Articles | Volume 25, issue 1
Hydrol. Earth Syst. Sci., 25, 169–191, 2021
Hydrol. Earth Syst. Sci., 25, 169–191, 2021
Research article
11 Jan 2021
Research article | 11 Jan 2021

Physical versus economic water footprints in crop production: a spatial and temporal analysis for China

Xi Yang et al.

Related authors

Spatiotemporal responses of the crop water footprint and its associated benchmarks under different irrigation regimes to climate change scenarios in China
Zhiwei Yue, Xiangxiang Ji, La Zhuo, Wei Wang, Zhibin Li, and Pute Wu
Hydrol. Earth Syst. Sci., 26, 4637–4656,,, 2022
Short summary
A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZIsnow) and its application in identifying large-scale drought events
Lei Tian, Baoqing Zhang, and Pute Wu
Earth Syst. Sci. Data, 14, 2259–2278,,, 2022
Short summary
Trade-offs between crop-related (physical and virtual) water flows and the associated economic benefits and values: a case study of the Yellow River Basin
Pute Wu, La Zhuo, Guoping Zhang, Mesfin M. Mekonnen, Arjen Y. Hoekstra, Yoshihide Wada, Xuerui Gao, Xining Zhao, Yubao Wang, and Shikun Sun
Hydrol. Earth Syst. Sci. Discuss.,,, 2018
Manuscript not accepted for further review
Short summary
Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China
La Zhuo, Mesfin M. Mekonnen, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 20, 4547–4559,,, 2016
Short summary
Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin
L. Zhuo, M. M. Mekonnen, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 18, 2219–2234,,, 2014

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Mathematical applications
A novel objective function DYNO for automatic multivariable calibration of 3D lake models
Wei Xia, Taimoor Akhtar, and Christine A. Shoemaker
Hydrol. Earth Syst. Sci., 26, 3651–3671,,, 2022
Short summary
The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467,,, 2022
Short summary
Decreased virtual water outflows from the Yellow River basin are increasingly critical to China
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044,,, 2022
Short summary
AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979,,, 2021
Short summary
Optimal water use strategies for mitigating high urban temperatures
Bin Liu, Zhenghui Xie, Shuang Liu, Yujing Zeng, Ruichao Li, Longhuan Wang, Yan Wang, Binghao Jia, Peihua Qin, Si Chen, Jinbo Xie, and ChunXiang Shi
Hydrol. Earth Syst. Sci., 25, 387–400,,, 2021
Short summary

Cited articles

Abedinpour, M., Sarangi, A., Rajput, T. B. S., Singh, M., Pathak, H., and Ahmad, T.: Performance evaluation of AquaCrop model for maize crop in a semi-arid environment, Agr. Water Manage., 110, 55–66,, 2012. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, Italy, 1998. 
Anselin, L.: Local indicators of spatial association – LISA, Geogr. Anal., 27, 93–115, 1995. 
Anselin, L.: Exploring Spatial Data with GeoDa: A Workbook, Spatial Analysis Laboratory, Department of Geography, University of ILLinois, Urbana-Champaign, Urbana, IL 61801, 2005. 
Anselin, L., Syabri, I., and Kho, Y.: GeoDa: An introduction to spatial data analysis, Geogr. Anal., 38, 5–22,, 2006. 
Short summary
Maximizing economic benefits with higher water productivity or lower water footprint is the core sustainable goal of agricultural water resources management. Here we look at spatial and temporal variations and developments in both production-based (PWF) and economic value-based (EWF) water footprints of crops, by taking a case study for China. A synergy evaluation index is proposed to further quantitatively evaluate the synergies and trade-offs between PWF and EWF.