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Abstract. Data assimilation methods are used throughout the
geosciences to combine information from uncertain models
and uncertain measurement data. However, the characteris-
tics of geophysical systems differ and may be distinguished
between divergent and convergent systems. In divergent sys-
tems initially nearby states will drift apart, while they will
coalesce in convergent systems. This difference has implica-
tions for the application of sequential ensemble data assim-
ilation methods. This study explores these implications on
two exemplary systems, i.e., the divergent Lorenz 96 model
and the convergent description of soil water movement by the
Richards equation. The results show that sequential ensem-
ble data assimilation methods require a sufficient divergent
component. This makes the transfer of the methods from di-
vergent to convergent systems challenging. We demonstrate,
through a set of case studies, that it is imperative to repre-
sent model errors adequately and incorporate parameter un-
certainties in ensemble data assimilation in convergent sys-
tems.

1 Introduction

Information on physical systems is often available in two
forms; on the one hand, it is available from observations and
on the other hand through mathematical models describing
the system’s dynamics. The combination of both can lead to
an improved description of the system. This is the aim of data
assimilation, typically with a focus on state estimation.

Data assimilation has broad applications throughout the
geosciences and can be already seen as an independent dis-
cipline (Carrassi et al., 2018). It is typically used to estimate
states but is also used for parameters, i.e., in weather fore-
casting (Houtekamer and Zhang, 2016; Ruiz et al., 2013),
for atmospheric chemical transport (Carmichael et al., 2008;
Zhang et al., 2012) also coupled to meteorology (Bocquet
et al., 2015), in oceanography, including biogeochemical
processes (Stammer et al., 2016; Edwards et al., 2015), and in
hydrology for flow, transport, and reaction in terrestrial sur-
face and subsurface systems (Liu et al., 2012). Data assimila-
tion is also increasingly applied in ecology, with applications
ranging from the spread of infectious diseases and wildfires
to population dynamics and the terrestrial carbon cycle (Niu
et al., 2014; Luo et al., 2011).

In this study, we distinguish between geophysical systems
that are divergent or convergent systems, depending on the
development of two initial nearby states (Fig. 1). In a diver-
gent system, initially close states will inevitably drift apart,
even if the system is described by a perfect model (Kalnay,
2003). This leads to an upper limit for the predictability in
divergent systems (Lorenz, 1982). In a convergent system,
nearby trajectories will coalesce. If the model to describe
such a convergent system is perfect, this results in a high
predictability (Lorenz, 1996). An error in the initial state will
decay towards the truth after some transient phase. However,
this is only true for perfect models, which is usually not the
case for geophysical systems. This can lead to a bias with
convergence to a wrong state.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3320 H. H. Bauser et al.: Technical note: Sequential ensemble data assimilation in convergent and divergent systems

Figure 1. Dynamics of a generic divergent and convergent dynamic system with different initial states. Both panels show a single state
dimension of a multi-dimensional system. In the divergent system, initially infinitesimally close states drift apart, while in the convergent
system initially separate states converge.

Many recent advances in data assimilation methods
have been developed in the context of weather forecasting
(van Leeuwen et al., 2015). They are, therefore, designed to
meet the challenges in the atmosphere – a predominantly
divergent system. Due to the fundamental limit for long
time predictions from uncertain initial conditions in diver-
gent systems, data assimilation in operational weather fore-
casting primarily focuses on state estimation (Reichle, 2008;
van Leeuwen et al., 2015).

While weather forecasting or oceanography are divergent
systems, several geophysical systems, such as soil hydrol-
ogy or chemical transport, are convergent systems. In ensem-
ble data assimilation methods, if uncertainties are only rep-
resented through an ensemble of states, convergent systems
lead to decreasing uncertainties over time, which favors fil-
ter degeneration. This difference to divergent systems, where
the ensemble spread increases exponentially, makes the di-
rect transfer of data assimilation methods from divergent sys-
tems to convergent systems challenging and often requires
adaptations to prevent filter degeneracy. The application of
data assimilation when coupling a divergent and a convergent
model, for example, in coupled chemistry meteorology mod-
els, may potentially lead to new difficulties (Bocquet et al.,
2015).

The largest uncertainties in convergent systems typically
do not reside in uncertain initial conditions but rather in
boundary conditions, which include external forcings, the
representation of sub-scale physics through parameteriza-
tions, and unrepresented physics in the model equations.
These uncertainties should then be addressed in an integrated
manner (Liu and Gupta, 2007). Therefore, data assimilation
methods have been used to not only estimate states but also
parameters to reduce these uncertainties. The combined esti-
mation of states and parameters is thought to be a solution for
reducing the impact of model errors on parameter estimation
(Liu et al., 2012). Estimating parameters in ensemble data
assimilation methods through an augmented state requires a
forward model for the parameters as well. This model is typ-

ically assumed to be constant, which is neither divergent nor
convergent. However, the filter will gradually reduce the un-
certainty in the parameters, which is not increased through
a divergent forward model, and challenges similar to con-
vergent systems can arise. This is sometimes alleviated by
assigning a random walk as the forward model to the param-
eters, which then requires to determine an appropriate step
size.

A challenge for sequential ensemble data assimilation
in convergent systems is to maintain a sufficient ensemble
spread. This would require an adequate representation of all
uncertainties, including unrepresented physics in the model
equations. In real-world systems, this is often difficult or
impossible. Therefore, practical alternatives are necessary,
which are often heuristic and may interfere with basic as-
sumptions in the data assimilation methods. One possibility
is inflation methods, which counteract the coalescing ten-
dency. Unfortunately, there exists no universal method to ac-
complish this, and a range of approaches are followed. One
example is the increase in the ensemble spread of parameters
to a threshold value, as soon as the parameter uncertainty
drops below this value. This approach was introduced for a
sea breeze model (Aksoy et al., 2006) and has been used in
hydrology as well (e.g., Shi et al., 2014; Rasmussen et al.,
2015). A modification to this, also applied in hydrology, is to
keep the parameter uncertainty entirely constant (Han et al.,
2014; Zhang et al., 2017). This ensures a sufficient ensemble
spread in the state itself but can impact the accuracy of the
estimation. A widely used adjustment to limit the reduction
in an ensemble spread in hydrology is the use of a damping
factor (Hendricks Franssen and Kinzelbach, 2008). In soil
hydrology, a multiplicative inflation method was proposed
and specifically adjusted to the needs of the system (Bauser
et al., 2018). Similarly, Constantinescu et al. (2007) showed
that an atmospheric chemical transport model required much
stronger inflation than reported in the meteorological liter-
ature and showed better results for a model-specific infla-
tion, where the key parameters are perturbed to achieve an
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increased spread in the state. Consequently, a better under-
standing and control over errors has been recognized as a
major challenge in chemical data assimilation as well (Zhang
et al., 2012).

