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Abstract. Previous studies have shown that the seasonal dy-
namics of model parameters can compensate for structural
defects of hydrological models and improve the accuracy and
robustness of the streamflow forecast to some extent. How-
ever, some fundamental issues for improving model perfor-
mance with seasonal dynamic parameters still need to be ad-
dressed. In this regard, this study is dedicated to (1) propos-
ing a novel framework for seasonal variations of hydrologi-
cal model parameters to improve model performance and (2)
expanding the discussion on model results and the response
of seasonal dynamic parameters to dynamic characteristics
of catchments. The procedure of the framework is developed
with (1) extraction of the dynamic catchment characteristics
using current data-mining techniques, (2) subperiod calibra-
tion operations for seasonal dynamic parameters, considering
the effects of the significant correlation between the param-
eters, the number of multiplying parameters, and the tempo-
ral memory in the model states in two adjacent subperiods
on calibration operations, and (3) multi-metric assessment of
model performance designed for various flow phases. The
main finding is that (1) the proposed framework significantly
improved the accuracy and robustness of the model; (2) how-
ever, there was a generally poor response of the seasonal dy-
namic parameter set to catchment dynamics. Namely, the dy-
namic changes in parameters did not follow the dynamics of
catchment characteristics. Hence, we deepen the discussion
on the poor response in terms of (1) the evolutionary pro-
cesses of seasonal dynamic parameters optimized by global

optimization, considering that the possible failure in finding
the global optimum might lead to unreasonable seasonal dy-
namic parameter values. Moreover, a practical tool for visu-
alizing the evolutionary processes of seasonal dynamic pa-
rameters was designed using geometry visualization tech-
niques. (2) We also discuss the strong correlation between
parameters considering that dynamic changes in one param-
eter might be interfered with by other parameters due to their
interdependence. Consequently, the poor response of the sea-
sonal dynamic parameter set to dynamic catchment charac-
teristics may be attributed in part to the possible failure in
finding the global optimum and strong correlation between
parameters. Further analysis also revealed that even though
individual parameters cannot respond well to dynamic catch-
ment characteristics, a dynamic parameter set could carry the
information extracted from dynamic catchment characteris-
tics and improve the model performance.

1 Introduction

The absence of some dynamic hydrological processes is one
of the common structural defects of hydrological models.
For example, dynamic components in hydrological models
are often oversimplified due to a poor understanding of their
physical mechanisms (Xiong et al., 2019; Dakhlaoui et al.,
2017; Pathiraja et al., 2016). It could also be the case that
the information from input data, such as climate data and
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land use data, cannot be fully utilized. However, it is diffi-
cult to change the structure of a process-driven hydrological
model. With the development of current data-mining tech-
nology, one of the effective approaches for overcoming the
structural inadequacy of hydrological models is to integrate
data-mining techniques to maximize the application of input
data (Firat and Güngör, 2008). In these regards, this study
is devoted to developing an overall framework for seasonal
variations of hydrological model parameters to overcome the
structural inadequacy of models and improve the model per-
formance. The proposed framework involves the extraction
of dynamic catchment characteristics, effective integration
of extracted information and model calibration, and assess-
ment of model performance. More specifically, it includes
the selection and generation of hydrometeorological indices,
screening for high dimensions of indices, processing of re-
dundant information, sensitivity and correlation analysis of
parameters, identification of the high dimensions of parame-
ters, operation of the different module of models, the changes
in state variables and fluxes, performance assessment in dif-
ferent flow phases, and assessing the transitivity of optimized
dynamic in different periods.

The calibration of hydrological processes in different sea-
sons with unique catchment characteristics is also called sub-
period calibration. The static parameters are seasonally dy-
namized. Even though more techniques for dynamics of hy-
drological model parameters have been developed, such as
parameters that vary in time during model simulations (Mo-
tavita et al., 2019; Manfreda et al., 2018; Lan et al., 2018,
2020; Fowler et al., 2018), the proposed subperiod calibra-
tion can be effectively integrated into data-mining techniques
to compensate for the structural defects of traditional hydro-
logical models with static parameters. It can fully utilize the
extracted information on dynamic catchment characteristics
and improve the model performance. However, some specific
issues for the proposed subperiod calibration still need to be
addressed. (1) How does the potential correlation between
parameters affect the subperiod calibration? Can the seasonal
dynamics of a single parameter with high sensitivity or iden-
tification effectively improve the simulation performance of
hydrological models without considering the correlation be-
tween parameters? (2) Given that the number of parameters
increases exponentially with the number of subperiods, will
simultaneous optimization of the parameter sets in all subpe-
riods cause model crashes? (3) Due to the considerable tem-
poral memory in the model states while shifting the param-
eter set between two adjacent subperiods, how are the fluxes
and state variables in a certain subperiod affected by the pre-
vious period? In these regards, five calibration operations are
designed and compared to address the above issues and find
the best solution for model calibration with seasonal dynamic
parameters.

