Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5875-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5875-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New measures of deep soil water recharge during the vegetation restoration process in semi-arid regions of northern China
School of Soil and Water Conservation, Beijing Forestry University,
Beijing 100083, China
Jinyun Forest Ecosystem Research Station, School of Soil and Water
Conservation, Beijing Forestry University, Beijing 100083, China
Xinle Li
CORRESPONDING AUTHOR
Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
Yunqi Wang
School of Soil and Water Conservation, Beijing Forestry University,
Beijing 100083, China
Jinyun Forest Ecosystem Research Station, School of Soil and Water
Conservation, Beijing Forestry University, Beijing 100083, China
Hongbin Zhan
Department of Geology & Geophysics, Texas A & M University,
College Station, TX 77843-3115, USA
Wenbin Yang
Institute of desertification control, Chinese Academy of Forestry,
Beijing 100093, China
Qunou Jiang
School of Soil and Water Conservation, Beijing Forestry University,
Beijing 100083, China
Jinyun Forest Ecosystem Research Station, School of Soil and Water
Conservation, Beijing Forestry University, Beijing 100083, China
Related authors
Yiben Cheng, Wei Feng, Hongbin Zhan, Huijie Xiao, Zhiming Xin, and Wenbin Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-392, https://doi.org/10.5194/hess-2022-392, 2022
Preprint withdrawn
Short summary
Short summary
Water is the most important limiting factor for plants in an arid region, and plants are often suffered from drought stress during their growth. To adapt to the arid environment, plants have developed certain ways to accommodate the harsh water-deficit environments. This complex relationship is difficult to measure in the field, but Sap Flow is easily found and correlated with water usage. Our results showed that Tamarisk leaves could absorb unsaturated water vapor and precipitation directly.
Yiben Cheng, Hongbin Zhan, Wenbin Yang, Yunqi Wang, Qunou Jiang, and Bin Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-285, https://doi.org/10.5194/hess-2021-285, 2021
Manuscript not accepted for further review
Short summary
Short summary
A newly designed Lysimeter was used to monitor deep soil recharge (DSR) of the Pinus sylvestris var. mongolica (PSM). The PSM forest has considerably changed the process of regional water redistribution. The most obvious change was the decrease of precipitation-induced recharge to groundwater. PSM in semi-arid areas will not significantly changed the transpiration due to environmental changes, especially when the annual rainfall increases, the transpiration almost unchanged.
Aohan Jin, Wenguang Shi, Jun Du, Renjie Zhou, Hongbin Zhan, Yao Huang, Quanrong Wang, and Xuan Gu
Hydrol. Earth Syst. Sci., 29, 5251–5266, https://doi.org/10.5194/hess-29-5251-2025, https://doi.org/10.5194/hess-29-5251-2025, 2025
Short summary
Short summary
This study developed a novel physics-informed deep transfer learning (PDTL) approach, which integrates the physical mechanisms from an analytical model using a transfer learning technique. Results indicate that the DTL model maintains satisfactory performance even in heterogeneous conditions, with uncertainties in observations and sparse training data compared to the deep neural network (DNN) model.
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023, https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
Short summary
The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for estimating aquifer parameters required in the optimization design of remediation strategies. A general model and associated analytical solutions are developed in this study. The new model represents the most recent advancement on radial dispersion studies and incorporates a host of important processes that are not taken into consideration in previous investigations.
Yiben Cheng, Wei Feng, Hongbin Zhan, Huijie Xiao, Zhiming Xin, and Wenbin Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-392, https://doi.org/10.5194/hess-2022-392, 2022
Preprint withdrawn
Short summary
Short summary
Water is the most important limiting factor for plants in an arid region, and plants are often suffered from drought stress during their growth. To adapt to the arid environment, plants have developed certain ways to accommodate the harsh water-deficit environments. This complex relationship is difficult to measure in the field, but Sap Flow is easily found and correlated with water usage. Our results showed that Tamarisk leaves could absorb unsaturated water vapor and precipitation directly.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022, https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Yiben Cheng, Hongbin Zhan, Wenbin Yang, Yunqi Wang, Qunou Jiang, and Bin Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-285, https://doi.org/10.5194/hess-2021-285, 2021
Manuscript not accepted for further review
Short summary
Short summary
A newly designed Lysimeter was used to monitor deep soil recharge (DSR) of the Pinus sylvestris var. mongolica (PSM). The PSM forest has considerably changed the process of regional water redistribution. The most obvious change was the decrease of precipitation-induced recharge to groundwater. PSM in semi-arid areas will not significantly changed the transpiration due to environmental changes, especially when the annual rainfall increases, the transpiration almost unchanged.