Although plenty of knowledge and experience are avail-
able in the different communities on how to handle data as-
similation methods in their specific models, we are not aware
of a fundamental analysis of the difference between divergent
and convergent models with respect to their utilization within
ensemble data assimilation frameworks. We investigate and
demonstrate the different challenges that illustrate, for exam-
ple, the different requirements for inflation methods, using
the ensemble Kalman filter (Evensen, 1994; Burgers et al.,
1998). The divergent case is illustrated using the Lorenz 96
model (Lorenz, 1996), while for the convergent case, a soil
hydrological system described by Richards’ equation is used.
Naturally, these are highly simplified models compared to
real-world applications. Still, they demonstrate key aspects
that also have to be addressed in more complicated situations.
The specific adjustments applied there depend on the partic-
ular model. Our focus here is on the fundamentals and not on
the wide range of specifics.

2 Data assimilation method

For this study we chose the ensemble Kalman filter (EnKF),
a sequential data assimilation method, based on Bayes’ theo-
rem and the assumption of unbiased Gaussian error distribu-
tions. It was introduced as an extension of the Kalman filter
(Kalman, 1960) for nonlinear models (Evensen, 1994; Burg-
ers et al., 1998) and approximates the Gaussian distributions
by an ensemble of states ψ i , where the subscript i denotes
the ensemble member.

To sequentially assimilate new observations, the EnKF al-
ternates between a forecast (subscript “f”) and an analysis
step (subscript “a”). In the forecast, the ensemble is propa-
gated using the nonlinear model f (·) as follows:

ψkf,i = f
(
ψk−1

f,i

)
+βk, (1)

where βk is a stochastic model error and k is a discrete time.
In the following, the analysis state ψa is calculated by ap-

plying the Kalman gain:

Kk
= Pkf Hᵀ

(
HPkf Hᵀ

+Rk
)−1

, (2)

to every ensemble member. The Kalman gain weights the
forecast error covariance P with the observation error covari-
ance R. The observation operator H maps the state from state
space to observation space. The forecast error covariance P
is calculated using the forecast ensemble as follows:

Pkf =
(
ψkf −ψ

k
f

)(
ψkf −ψ

k
f

)ᵀ
. (3)

It is necessary to add a realization of the observation error
to the observation for each ensemble member (Burgers et al.,
1998). The resulting analysis state is as follows:

ψka,i = ψ
k
f,i +Kk

(
dk −Hψkf,i + ε

k
i

)
, εki ∝N

(
0,Rk

)
. (4)

By combining the information from the measurement and the
model, the uncertainty in the analysis ensemble is decreased.
For sequential data assimilation, the process of forecast and
analysis is iterated for every new observation.

The joint estimation of states and parameters can be real-
ized through state augmentation. The original state ψ is ex-
tended with the parameters p to an augmented state, as fol-
lows:

u=

(
ψ

p

)
. (5)

The model equation (Eq. 1) changes to the following:

uk =
(
ψk

pk

)
=

(
fψ

(
ψk−1,pk−1

)
+βkψ

fp
(
pk−1)

+βp

)
, (6)

with the models for the state fψ (·) and for the parame-
ters fp(·), as well as the corresponding model errors βψ
and βp. The model for the state is typically nonlinear, while
the parameters are often assumed constant fp(pk−1)= pk−1.

In this study, we set both stochastic model errors in Eq. (6)
to zero. The EnKF is used without any extensions, and an
ensemble size of N = 100 was chosen for all cases.

3 Divergent system

This section demonstrates the data assimilation behavior for
a divergent system on the example of the 40-dimensional
Lorenz 96 model, which has been widely used to test data
assimilation methods in atmospheric sciences (e.g., Li et al.,
2009). We first introduce the model before we look into four
characteristically different cases.

3.1 Lorenz 96

The Lorenz 96 model (Lorenz, 1996) is an artificial model
and cannot be derived from any dynamic equation (Lorenz,
2005). It can be interpreted as an unspecified scalar quan-
tity x in a one-dimensional atmosphere on a latitude circle
and was defined in a study on predictability (Lorenz, 1996).

The governing equations are a set of coupled ordinary dif-
ferential equations as follows:

dxi
dt
= (xi+1− xi−2)xi−1− xi +F, i ∈ [1,2, . . ., J ], (7)

with constant forcing F , periodic boundaries (xJ+1 = x1),
and dimension J . The dimension is often chosen as J = 40,
which we also do in this study. Even though the system is not
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derived from physical principles, it shares certain properties
of large atmospheric models (Lorenz and Emanuel, 1998).
The quadratic terms represent advection and conserve the to-
tal energy, while the linear term decreases the total energy
comparable to dissipation. The constant F represents exter-
nal forcing and prevents the system’s total energy from de-
caying to zero. The value is often chosen as F = 8 (Lorenz
and Emanuel, 1998).

The Lyapunov exponent quantifies how fast two initially
infinitesimally close trajectories will separate. Analyzing the
leading Lyapunov exponent for F = 8 shows a doubling time
of τd = 0.42 units for the distance between two initially in-
finitesimally close neighboring states (Lorenz and Emanuel,
1998). Increasing the forcing leads to a more divergent sys-
tem, for instance, τd = 0.3 for F = 10 (Lorenz, 1996). With
τd decreasing, so does the predictability of the system.

3.2 Characteristic cases

The behavior of the EnKF on a divergent system is investi-
gated through four different cases (DC1–4), which are pur-
posely designed in a simple manner to illustrate the behavior
concisely. For all cases, the model is solved using a fourth-
order Runge–Kutta method with a time step of 1t = 0.01.

