbrook, W. S.: Geophysical Measurements to Determine the Hydrologic
Partitioning of Snowmelt on a Snow-Dominated Subalpine Hillslope, Water Resour. Res., 54,
3788–3808, https://doi.org/10.1029/2017WR021324, 2018. 
                    
                
                        
                        Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of
daily meteorological variables over large regions of complex terrain, J. Hydrol., 190,
214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997. 
                    
                
                        
                        Udall, B. and Overpeck, J.: The twenty-first century Colorado River hot
drought and implications for the future, Water Resour. Res., 53, 2404–2418,
https://doi.org/10.1002/2016WR019638, 2017. 
                    
                
                        
                        Vano, J. A., Das, T., and Lettenmaier, D. P.: Hydrologic sensitivities of
Colorado River runoff to changes in precipitation and temperature, J. Hydrometeorol., 13,
932–949, https://doi.org/10.1175/JHM-D-11-069.1, 2012.
 
                    
                
                        
                        Visser, A., Moran, J. E., Singleton, M. J., and Esser, B. K.: Importance of
river water recharge to the San Joaquin Valley groundwater system, Hydrol. Proc., 32,
1202–1213, https://doi.org/10.1002/hyp.11468, 2018. 
                    
                
                        
                        Viviroli, D. and Weingartner, R.: The hydrological significance of mountains: from regional to global scale, Hydrol. Earth Syst. Sci., 8, 1017–1030, https://doi.org/10.5194/hess-8-1017-2004, 2004. 
                    
                
                        
                        Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R.: Mountains of the world, water towers for humanity: Typology, mapping,
and global significance, Water Resour. Res., 43, 1–13, https://doi.org/10.1029/2006WR005653,
2007. 
                    
                
                        
                        Welch, L. A. and Allen, D. M.: Hydraulic conductivity characteristics in
mountains and implications for conceptualizing bedrock groundwater flow, Hydrogeol. J., 22, 1003–1026, https://doi.org/10.1007/s10040-014-1121-5, 2014. 
                    
                
                        
                        Woldemeskel, F. M., Sharma, A., Sivakumar, B., and Mehrotra, R.: An error
estimation method for precipitation and temperature projections for future
climates, J. Geophys. Res.-Atmos., 117, 1–13, https://doi.org/10.1029/2012JD018062, 2012. 
                    
                Short summary
            We assess the impact of uncertainty in measurements of precipitation and air temperature on simulated groundwater processes in a mountainous watershed. We illustrate the role of topography in controlling how uncertainty in the input datasets propagates through the soil and into the groundwater. While the focus of previous investigations has been on the impact of precipitation uncertainty, we show that air temperature uncertainty is equally important in controlling the groundwater recharge.
            We assess the impact of uncertainty in measurements of precipitation and air temperature on...