The response of seasonal dynamic parameters to extracted
dynamic catchment characteristics is critical to elucidate the
hydrological model structure and mechanism of model op-

eration. Hence, further discussion is needed regarding the
following two aspects. (1) Efficient and effective estima-
tions for dynamic seasonal parameters in hydrological mod-
els need to use optimization algorithms due to measurement
limits and scale issues (Beven and Kirkby, 1979; Beven et al.,
1984; Beven and Freer, 2001). However, Zhang et al. (2009)
stated that the possible failure in finding the global opti-
mum might lead to abnormal or unreasonable optimal pa-
rameters, which might be the main reason for the poor re-
sponse of seasonal dynamic parameters to dynamic catch-
ment characteristics (Sorooshian et al., 1993; Vrugt et al.,
2005; Zhang et al., 2009). Evolutionary algorithms (EAs)
are the most well-established class of global optimization
algorithms for solving water resource problems (Maier et
al., 2014). In each evolutionary process, four steps, includ-
ing evaluation, fitness assignment, selection, and reproduc-
tion, are performed. The parameter set with the best objective
function value in each evolutionary process loop is recorded
in the “evolutionary processes”. The evolutionary process
evolves toward minimizing the objective function values.
The final optimum is obtained at the end of the run while
satisfying the stopping criteria (Gomez, 2019). The fitness
landscape, as a conceptional and visualization tool, is mainly
an illustration of specific settings and states in the evolution-
ary processes (Dawkins, 1997; Kauffman, 1993; Mitchell,
1998; Wright, 1932). However, the mapping of the fitness
landscape for evolutionary processes is a challenge in hydro-
logical model parameter optimization. The main problems
include highly nonlinear, multimodal, non-convex, irregular,
noncontinuous, noisy, non-smooth, and non-differentiable
functions (Vrugt et al., 2005; Sorooshian et al., 1993; Gupta
et al., 1998; Zhang et al., 2009). In addition, the hydrological
simulation is not analytically derivable, which also increases
the difficulty of the fitness landscape presentation (Maier et
al., 2014). Several measures have been previously developed
for characterizing the structure of fitness functions, including
the correlation length (Weinberger, 1990), objective function
surface (Duan et al., 1992, 1993, 1994), fitness distance cor-
relation (Jones and Forrest, 1995), the signal-to-noise ratio in
the population sizing equation (Harik et al., 1999), the spatial
autocorrelation statistic (Gibbs et al., 2004), and a dispersion
metric (Arsenault et al., 2014). However, a simple and practi-
cal method for hydrological modeling with seasonal dynamic
parameters still needs to be further explored. As developed
in the field of data visualization techniques, there is a possi-
bility to apply these state-of-the-art techniques to overcome
the limitations of traditional techniques and explain new phe-
nomena for the application of hydrological models, as well
as to discover new insights (Arora and Singh, 2013; Derrac
et al., 2014; Piotrowski et al., 2017; Gomez, 2019). In these
regards, we developed a novel tool for visualizing the evolu-
tionary processes by characterizing the structures of fitness
landscapes with possible properties using geometry visual-
ization techniques. (2) Moreover, due to the inability of hy-
drological models to accurately simulate real catchment situ-
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ations, the significant correlation of parameters is inevitable
(Westra et al., 2014; Klotz et al., 2017; Wang et al., 2017,
2018). The dynamic changes in one parameter might be inter-
fered with by other parameters due to their interdependence.
This view is also demonstrated by Bárdossy (2007). The au-
thor emphasized the face that the correlation between param-
eters in hydrological models could interfere with the dynam-
ics of one parameter. In this regard, the linear and nonlinear
correlation is quantificationally analyzed to further explore
the underlying mechanism of the response of dynamic pa-
rameters to catchment characteristics.