The initial condition for the synthetic truth for all cases
is generated by running the model until time 2000 from an
initial state xi = 4.0∀i ∈ [1, 2, . . ., 39] and x40 = 4.001, with
the typical value F = 8 for the forcing parameter. The final
state of this run is used as the synthetic true initial state for all
cases. This ensures that the state is on the attractor without
the initial transient phase. The initial ensemble for the data
assimilation runs is generated by perturbing the true initial
state with a Gaussian distribution N (0,1).

Synthetic observations are generated in all 40 dimensions
by a forward run until time 4, using the true value and per-
turbing it with a Gaussian distribution with a zero mean
and a standard deviation of σobs = 1.0. For cases DC1 and
DC2, observations are generated at eight different times with
an observation interval of 1tObs = 0.5. This observation in-
terval is chosen to be rather large to ensure a large diver-
gence of the system. For cases DC3 and DC4, observations
are generated at 80 different times with an observation inter-
val of1tObs = 0.05. This interval is often used in other stud-
ies (e.g., Nakano et al., 2007; van Leeuwen, 2010; Poterjoy,
2016).

3.2.1 Divergent case 1 (DC1) – state estimation and
true parameter

In this case, the ensemble is propagated with the same pa-
rameter (F = 8) as the synthetic truth. Uncertainty only
stems from the uncertainty in the initial condition. Figure 2a
shows the time development of one state dimension of the
Lorenz 96 model (upper plot) and the ensemble variance of
this state dimension σ 2

dim, together with the mean variance

over all dimensions σ 2 (lower plot). Due to the divergent na-
ture of the model, the ensemble spread increases between ob-
servations, and the ensemble has a sufficient spread, such that
the EnKF is able to correct the states to follow the truth.

The mean ensemble spread σ 2 increases exponentially be-
tween two observations. At each observation, the EnKF up-
dates the ensemble, and the variance decreases correspond-
ingly.

The behavior of σ 2
dim differs from the behavior of σ 2.

During the forecast, σ 2
dim sometimes increases, decreases,

or stays approximately constant. This occurs because the
Lorenz 96 model is bounded and has, therefore, convergent
and divergent directions.

3.2.2 Divergent case 2 (DC2) – state estimation and
wrong parameter

In this case, in order to investigate the impact of an unrepre-
sented model error, the ensemble is propagated with a wrong
parameter of F = 10 instead of F = 8 (Fig. 2b), which was
used to generate the observations. Therefore, the ensemble
is propagated with a model that is more divergent than the
synthetic truth.

Compared to DC1 (Fig. 2a; lower plot), σ 2 and σ 2
dim in-

crease faster, and the ensemble spread reaches higher values,
which shows the increased divergence of the system. Propa-
gating the ensemble with this different model leads to a larger
deviation in the ensemble mean from the truth (see Fig. 2b;
upper plot) than in DC1. However, the divergent nature of the
model ensures a sufficient ensemble spread so that the state
can be corrected towards the truth, and the wrong parame-
ter is compensated. This leads to a worsened, but still good,
estimation of the truth without filter divergence.

3.2.3 Divergent case 3 (DC3) – state estimation, small
observation interval, and wrong parameter

The case is similar to DC2, except that the observation inter-
val is reduced to 1tObs = 0.05. The high frequency of anal-
ysis steps, where the Kalman update reduces the variance in
the ensemble, prevents the Lorenz 96 model from develop-
ing enough divergence to increase the ensemble spread suffi-
ciently in the short time intervals in between (see Fig. 2c;
lower plot). Although the ensemble is propagated with a
more divergent model (F = 10), the divergence is not suffi-
cient enough to encompass the model error due to the wrong
parameter, and the filter can degenerate (see Fig. 2c; upper
plot). This is in contrast to DC2, where the Kalman filter
can successfully estimate the state. However, the comparison
with a forward run of the true initial state using the wrong
parameter shows that the EnKF is able to improve the state
significantly.
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Figure 2. State estimation in a divergent system. (a) Divergent case 1 (DC1), where the ensemble is propagated with the same parameter as
the truth (F = 8). (b) Divergent case 2 (DC2), where the ensemble is propagated with F = 10 instead. (c) Divergent case 3 (DC3), where
the ensemble is propagated with F = 10, and the observation interval is reduced to 1tObs = 0.05. (d) Divergent case 4 (DC4), where the
parameter error is represented by the ensemble, using N (10,22) for the reduced observation interval of 1tObs = 0.05. In the upper plots
(a–d), the ensemble mean (orange line) and the ensemble (light orange lines) in the data assimilation run for state dimension 2 x2, together
with the observations (purple) generated from the truth (black dashed line). Panels (b–d) additionally show a single forward run (blue dashed
line) using a wrong parameter F = 10 starting from the true initial condition. In the lower plots (a–d), the mean variance σ 2 of the ensemble
over all dimensions (light blue line) and variance σ 2

dim of state dimension 2 (black line).

3.2.4 Divergent case 4 (DC4) – state estimation, small
observation interval, and represented error

In divergent case 4 (DC4), the observation interval is, as
in DC3, reduced to 1tObs = 0.05. The parameter error is
represented by the ensemble by assigning each ensemble
member a different parameter F . The forcing parameter F
is drawn from a Gaussian distribution N (10,22), such that
the true value lies within 1 standard deviation.

Representing the error increases σ 2 only slightly (Fig. 2d;
lower plot) compared to DC3, but the minimal variance
of σ 2

dim has higher values. This increase is sufficient enough
to help the filter so that it does not degenerate (Fig. 2d; upper
plot). Representing the parameter error in the ensemble in the
case of frequent observations can prevent filter degeneracy.

4 Convergent system

This section demonstrates the data assimilation behavior for
a convergent system on the example of soil water flow. We,
again, first introduce the model before we look into four char-
acteristic cases.

