Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3319-2021
https://doi.org/10.5194/hess-25-3319-2021
Technical note
 | 
16 Jun 2021
Technical note |  | 16 Jun 2021

Technical Note: Sequential ensemble data assimilation in convergent and divergent systems

Hannes Helmut Bauser, Daniel Berg, and Kurt Roth

Related authors

Covariance resampling for particle filter – state and parameter estimation for soil hydrology
Daniel Berg, Hannes H. Bauser, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 1163–1178, https://doi.org/10.5194/hess-23-1163-2019,https://doi.org/10.5194/hess-23-1163-2019, 2019
Short summary
Inflation method for ensemble Kalman filter in soil hydrology
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018,https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary
EnKF with closed-eye period – towards a consistent aggregation of information in soil hydrology
Hannes H. Bauser, Stefan Jaumann, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 20, 4999–5014, https://doi.org/10.5194/hess-20-4999-2016,https://doi.org/10.5194/hess-20-4999-2016, 2016
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Data worth analysis within a model-free data assimilation framework for soil moisture flow
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023,https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023,https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019
Inflation method for ensemble Kalman filter in soil hydrology
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018,https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary

Cited articles

Aksoy, A., Zhang, F., and Nielsen-Gammon, J. W.: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model, Mon. Weather Rev., 134, 2951–2970, https://doi.org/10.1175/MWR3224.1, 2006. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Bauser, H. H., Jaumann, S., Berg, D., and Roth, K.: EnKF with closed-eye period – towards a consistent aggregation of information in soil hydrology, Hydrol. Earth Syst. Sci., 20, 4999–5014, https://doi.org/10.5194/hess-20-4999-2016, 2016. a
Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method for ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, 2018. a, b
Berg, D.: Particle filters for nonlinear data assimilation, PhD thesis, Ruperto-Carola University Heidelberg, Heidelberg, Germany, 2018. a
Download
Short summary
Data assimilation methods are used throughout the geosciences to combine information from uncertain models and uncertain measurement data. In this study, we distinguish between the characteristics of geophysical systems, i.e., divergent systems (initially nearby states will drift apart) and convergent systems (initially nearby states will coalesce), and demonstrate the implications for sequential ensemble data assimilation methods, which require a sufficient divergent component.