Articles | Volume 24, issue 12
Hydrol. Earth Syst. Sci., 24, 5859–5874, 2020
https://doi.org/10.5194/hess-24-5859-2020
Hydrol. Earth Syst. Sci., 24, 5859–5874, 2020
https://doi.org/10.5194/hess-24-5859-2020
Research article
08 Dec 2020
Research article | 08 Dec 2020

A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics

Tian Lan et al.

Related authors

Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
Dynamics of hydrological model parameters: calibration and reliability
Tian Lan, Kairong Lin, Xuezhi Tan, Chong-Yu Xu, and Xiaohong Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-301,https://doi.org/10.5194/hess-2019-301, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Event controls on intermittent streamflow in a temperate climate
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022,https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022,https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Flood generation: process patterns from the raindrop to the ocean
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022,https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Use of streamflow indices to identify the catchment drivers of hydrographs
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022,https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022,https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary

Cited articles

Arora, S. and Singh, S.: The firefly optimization algorithm: convergence analysis and parameter selection, Int. J. Comput. Appl., 69, 48–52, https://doi.org/10.5120/11826-7528, 2013. 
Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration, J. Hydrol. Eng., 19, 1374–1384, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938, 2014. 
Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007. 
Beven, K. and Freer, J.: A dynamic TOPMODEL, Hydrol. Process., 15, 1993–2011, https://doi.org/10.1002/hyp.252, 2001. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Download