4.1 Soil water flow

Water flow in an unsaturated porous medium can be de-
scribed by the Richards equation as follows:

∂tθ −∇ · [K(θ) [∇hm(θ)− 1]]= 0, (8)

where θ (–) is the volumetric water content, K (L T−1) is
the isotropic hydraulic conductivity, and hm (L) is the matric
head.

https://doi.org/10.5194/hess-25-3319-2021 Hydrol. Earth Syst. Sci., 25, 3319–3329, 2021



3324 H. H. Bauser et al.: Technical note: Sequential ensemble data assimilation in convergent and divergent systems

To close Eq. (8), soil hydraulic material properties, which
specify the dependency of the matric head and the hydraulic
conductivity on the water content, are necessary. We use the
Mualem–van Genuchten parameterization (Mualem, 1976;
Van Genuchten, 1980) in its simplified form, as follows:

K(2)=Kw2
τ

[
1−

[
1−2n/[n−1]

]1−1/n
]2

, (9)

hm(2)=
1
α

[
2−n/[n−1]

− 1
]1−1/n

, (10)

with the saturation 2 (–) as follows:

2 :=
θ − θr

θs− θr
. (11)

The parameter θs (–) is the saturated water content, and θr (–)
is the residual water content. The matric head hm is scaled
with the parameter α (L−1) that can be related to the inverse
air entry value. The parameter Kw (L T−1) is the saturated
hydraulic conductivity, τ (–) is a tortuosity factor, and n (–)
is a shape parameter. Equations (9) and (10) describe the sub-
scale physics with six parameters for a homogeneous soil.

4.2 Characteristic cases

The behavior of the EnKF on a convergent system is inves-
tigated through four different cases (CC1–4). For the case
studies, a one-dimensional homogeneous soil is used with
an extent of 1 m. The Richards equation is solved using the
muPhi model (Ippisch et al., 2006), with a spatial resolution
of 1 cm, which results in a 100-dimensional water content
state.

For the true trajectories and the observations, the fol-
lowing parameters for a loamy sand by Carsel and Parrish
(1988) are used: θs = 0.41, θr = 0.057, τ = 0.5, n= 2.28,
α =−12.4 m−1, andKw = 4.00×10−5 m s−1. For the lower
boundary, a Dirichlet condition with zero potential (ground-
water table) is set, and for the upper boundary, a constant
infiltration over the whole observation time with a flux of
5× 10−7 m s−1 is used.

Initially, the system is in hydraulic equilibrium. The infil-
tration boundary condition leads to a downward-propagating
infiltration front that increases the water content. Time do-
main reflectometry (TDR)-like water content observations
are generated equidistantly at four different depths of 0.2,
0.4, 0.6, and 0.8 m. The observation error is chosen to be
σObs = 0.007 (e.g., Jaumann and Roth, 2017). Observations
are taken hourly for a duration of 30 h.

To generate the initial ensemble, the ensemble mean of
the water content state is perturbed by a correlated multivari-
ate Gaussian distribution, using a Cholesky decomposition
to create an ensemble that corresponds to a predefined co-
variance matrix (e.g., Berg et al., 2019). The main diagonal
of this covariance matrix of the ensemble is 0.0032. The off-
diagonal entries are determined by multiplying the variance

on the main diagonal with the fifth-order piecewise rational
function by Gaspari and Cohn (1999), using a length scale
of c = 10 cm. This ensures a spatially correlated initial state,
which increases the diversity of the ensemble. If, instead, un-
correlated Gaussian random numbers with a zero mean were
used, the dissipative component of the system would lead to a
fast vanishing of the perturbation in space for each individual
ensemble member.

4.2.1 Convergent case 1 (CC1) – no estimation

In this case, no data assimilation is used, and the ensemble
is propagated with the true model. The initial conditions for
the ensemble members are based on the linearly interpolated
observations at time zero. This approximated state is used as
the ensemble mean for the EnKF. This state is then perturbed
by a correlated multivariate Gaussian distribution so that the
spread of the initial ensemble is sufficient to represent the
uncertainty of the water content in most parts.

The temporal development of the water content at 20 cm
depth, the position of the uppermost observation, is shown
in Fig. 3a (upper plot). Due to the convergent behavior of
the model in combination with the true representation, the
initially broad ensemble converges to the truth, even though
the initial condition was not represented accurately.

The ensemble variance at this depth σ 2
dim increases when

the infiltration front reaches 20 cm. Because of the nonlinear
conductivity function (Eq. 9), the different initial water con-
tents lead to a different arrival time of the infiltration front at
the first observation position. This leads to an increase in the
ensemble spread.

After the increase in the water content, the ensemble col-
lapses fast since the hydraulic conductivity increases with the
water content, which leads to a fast convergence of the differ-
ent ensemble members to the truth due the convergent nature
of the model. The variance over all dimensions σ 2 decreases
slowly and approaches zero over time. If the system is started
with a higher water content instead of equilibrium, this col-
lapse will occur faster.

This case shows that a perfectly convergent system is
predictable for all times. This is in contrast with divergent
systems that only have a finite limit of predictability, even
if the model, including boundary conditions, is perfectly
known. After a transient phase, the states converge to the
truth (Kalnay, 2003). A perfect model is not what we en-
counter in reality, however.

4.2.2 Convergent case 2 (CC2) – state estimation and
wrong parameter

In this case, the state is estimated with the EnKF, but the
ensemble is propagated with a wrong parameter. Instead of
ntrue = 2.28, n= 2.68 is chosen. The mean for the initial
state is chosen as the true initial water content.
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Figure 3. (a) Convergent case 1 (CC1) is the forward run without data assimilation, using an interpolated initial condition. In the other
three cases, the truth is used to generate the initial ensemble. (b) Convergent case 2 (CC2), where the ensemble is propagated with n= 2.68
instead of ntrue = 2.28, and the state is estimated. (c) Convergent case 3 (CC3), where the parameter error is represented by the ensemble,
using N (2.68,0.42), and the state is estimated. (d) Convergent case 4 (CC4) with the simultaneous state and parameter estimation. In the
upper plots (a–d), the ensemble mean (orange) and the ensemble (light orange lines) during the forward run at the depth of the uppermost
observation (20 cm). The truth, which is used to generate the observations (purple), is shown as a black dashed line. Panels (b–d) additionally
show a single forward run (blue dashed line), using a wrong parameter n= 2.68, starting from the true initial condition. In the lower plots
(a–d), the mean variance σ 2 of the ensemble over all dimensions (light blue line) and variance σ 2

dim at the depth of 20 cm (black line).