This study is aimed at proposing a novel framework for
seasonal variations of hydrological model parameters to im-
prove model performance and expanding the discussion on
model results and the response of parameters to dynamic
characteristics of catchments. The rest of the paper is orga-
nized as follows: Sect. 2 presents a data description and anal-
ysis of the case study experiments; Sect. 3 presents the meth-
ods for seasonal dynamics of hydrological model parame-
ters, including the extraction of dynamic catchment chrema-
tistics, calibration operations for seasonal dynamic param-
eters, and multi-metric assessment of model performance;
Sect. 4 presents the case study results; Sect. 5 discusses the
potential causes for the poor response of seasonal dynamic
parameters to dynamic characteristics of catchments, includ-
ing evolutionary processes on parameters and the correlation
between parameters, as well as outlining directions for future
research; and Sect. 6 summarizes the principal conclusions of
the study.

2 Data description

Three basins are applied as an illustration in this study, as
shown in Fig. 1. The Hanzhong basin with 9329 km2 is
located in the junction of the middle Yangtze basin. The
Mumahe basin with 1224 km2 is characterized by low hills
and moderate slopes. The Xunhe basin with 6448 km2 is
dominated by a complex mountainous landscape, which has
high temporal and spatial variability of soil moisture. Al-
though the three basins have different rainfall–runoff char-
acteristics, they all are located in the monsoon region of the
East Asian subtropical zone. It is cold and dry in winter but
warm and humid in summer (Lin et al., 2010). The seasonal
variations of vegetation density and types are contemporane-
ous (Fang et al., 2002). Significant seasonal changes in the
climate and land surface conditions allow for exploring the
intra-annual dynamics of the hydrological processes. Hydro-
logical and climatic data (including daily precipitation, tem-
perature, and streamflow data) from 1980 to 1990 were used.
Nearly 73 % of the data samples (1980–1987) was used for
calibration, and the remainder (1988–1990) was utilized to
verify the model. Moreover, the hydrometeorological data in
the calibration period and the verification period are statisti-
cally consistent.

3 Methods

The flowchart of the framework for seasonal dynamics of hy-
drological model parameters is illustrated in Fig. 2, and their
codes are opened and attached in the Supplement.

3.1 Extraction of dynamic catchment characteristics

A set of climatic–land surface indices was provided and pre-
processed using the maximal information coefficient (MIC)
and principal component analysis (PCA). Actually, the in-
dices are specified based on the dynamic characteristics of
a catchment. The climate and land surface indices were se-
lected just as examples in this study. The selected climatic
indices included total precipitation, maximum 1 d precip-
itation, maximum 5 d precipitation, moderate precipitation
days, heavy precipitation days, total pan evaporation, max-
imum 1 d pan evaporation, and minimum 1 d pan evapora-
tion. The land surface indices included antecedent stream-
flow and the runoff coefficient. The definition of the indices
is provided in Table A1. Indeed, the indices that are indepen-
dent of streamflow may damage the extraction of dynamic
catchment characteristics. Hence, the selected indices should
be screened first by identifying the degree of correlation be-
tween the indices and streamflow. The MIC, as a statistical
metric, can indicate the linear and nonlinear correlation be-
tween the variables (Zhang et al., 2014) and is used to screen
the indices in this study. A detailed introduction of the MIC
metric is provided in the Supplement. It is assumed that the
indices have a significant effect on streamflow and are picked
up while the MIC value is larger than 0.35. In addition, a
large amount of redundant information still exists among the
screened indices and might damage the availability of the ex-
tracted information. Hence, PCA is applied to eliminate fur-
ther multicollinearity of indices (Ho et al., 2017).

Hydrological process clustering, as a bridge, is built be-
tween extracted information on dynamic catchment charac-
teristics and calibration operations of the hydrological model.
The specific procedures are as follows. The calibration pe-
riod is divided into 24 sub-annual units. The preprocessed
indices in each sub-annual period for all the years are av-
eraged. Two clustering operations were performed based on
the climatic and land surface index systems. Namely, the cal-
ibration period is partitioned into different subperiods based
on the climatic and land surface indices. Notably, the cluster-
ing results represent the relative differences of the sub-annual
periods in a basin rather than absolute differences. Moreover,
it was demonstrated that the model performance was better
when two subperiod clustering operations were performed
based on climate indices and land surface indices instead of
one clustering operation according to all indices (Lan et al.,
2018). The reason was that, according to all indices, the un-
supervised clustering method might not reasonably identify
the main characteristics of subperiods in various systems. For
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Figure 1. Locations in the study region.

example, two subperiods with similar climate conditions but
not land surface conditions might not be distinguished.