Qinggao Feng, Xiaola Feng, and Hongbin Zhan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-586, https://doi.org/10.5194/hess-2020-586, 2020
Preprint withdrawn
Short summary
Short summary
This study develops a new general semi-analytical solution for three-dimensional flow in an anisotropic three-layer aquifer system induced by a partially penetrating well with time-varying discharge. The solution generalizes the cases which have already been addressed by other available papers. The flow behavior is thoroughly explored under different type of top and bottom boundaries and an exponentially decayed pumping rate. The potential application of our study is discussed in detail.
Cited articles
Bestelmeyer, B. T., Okin, G. S., Duniway, M. C., Archer, S. R., Sayre, N. F., Williamson, J. C., and Herrick, J. E.: Desertification, land use, and the transformation of global drylands, Front. Ecol. Environ., 13, 28–36, 2015.
Billesbach, D. J. A. and Meteorology, F.: Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a
proposed new method, Agr. Forest Meteorol., 151, 394–405, 2011.
Burba, G. and Anderson, D.: A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications, LI-COR Biosciences, Lincoln, USA, ISBN 978-0615430133, January 2005.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., and Fensholt, R.: China and India lead in greening of the world through land-use management, Nat. Sustain., 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019.
Cheng, Y., Zhan, H., Yang, W., Dang, H., and Li, W.: Is annual recharge coefficient a valid concept in arid and semi-arid regions?, Hydrol. Earth Syst. Sci., 21, 5031–5042, https://doi.org/10.5194/hess-21-5031-2017, 2017.
Cheng, Y., Li, Y., Zhan, H., Liang, H., Yang, W., Zhao, Y., and Li, T.: New comparative experiments of different soil types for farmland water conservation in arid regions, Water, 10, 298, https://doi.org/10.3390/w10030298, 2018a.
Cheng, Y., Li, Y., Zhan, H., Liang, H., Yang, W., Zhao, Y., and Li, T. J. W.: New comparative experiments of different soil types for farmland water conservation in arid regions, Water, 10, 298, https://doi.org/10.3390/w10030298, 2018b.
Cheng, Y., Zhan, H., Yang, W., Guo, F., Jiang, Q., and Wang, Y.: On change of soil moisture distribution with vegetation reconstruction in Mu Us sandy land of China, with new designed Lysimeter, https://doi.org/10.21203/rs.3.rs-56806/v1, 2020a.
Cheng, Y., Zhan, H., Yang, W., Jiang, Q., Wang, Y., and Guo, F. J. A. W. M.: An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons, Agr. Water Manage., 243, 106488, https://doi.org/10.1016/j.agwat.2020.106488, 2020b.
D'Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S., and Runyan, C. W.: Global desertification: drivers and feedbacks, Adv. Water Resour., 51, 326–344, 2013.
Dregne, H. E. and Chou, N.-T.: Global desertification dimensions and costs, Degrad. Restor. Arid Lands, 73–92, 1992.
Duan, H., Yan, C., Tsunekawa, A., Song, X., Li, S., and Xie, J.: Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data, Environ. Earth Sci., 64, 1011–1020, 2011.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, 2017.
Fearnehough, W., Fullen, M., Mitchell, D., Trueman, I., and Zhang, J. J. G.: Aeolian deposition and its effect on soil and vegetation changes on stabilised desert dunes in northern China, Geomorphology, 23, 171–182, 1998.
Gao, Y., Zhu, X., Yu, G., He, N., Wang, Q., and Tian, J.: Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation, Agr. Forest Meteorol., 195, 32–37, 2014.
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and Vereecken, H.: Inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data, Vadose Zone J., 17, https://doi.org/10.2136/vzj2017.09.0168, 2018.
Hanjie, W. and Hao, Z.: A simulation study on the eco-environmental effects of 3N Shelterbelt in North China, Global Planet. Change, 37, 231–246, https://doi.org/10.1016/S0921-8181(02)00208-4, 2003.