In Fig. 3b (upper plot) the temporal development of the
water content at the depth of the uppermost observation
(20 cm) is shown. A larger n results in an earlier arrival of
the infiltration front at the depth of 20 cm for the ensemble
than for the truth. The EnKF tries to correct the ensemble but
fails because its variance is too small and cannot represent
the truth. Due to the convergent system, σ 2 decreases con-
stantly, while σ 2

dim decreases fast to zero after the infiltration
front reaches the depth of 20 cm (see Fig. 3b; lower plot).
This convergence leads to a false trust in the model, and the
filter degenerates. Compared to a forward run without data
assimilation, the EnKF can only improve the state estimation
for a short time when the water content rises due to the infil-
tration front. Soon after, the ensemble coincides with the free

forward run, and the estimated state shows no advantage any
more.

This case illustrates that a wrong parameter in a conver-
gent system can lead to filter degeneration. This is in direct
contrast to DC2 (Fig. 2b), where the filter is still able to esti-
mate the state. The behavior also differs from DC3 (Fig. 2c),
where the observation interval in the Lorenz 96 model is too
short, meaning that it cannot develop its full divergent be-
havior. There the filter can also degenerate for a wrong pa-
rameter, but the data assimilation is still able to improve the
estimation compared to a free forward run since the ensemble
never collapses entirely.

https://doi.org/10.5194/hess-25-3319-2021 Hydrol. Earth Syst. Sci., 25, 3319–3329, 2021



3326 H. H. Bauser et al.: Technical note: Sequential ensemble data assimilation in convergent and divergent systems

4.2.3 Convergent case 3 (CC3) – state estimation and
represented error

In this case, the parameter error is represented with the en-
semble, but the parameter is not estimated. Each ensemble
member has a different parameter n. The parameters are
Gaussian distributed with N (2.68,0.42) so that the truth lies
within 1 standard deviation. Since the model error is known
in this synthetic case, we can create an ensemble that repre-
sents the model error adequately. Note that this is more dif-
ficult, or even impossible, in a real-world system. The mean
for the initial state is chosen as the true initial water content.

Figure 3c (upper plot) shows the temporal development
of the water content at a depth of 20 cm. The infiltration
front reaches this depth at different times due to the different
parameter n for each ensemble member. This increases the
variance in the ensemble, both at this depth and overall (see
Fig. 3c; lower plot). The variance increases rapidly between
the observations, similar to the divergent cases. In this way,
the ensemble spread stays large enough so that the EnKF can
correct the states. The ensemble can follow and represent the
truth. This behavior can also be observed for the divergent
case DC4 with a short observation interval (Fig. 2d).

Representing the model error adds a divergent component
to the ensemble for a convergent model. This allows the
EnKF to correct the state and follow the truth. However, the
predictability of the system decreases since each ensemble
member converges to a different fixed point apart from the
truth. To increase the predictability, parameter estimation is
necessary.

4.2.4 Convergent case 4 (CC4) – state and parameter
estimation

In this case, the error in the parameter n is not only rep-
resented but also estimated using the state augmentation
method. The initial parameter set is, as in CC3, Gaussian dis-
tributed with N (2.68,0.42) so that the truth is located within
1 standard deviation. Again, the mean for the initial state is
chosen as the true initial water content.

The estimation of n is shown in Fig. 4. The ensemble con-
verges rapidly to the truth because only one parameter is es-
timated, so every deviation from the truth is mainly caused
by this parameter.

The mean variance σ 2 increases initially (Fig. 3d; lower
plot) because, at the beginning, the parameter has not been
sufficiently improved, and the ensemble members still have
different n. This leads to a divergent ensemble in state space
during the infiltration, which is similar to CC3. While the pa-
rameter is estimated, the variance of the ensemble decreases
fast, and the convergent property of the system becomes
dominant.

The temporal development of the water content at a depth
of 20 cm is shown in Fig. 3d (upper plot). In contrast to CC3,
the corrections of the EnKF to the state are much smaller.

Figure 4. Estimation of parameter n in convergent case 4 (CC4).
The ensemble mean is shown in orange and the ensemble in light
orange. The truth is a black dashed line.

The mean of the parameter n comes close to the true value,
and the uncertainty of n decreases. This causes the forward
propagation to come close to the true model as well. The
propagation with an almost correct model supports the state
estimation due to the convergent nature of the system, which
forces the state to the true value.

5 Discussion

For the divergent Lorenz 96 system, the EnKF is able to esti-
mate the state for the true model as well as for the case with
a wrong parameter. In a divergent system, the volume of the
prior distribution in the state space increases during forward
propagation (Evensen, 1994). For the EnKF, this is directly
connected to the ensemble spread, which increases rapidly
between the observations. This prevents a collapse of the en-
semble even in the presence of an unrepresented parameter
error. However, if the observation interval is too small rela-
tive to the characteristic time for divergence, the EnKF leads
to a decrease in the ensemble spread such that the filter de-
generates in the case of an unrepresented parameter error.
Nevertheless, the divergent behavior of the model prevents
a complete collapse of the ensemble so that the filter is still
able to improve the state in a limited way.

In the convergent soil hydrological system, the volume of
the prior distribution decreases during forward propagation
such that the prior becomes more certain, even without an
observation and data assimilation. For a perfect model, the
predictability and state estimation in a convergent model are
trivial. The initial ensemble will converge to the truth after
some time, even with a rough initial approximation. In this
case, data assimilation is not necessary.

In the case of model errors, in our study realized through
a wrong parameter, the situation is different. The ensemble
converges to a wrong state, the filter degenerates, and data
assimilation fails. Increasing the ensemble size can only im-
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prove the performance marginally since all ensemble mem-
bers converge to the same fixed point.

Representing the parameter error by assigning each en-
semble member a different parameter increases the diver-
gence of the system, and the filter is able to estimate the
state again. Between the observations, the ensemble spread
increases rapidly because the ensemble members diverge to
different fixed points apart from the truth. This results in a
finite predictability. By representing the parameter error, the
Richards equation gains a divergent part similar to the Lorenz
96 model. In the case of a convergent system, it is necessary
to represent the parameter error, otherwise the ensemble col-
lapses.