3.2 Calibration operations

In operation I (a controlled trial), the parameters are static.
In operation II, the linear and nonlinear correlation between
parameters is first investigated using the MIC. Then, a sim-
ple but useful tool, i.e., a scatter plot (Paruolo et al., 2013),
is used for identifying the sensitive parameter of hydrologi-
cal models. Only the sensitive parameter is considered a po-
tential seasonal dynamic parameter, but other parameters are
time-invariant. In operation III, simultaneous optimization of
the parameter sets in all subperiods is performed. In opera-
tion IV, only the data from the individual subperiods are used
for minimizing the objective function, while the model is run
for the whole period (see the calibration operation in Fig. 2
for the calibration period). For the state variables and fluxes
of the hydrological model between two adjacent subperiods,
the last values of the previous period are the initial values of
the later period in the validation period. In operation V (the

recommended calibration operation), the calibration opera-
tion is the same as in operation IV. However, the simulated
flow data from each subperiod are combined and compared
with the observed flow in the validation period (see the cali-
bration operation in Fig. 2 for the validation period).

The HYMOD is one of the commonly used lumped
rainfall–runoff models (Yadav et al., 2007; de Vos et al.,
2010; Pathiraja et al., 2018). It mainly includes a soil-
moisture-accounting mode (involving parameters Huz, B,
and alpha) and a flow-routing mode (involving Kq and Ks).
It is selected for illustration purposes in this study. The defi-
nitions of the five parameters, state variables, and fluxes are
illustrated in Table A2. More detailed descriptions are pre-
sented in the Supplement. The evolutionary algorithm for
seasonal dynamic parameters used in this study is the so-
called shuffled complex evolution from the University of Ari-
zona (SCE-UA) (Duan et al., 1993). Arsenault et al. (2014)
demonstrated that SCE-UA performs better for hydrologi-
cal models with low complexity compared with other global
optimization algorithms. In addition, multiple trials are per-
formed to ensure that the results are consistent, prevent-
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Figure 2. The developed framework for seasonal dynamics of hydrological model parameters.

ing the effects of initial values in this study. The objective
function is defined as the combination of the Nash–Sutcliffe
efficiency (NSE) index and its logarithmic transformation
(LNSE) (Nash and Sutcliffe, 1970; Nijzink et al., 2016). It is
expressed as 1−0.5·(NSE+LNSE). The closer the objective
function value is to zero, the better the model performance.
In addition, a warm-up period of 1 year is used in calibration
and 3 months in the validation period. The flowchart is illus-
trated in Fig. 2, and its codes are opened and attached in the
Supplement.

3.3 Assessment of model performance

Simulation performance with seasonal dynamic parameters
is assessed using seven performance metrics. The metrics in-
clude NSE, LNSE, and a five-segment flow duration curve
(5FDC) with root mean square error (RMSE) (Pfannerstill
et al., 2014). The NSE is sensitive to peak discharges and
LNSE emphasizes low flows. RMSE with FDC is used to
assess the model performance in the five phrases of stream-
flow, including very high, high, middle, low, and very low
flow (Cheng et al., 2012; Pokhrel et al., 2012; Yokoo and
Sivapalan, 2011). FDC is split into five segments, including
below Q5, between Q5 and Q20, between Q20 and Q70, be-
tween Q70 and Q95, and higher than Q95, i.e., RMSE_Q5,
RMSE_Q20, RMSE_Qmid, RMSE_Q70, and RMSE_Q95,
as shown in Fig. 2. In addition, the differences in these met-
rics between the calibration period and the validation period
are used to assess the temporal transferability of parameters
(Gharari et al., 2013; Klemeš, 1986).