Krishnaswamy, J., Bonell, M., Venkatesh, B., Purandara, B. K., Rakesh, K., Lele, S., Kiran, M., Reddy, V., and Badiger, S.: The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”, J. Hydrol., 498, 191–209, 2013.
Li, H.-R., Liu, Q.-B., Wang, W.-Y., Yang, L.-S., Li, Y.-H., Feng, F.-J., Zhao, X.-Y., Hou, K., and Wang, G.: Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China, J. Hazard. Mater., 167, 892–895, https://doi.org/10.1016/j.jhazmat.2009.01.094, 2009.
Li, X. R., Ma, F. Y., Xiao, H. L., Wang, X. P., and Kim, K. C.: Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China, J. Arid Environ., 57, 1–16, https://doi.org/10.1016/S0140-1963(03)00089-2, 2004.
Liu, J. and Diamond, J.: China's environment in a globalizing world, Nature, 435, 1179, https://doi.org/10.1038/4351179a, 2005.
Liu, X., He, Y., Zhao, X., Zhang, T., Zhang, L., Ma, Y., Yao, S., Wang, S., and Wei, S.: Characteristics of deep drainage and soil water in the mobile sandy lands of Inner Mongolia, northern China, J. Arid Land, 7, 238–250, https://doi.org/10.1007/s40333-014-0095-4, 2015.
Maes, W. H., Gentine, P., Verhoest, N. E., Miralles, D. G. J. H., and Sciences, E. S.: Potential evaporation at eddy-covariance sites across the
globe, Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, 2019.
Mohanty, B. P. and Yang, Z.: Comment on “A simulation analysis of the advective effect on evaporation using a two‐phase heat and mass flow model” by Yijian Zeng, Zhongbo Su, Li Wan, and Jun Wen, Water Resour. Res., 49, 7831–7835, https://doi.org/10.1002/2013WR013489, 2013.
Mousavi, S. J. and Shourian, M.: Adaptive sequentially space-filling metamodeling applied in optimal water quantity allocation at basin scale,
Water Resour. Res., 46, W03520, https://doi.org/10.1029/2008wr007076, 2010.
Newman, B. D., Vivoni, E. R., and Groffman, A. R.: Surface water–groundwater interactions in semiarid drainages of the American southwest, Hydrol. Process., 20, 3371–3394, 2006.
Pei, S., Fu, H., and Wan, C. J. A.: Ecosystems, and Environment: Changes in
soil properties and vegetation following exclosure and grazing in degraded
Alxa desert steppe of Inner Mongolia, China, Agricult. Ecosyst. Environ., 124, 33–39, https://doi.org/10.1016/j.agee.2007.08.008, 2008.
Ramier, D., Boulain, N., Cappelaere, B., Timouk, F., Rabanit, M., Lloyd, C. R., Boubkraoui, S., Métayer, F., Descroix, L., and Wawrzyniak, V.: Towards an understanding of coupled physical and biological processes in the cultivated Sahel – 1. Energy and water, J. Hydrol., 375, 204–216, 2009.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B., Mortimore, M., Batterbury, S. P., Downing, T. E., Dowlatabadi, H., Fernández, R. J., and Herrick, J. E.: Global desertification: building a science for dryland development, Science, 316, 847–851, 2007a.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global Desertification: Building a Science for Dryland Development, Science, 316, 847–851, https://doi.org/10.1126/science.1131634, 2007b.
Scanlon, B. R.: Water and heat fluxes in desert soils 1 field studies, Water Resour. Res., 30, 709–719, 1994.
Scanlon, B. R. and Milly, P. C. D.: Water and heat fluxes in desert soils 2 numerical simulation, Water Resour. Res., 30, 721–733, 1994.
Scibek, J., Allen, D. M., Cannon, A. J., and Whitfield, P. H.: Groundwater–surface water interaction under scenarios of climate change
using a high-resolution transient groundwater model, J. Hydrol., 333, 165–181, 2007.
Skarpe, C.: Spatial patterns and dynamics of woody vegetation in an arid savanna, J. Veg. Sci., 2, 565–572, 1991.
Sprenger, M., Volkmann, T. H. M., Blume, T., and Weiler, M.: Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes, Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, 2015.
Su, Y. Z. and Lin Zhao, H.: Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China, Ecol. Eng., 20, 223–235, 2003.