To increase the predictability of the system again, it is nec-
essary to not only represent but also to reduce the parameter
uncertainty. In synthetic cases without model structural er-
rors, the convergent property of the system supports the state
estimation, and the predictability increases if the parame-
ter estimation is successful. This shows the importance of
parameter estimation for convergent systems. For divergent
systems, parameter estimation also increases the predictabil-
ity but only up to a point because predictability is limited by
the system’s dynamics.

For the application of data assimilation to real data, model
errors typically cannot be attributed to unknown parameters
or uncertainties in boundary conditions alone but also stem
from model structural errors, like a simplified representation
of sub-scale physics or unrepresented processes in the dy-
namics. Uncertainties in parameters and boundary conditions
can be represented in an ensemble, but representing model
structural errors is challenging or can be impossible. For ex-
ample, in hydrology, the model errors are typically ill-known
(Li and Ren, 2011) and can vary both in space and time,
which then can lead to filter degeneracy and biased parameter
estimation (Berg et al., 2019). While divergent models can
alleviate the effect of an unrepresented error within certain
bounds, in a convergent system it is necessary to represent
all relevant model errors sufficiently to prevent filter degen-
eracy and enable an optimal state and parameter estimation.
Since this is challenging or even impossible, heuristic ways
to address filter degeneracy are necessary.

A practical alternative to increase the ensemble spread and
avoid filter degeneracy is to use inflation methods. For exam-
ple, keeping a constant ensemble spread for the parameters
can provide a sufficient spread in state space (Zhang et al.,
2017). The advantage is that this approach is a model-specific
inflation and avoids the over-amplification of spurious cor-
relations (Constantinescu et al., 2007). The disadvantage is
that the EnKF is prevented from reducing the prediction un-
certainty. This behavior is also shown in CC3. In this case,
the ensemble spread in the parameter space adds a divergent
component to the ensemble that results in an increased en-
semble spread in state space and prevents filter degeneracy.

Multiplicative inflation increases the ensemble spread
through an inflation factor (Anderson and Anderson, 1999).

In a divergent system a small multiplicative inflation is suf-
ficient to increase the existing ensemble spread. In a conver-
gent system this requires a larger inflation and can lead to the
over-inflation of spurious correlations (Constantinescu et al.,
2007). To avoid this and to cope with spatial and temporal
varying model errors, the use of more sophisticated adaptive
inflation methods (e.g. Bauser et al., 2018; Gharamti, 2018)
may be necessary in convergent systems.

Heuristic inflation methods cannot fully replace the rep-
resentation of model errors and, hence, must be used judi-
ciously. They can lead to the over-inflation of spurious corre-
lations and can lead to biases in the estimation of parameters.
If unrepresented model errors can be identified and are lim-
ited in space or time, these biases can be prevented by using
a closed-eye period for the extent of the unrepresented model
errors. In the closed-eye period, parameters are kept con-
stant, and only the state is estimated, which can require infla-
tion methods for a successful state estimation. This enables
an improved parameter estimation without compensating for
the unrepresented model dynamics though biased parameters
outside of the closed-eye period, when and where uncertain-
ties can be represented. The use of the closed-eye period in
combination with the representation of relevant uncertainties
has already been demonstrated in hydrology (Bauser et al.,
2016).

6 Conclusions

We demonstrated the differences in and challenges of ensem-
ble data assimilation for divergent and convergent systems on
the example of the EnKF applied to the divergent Lorenz 96
model and a convergent soil water movement model based
on the Richards equation.

Sequential ensemble data assimilation methods require a
sufficient divergent part in the ensemble to maintain an ade-
quate ensemble spread and prevent filter degeneration. In di-
vergent systems, this is inherent to the system, provided that
observation intervals and divergence times match. In conver-
gent systems, relevant model errors must be represented to
increase the ensemble spread and to, thereby, add a diver-
gent part to the ensemble to avoid filter degeneracy. If er-
rors stem from unknown parameters, estimating the param-
eters improves state estimation. However, this will reduce
the ensemble spread again and require the remaining relevant
model errors to be represented. Since this can be challenging,
increasing the model errors artificially, by limiting the reduc-
tion of parameter uncertainty or through inflation methods,
can be required in convergent systems.

This paper highlights the challenges when transferring se-
quential ensemble data assimilation methods from divergent
systems to convergent systems, which must be considered
when applying data assimilation.

https://doi.org/10.5194/hess-25-3319-2021 Hydrol. Earth Syst. Sci., 25, 3319–3329, 2021



3328 H. H. Bauser et al.: Technical note: Sequential ensemble data assimilation in convergent and divergent systems

Code availability. For this study we employed muPhi (Ippisch
et al., 2006) to solve Richards equation and KnoFu (Berg, 2018)
for the Lorenz 96 model and the EnKF.

Data availability. Data sets are available upon request by contact-
ing the corresponding author.

Author contributions. HHB and DB designed and implemented the
presented study. DB performed and analyzed the simulations. All
authors participated in continuous discussions. HHB and DB pre-
pared the paper, with contributions from KR. The presented results
are based on a doctoral thesis by DB.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We thank editor Marnik Vanclooster and the
two anonymous reviewers for their comments, which helped to im-
prove this paper.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (grant nos. RO 1080/12-1
and BA 6635/1-1) and the Heidelberg Graduate School of Math-
ematical and Computational Methods for the Sciences, University
of Heidelberg (grant no. GSC 220).

Review statement. This paper was edited by Marnik Vanclooster
and reviewed by two anonymous referees.

References

Aksoy, A., Zhang, F., and Nielsen-Gammon, J. W.: Ensemble-
based simultaneous state and parameter estimation in a two-
dimensional sea-breeze model, Mon. Weather Rev., 134, 2951–
2970, https://doi.org/10.1175/MWR3224.1, 2006.

