Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5287-2021
https://doi.org/10.5194/hess-25-5287-2021
Research article
 | 
28 Sep 2021
Research article |  | 28 Sep 2021

A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models

Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (29 Apr 2021) by Roger Moussa
AR by Dirk Eilander on behalf of the Authors (16 May 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (03 Jun 2021) by Roger Moussa
RR by Peter Burek (30 Jun 2021)
RR by Anonymous Referee #2 (11 Aug 2021)
ED: Publish subject to technical corrections (11 Aug 2021) by Roger Moussa
AR by Dirk Eilander on behalf of the Authors (30 Aug 2021)  Author's response   Manuscript 
Download
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.