Tao, W.: Aeolian desertification and its control in Northern China, Int. Soil Water Conserv. Res., 2, 34–41, https://doi.org/10.1016/S2095-6339(15)30056-3, 2014.
Wang, S., Cornelis van Kooten, G., and Wilson, B.: Mosaic of reform: forest policy in post-1978 China, Forest Policy Econ., 6, 71–83,
https://doi.org/10.1016/S1389-9341(02)00078-3, 2004.
Wang, T., Sun, J.-G., Han, H., and Yan, C.-Z.: The relative role of climate change and human activities in the desertification process in Yulin region of northwest China, Environ. Monit. Assess., 184, 7165–7173, https://doi.org/10.1007/s10661-011-2488-6, 2012.
Wang, X., Zhang, C., Hasi, E., and Dong, Z.: Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China?, J. Arid Environ., 74, 13–22, 2010a.
Wang, X. M., Zhang, C. X., Hasi, E., and Dong, Z. B.: Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China?, J. Arid Environ., 74, 13–22, https://doi.org/10.1016/j.jaridenv.2009.08.001, 2010b.
Wang, Y., Zhao, H.-L., and Zhao, X.-Y.: Effects of land use intensity on the restoration capacity of sandy land vegetation and soil moisture in fenced sandy land in desert area, Contemp. Probl. Ecol., 6, 128–136, 2013.
Yan, Y., Xin, X., Xu, X., Wang, X., Yang, G., Yan, R., Chen, B.: Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China, Plant Soil, 369, 585–598, https://doi.org/10.1007/s11104-013-1606-3, 2013.
Yu, C., Muñoz-Carpena, R., Gao, B., and Perez-Ovilla, O.: Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling, J. Hydrol., 499, 316–323, https://doi.org/10.1016/j.jhydrol.2013.07.004, 2013.
Yu, L., Zeng, Y., Wen, J., and Su, Z.: Liquid-Vapor-Air Flow in the Frozen Soil, J. Geophys. Res.-Atmos., 123, 7393–7415, 2018.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020.
Zeng, Y. and Su, Z.: Reply to comment by Binayak P. Mohanty and Zhenlei Yang on “A simulation analysis of the advective effect on evaporation using a two-phase heat and mass flow model”, Water Resour. Res., 49, 7836–7840, 2013.
Zeng, Y., Su, Z., Wan, L., Yang, Z., Zhang, T., Tian, H., Shi, X., Wang, X., and Cao, W.: Diurnal pattern of the drying front in desert and its application for determining the effective infiltration, Hydrol. Earth Syst. Sci., 13, 703–714, https://doi.org/10.5194/hess-13-703-2009, 2009a.
Wan, L., Su, Z., Saito, H., Huang, K., and Wang, X.: Diurnal soil water dynamics in the shallow vadose zone (field site of China University of Geosciences, China), Environ. Geol., 58, 11–23, https://doi.org/10.1007/s00254-008-1485-8, 2009b.
Zeng, Y., Su, Z., Wan, L., and Wen, J.: A simulation analysis of the advective effect on evaporation using a two-phase heat and mass flow model,
Water Resour. Res., 47, W10529, https://doi.org/10.1029/2011wr010701, 2011a.
Zeng, Y., Su, Z., Wan, L., and Wen, J. Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models?, J. Geophys. Res.-Atmos., 116, D20107, https://doi.org/10.1029/2011jd015835, 2011b.
Zha, Y. and Gao, J.: Characteristics of desertification and its rehabilitation in China, J. Arid Environ., 37, 419–432, https://doi.org/10.1006/jare.1997.0290, 1997.
Zhang, G.-H., Liu, G. B., Wang, G. L., and Wang, Y. X.: Effects of vegetation cover and rainfall intensity on sediment-associated nitrogen and phosphorus losses and particle size composition on the Loess Plateau, J. Soil Water Conserv., 66, 192–200, https://doi.org/10.2489/jswc.66.3.192, 2011.
Short summary
The Three North Forest Program has produced a vast area of lined forest in semi-arid regions, which consumes a large amount of water resources. This study uses a newly designed lysimeter to measure water distribution without destroying the in situ vegetation soil structure. It addresses the shortcomings of a traditional lysimeter, in terms of changing the in situ soil structure and destroying the vegetation root system, and the shortcomings of high costs and inconvenient installation.
The Three North Forest Program has produced a vast area of lined forest in semi-arid regions,...