Anderson, J. L. and Anderson, S. L.: A Monte Carlo im-
plementation of the nonlinear filtering problem to pro-
duce ensemble assimilations and forecasts, Mon. Weather
Rev., 127, 2741–2758, https://doi.org/10.1175/1520-
0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999.

Bauser, H. H., Jaumann, S., Berg, D., and Roth, K.: EnKF with
closed-eye period – towards a consistent aggregation of informa-
tion in soil hydrology, Hydrol. Earth Syst. Sci., 20, 4999–5014,
https://doi.org/10.5194/hess-20-4999-2016, 2016.

Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method
for ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst.
Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018,
2018.

Berg, D.: Particle filters for nonlinear data assimilation, PhD thesis,
Ruperto-Carola University Heidelberg, Heidelberg, Germany,
2018.

Berg, D., Bauser, H. H., and Roth, K.: Covariance resam-
pling for particle filter – state and parameter estimation
for soil hydrology, Hydrol. Earth Syst. Sci., 23, 1163–1178,
https://doi.org/10.5194/hess-23-1163-2019, 2019.

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R.,
Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez
Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J.,
Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data
assimilation in atmospheric chemistry models: current status and
future prospects for coupled chemistry meteorology models, At-
mos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-
15-5325-2015, 2015.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analy-
sis scheme in the ensemble Kalman filter, Mon. Weather
Rev., 126, 1719–1724, https://doi.org/10.1175/1520-
0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.

Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Con-
stantinescu, E. M., and Tang, Y.: Predicting air quality:
Improvements through advanced methods to integrate mod-
els and measurements, J. Comput. Phys., 227, 3540–3571,
https://doi.org/10.1016/j.jcp.2007.02.024, 2008.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assim-
ilation in the geosciences: An overview of methods, issues, and
perspectives, Wiley Interdisciplin. Rev.: Clim. Change, 9, e535,
https://doi.org/10.1002/wcc.535, 2018.

Carsel, R. F. and Parrish, R. S.: Developing joint probability dis-
tributions of soil water retention characteristics, Water Resour.
Res., 24, 755–769, https://doi.org/10.1029/WR024i005p00755,
1988.

Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael,
G. R.: Ensemble-based chemical data assimilation. I: Gen-
eral approach, Q. J. Roy. Meteorol. Soc., 133, 1229–1243,
https://doi.org/10.1002/qj.76, 2007.

Edwards, C. A., Moore, A. M., Hoteit, I., and Cornuelle, B. D.: Re-
gional ocean data assimilation, Annu. Rev. Mar. Sci., 7, 21–42,
https://doi.org/10.1146/annurev-marine-010814-015821, 2015.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast
error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162,
https://doi.org/10.1029/94JC00572, 1994.

Gaspari, G. and Cohn, S. E.: Construction of correlation functions
in two and three dimensions, Q. J. Roy. Meteorol. Soc., 125, 723–
757, https://doi.org/10.1002/qj.49712555417, 1999.

Gharamti, M. E.: Enhanced adaptive inflation algorithm
for ensemble filters, Mon. Weather Rev., 146, 623–640,
https://doi.org/10.1175/MWR-D-17-0187.1, 2018.

Han, X., Hendricks Franssen, H.-J., Montzka, C., and Vereecken,
H.: Soil moisture and soil properties estimation in the
Community Land Model with synthetic brightness tem-
perature observations, Water Resour. Res., 50, 6081–6105,
https://doi.org/10.1002/2013WR014586, 2014.

Hendricks Franssen, H. J. and Kinzelbach, W.: Real-time
groundwater flow modeling with the ensemble Kalman fil-
ter: Joint estimation of states and parameters and the fil-
ter inbreeding problem, Water Resour. Res., 44, W09408,
https://doi.org/10.1029/2007WR006505, 2008.

Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman
filter for atmospheric data assimilation, Mon. Weather Rev., 144,
4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016.

Hydrol. Earth Syst. Sci., 25, 3319–3329, 2021 https://doi.org/10.5194/hess-25-3319-2021

https://doi.org/10.1175/MWR3224.1
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
https://doi.org/10.5194/hess-20-4999-2016
https://doi.org/10.5194/hess-22-4921-2018
https://doi.org/10.5194/hess-23-1163-2019
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1016/j.jcp.2007.02.024
https://doi.org/10.1002/wcc.535
https://doi.org/10.1029/WR024i005p00755
https://doi.org/10.1002/qj.76
https://doi.org/10.1146/annurev-marine-010814-015821
https://doi.org/10.1029/94JC00572
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1002/2013WR014586
https://doi.org/10.1029/2007WR006505
https://doi.org/10.1175/MWR-D-15-0440.1


H. H. Bauser et al.: Technical note: Sequential ensemble data assimilation in convergent and divergent systems 3329

Ippisch, O., Vogel, H.-J., and Bastian, P.: Validity limits for the
van Genuchten–Mualem model and implications for parameter
estimation and numerical simulation, Adv. Water Resour., 29,
1780–1789, https://doi.org/10.1016/j.advwatres.2005.12.011,
2006.

Jaumann, S. and Roth, K.: Effect of unrepresented model errors on
estimated soil hydraulic material properties, Hydrol. Earth Syst.
Sci., 21, 4301–4322, https://doi.org/10.5194/hess-21-4301-2017,
2017.

Kalman, R. E.: A new approach to linear filtering
and prediction problems, J. Basic Eng., 82, 35–45,
https://doi.org/10.1115/1.3662552, 1960.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
dictability, Cambridge University Press, Cambridge, 2003.

Li, C. and Ren, L.: Estimation of unsaturated soil hydraulic param-
eters using the ensemble Kalman filter, Vadose Zone J., 10, 1205,
https://doi.org/10.2136/vzj2010.0159, 2011.

Li, H., Kalnay, E., and Miyoshi, T.: Simultaneous estimation of
covariance inflation and observation errors within an ensem-
ble Kalman filter, Q. J. Roy. Meteorol. Soc., 135, 523–533,
https://doi.org/10.1002/qj.371, 2009.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: To-
ward an integrated data assimilation framework, Water Resour.
Res., 43, W07401, https://doi.org/10.1029/2006WR005756,
2007.

Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Ku-
mar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith,
P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S.
J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in
operational hydrologic forecasting: progresses, challenges, and
emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887,
https://doi.org/10.5194/hess-16-3863-2012, 2012.

Lorenz, E. N.: Atmospheric predictability experiments
with a large numerical model, Tellus, 34, 505–513,
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x, 1982.

Lorenz, E. N.: Predictablilty: A problem partly solved, Conference
Paper, in: Seminar on Predictability, ECMWF, 1–18, 1996.

Lorenz, E. N.: Designing chaotic models, J. Atmos. Sci., 62, 1574–
1587, https://doi.org/10.1175/JAS3430.1, 2005.

Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supple-
mentary weather observations: Simulation with a small model,
J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-
0469(1998)055<0399:OSFSWO>2.0.CO;2, 1998.

Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S.,
Clark, J. S., and Schimel, D. S.: Ecological forecasting and
data assimilation in a data-rich era, Ecol. Appl., 21, 1429–1442,
https://doi.org/10.1890/09-1275.1, 2011.

Mualem, Y.: A new model for predicting the hydraulic conductivity
of unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.

Nakano, S., Ueno, G., and Higuchi, T.: Merging particle filter for se-
quential data assimilation, Nonlin. Processes Geophys., 14, 395–
408, https://doi.org/10.5194/npg-14-395-2007, 2007.

Niu, S., Luo, Y., Dietze, M. C., Keenan, T. F., Shi, Z., Li, J.,
and Chapin III, F. S.: The role of data assimilation in pre-
dictive ecology, Ecosphere, 5, 65, https://doi.org/10.1890/ES13-
00273.1, 2014.

Poterjoy, J.: A localized particle filter for high-dimensional
nonlinear systems, Mon. Weather Rev., 144, 59–76,
https://doi.org/10.1175/MWR-D-15-0163.1, 2016.

Rasmussen, J., Madsen, H., Jensen, K. H., and Refsgaard, J. C.:
Data assimilation in integrated hydrological modeling using
ensemble Kalman filtering: evaluating the effect of ensemble
size and localization on filter performance, Hydrol. Earth Syst.
Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015,
2015.

Reichle, R. H.: Data assimilation methods in the
Earth sciences, Adv. Water Resour., 31, 1411–1418,
https://doi.org/10.1016/j.advwatres.2008.01.001, 2008.

Ruiz, J. J., Pulido, M., and Miyoshi, T.: Estimating
model parameters with ensemble-based data assimila-
tion: A review, J. Meteorol. Soc. Jpn. Ser. II, 91, 79–99,
https://doi.org/10.2151/jmsj.2013-201, 2013.

Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J., and Yu,
X.: Parameter estimation of a physically based land sur-
face hydrologic model using the ensemble Kalman filter:
A synthetic experiment, Water Resour. Res., 50, 706–724,
https://doi.org/10.1002/2013WR014070, 2014.

Stammer, D., Balmaseda, M., Heimbach, P., Köhl, A., and Weaver,
A.: Ocean data assimilation in support of climate applications:
Status and perspectives, Annu. Rev. Mar. Sci., 8, 491–518,
https://doi.org/10.1146/annurev-marine-122414-034113, 2016.

Van Genuchten, M. T.: A closed-form equation for
predicting the hydraulic conductivity of unsatu-
rated soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x,
1980.

van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: an
extremely efficient particle filter, Q. J. Roy. Meteorol. Soc., 136,
1991–1999, https://doi.org/10.1002/qj.699, 2010.

van Leeuwen, P. J., Cheng, Y., and Reich, S.: Nonlin-
ear data assimilation, in: vol. 2, Springer, Switzerland,
https://doi.org/10.1007/978-3-319-18347-3, 2015.

Zhang, H., Hendricks Franssen, H.-J., Han, X., Vrugt, J. A.,
and Vereecken, H.: State and parameter estimation of two
land surface models using the ensemble Kalman filter and
the particle filter, Hydrol. Earth Syst. Sci., 21, 4927–4958,
https://doi.org/10.5194/hess-21-4927-2017, 2017.

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part II: State of the science, cur-
rent research needs, and future prospects, Atmos. Environ., 60,
656–676, https://doi.org/10.1016/j.atmosenv.2012.02.041, 2012.

https://doi.org/10.5194/hess-25-3319-2021 Hydrol. Earth Syst. Sci., 25, 3319–3329, 2021

https://doi.org/10.1016/j.advwatres.2005.12.011
https://doi.org/10.5194/hess-21-4301-2017
https://doi.org/10.1115/1.3662552
https://doi.org/10.2136/vzj2010.0159
https://doi.org/10.1002/qj.371
https://doi.org/10.1029/2006WR005756
https://doi.org/10.5194/hess-16-3863-2012
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x
https://doi.org/10.1175/JAS3430.1
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
https://doi.org/10.1890/09-1275.1
https://doi.org/10.1029/WR012i003p00513
https://doi.org/10.5194/npg-14-395-2007
https://doi.org/10.1890/ES13-00273.1
https://doi.org/10.1890/ES13-00273.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.5194/hess-19-2999-2015
https://doi.org/10.1016/j.advwatres.2008.01.001
https://doi.org/10.2151/jmsj.2013-201
https://doi.org/10.1002/2013WR014070
https://doi.org/10.1146/annurev-marine-122414-034113
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1002/qj.699
https://doi.org/10.1007/978-3-319-18347-3
https://doi.org/10.5194/hess-21-4927-2017
https://doi.org/10.1016/j.atmosenv.2012.02.041

	Abstract
	Introduction
	Data assimilation method
	Divergent system
	Lorenz 96
	Characteristic cases
	Divergent case 1 (DC1) – state estimation and true parameter
	Divergent case 2 (DC2) – state estimation and wrong parameter
	Divergent case 3 (DC3) – state estimation, small observation interval, and wrong parameter
	Divergent case 4 (DC4) – state estimation, small observation interval, and represented error


	Convergent system
	Soil water flow
	Characteristic cases
	Convergent case 1 (CC1) – no estimation
	Convergent case 2 (CC2) – state estimation and wrong parameter
	Convergent case 3 (CC3) – state estimation and represented error
	Convergent case 4 (CC4) – state and parameter estimation


	Discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