4 Results

The calendar year is divided into four sub-annual periods
based on hydrological and climatic similarities, as shown in
Fig. 3a. In this way, the clustering results of the validation
period are largely in agreement with the results of the cali-
bration period. The subperiods include the dry period, rain-
fall period I, rainfall period II (wettest period), and rainfall
period III. Both the total amount and the variance values of
all the precipitation series are minimum in the dry period and
maximum in rainfall period II. Two normal sub-annual peri-
ods (rainfall period I and rainfall period III) have similar cli-
mate conditions, but rainfall period III has higher antecedent
soil moisture content than rainfall period I.

The model performance in five calibration operations is
presented in Fig. 3b, taking the Hanzhong basin as an ex-
ample. Compared with operation I (controlled trial), the sea-
sonal dynamics of a single parameter Ks with high sensi-
tivity (see Fig. 4a) do not significantly improve or decrease
model performance in operation II. The result is consistent
with Bárdossy (2007). The author demonstrated that one dy-
namic parameter might compensate for the adjustment of
other time-invariant parameters during calibration due to the
strong correlation between parameters. As a result, the final
performance of the model with the single dynamic parameter
is not significantly improved. Figure 4b verifies that there is
a significant linear and nonlinear correlation between param-
eters by MICs. The calibration in operation III has a seasonal
dynamic parameter set and continuous model states. How-
ever, the multiplying number of parameters indeed leads to
the crash of the model run, showing the abysmal model per-
formance. In operation IV, the model performance in the val-
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Figure 3. (a) Heat map of subperiod partition. (b) Model performance. (c) Simulation performance in four subperiods of the calibration
period. (d) Seasonal dynamic parameter sets.

idation period is not good. The shifting of the parameter set
between two adjacent subperiods may lead to unreasonable
values of model states at the junction, causing further model
crashes. The result is consistent with Kim and Han (2017).
Operation V, with the best model performance in various flow
phases, is recommended for seasonal dynamic parameters. It
is also demonstrated that significant improvement in medium
flow mainly benefits from the extraction of dynamic land sur-
face information. Namely, the clustering of rainfall period I
and rainfall period III is based on diverse soil moisture con-
tent but similar climate conditions. In addition, there was

better temporal transferability of the dynamic parameters in
the calibration and validation periods. Evidently, operation
V utilized the extracted information on dynamic catchment
characteristics well and tackled the above critical issues for
model calibration. The simulation performance in four sub-
periods of the calibration period is shown in Fig. 3c. The
results show that the model performance is best in rainfall
period II (wettest period) and the poorest in the dry period.

Seasonal dynamic parameter sets in operation V are shown
in Fig. 3d. The value of Ks (slow-flow-routing tank rate) is
the lowest in the dry period and the highest in the wettest pe-

Hydrol. Earth Syst. Sci., 24, 5859–5874, 2020 https://doi.org/10.5194/hess-24-5859-2020



T. Lan et al.: A framework for seasonal variations of hydrological model parameters 5865

Figure 4. (a) Sensitivity analysis results using scatter plots. The horizontal axis represents the sampling points, which are the parameter sets.
The vertical axis represents their objective function values. (b) The linear or nonlinear correlations between the parameters based on MICs.
Red denotes the strongest correlation between parameters.

riod in all basins. However, other parameters have no regular
pattern of dynamic catchment characteristics. Most of the ex-
cess streamflow in the three rainfall periods is diverted to the
slow-flow tank because the alpha values are close to zero. It
means that the slow-flow tanks have a primary effect on the
simulations. However, the parameter Ks does not reflect the
difference between rainfall period I and rainfall period III,
which have similar climate conditions but not land surface
conditions. In sum, there is a generally poor response of the
seasonal dynamic parameter set to dynamic catchment char-
acteristics.

5 Discussion

The above results show that the developed framework for
seasonal variations of hydrological model parameters sig-
nificantly improves model performance. However, there is
a generally poor response of the dynamic parameter set to
catchment dynamics. The potential reasons are discussed as
follows.

5.1 Evolutionary processes on parameters

Intuitive sketches of three-dimensional fitness landscapes
with possible properties are illustrated in Fig. 5a. The ver-
tical axis denotes the objective function values and the hori-

zontal axes denote the parameter space. The possible proper-
ties with increasing difficulty to find the global optimum are
illustrated as follows: (I) for the best case or low variations,
an evolutionary process is ideal for estimating the global op-
timum. (II) In terms of deceptiveness, a significant obstacle
is a local optimum. The gradient of the deceptive objective
function values may lead the optimizer away from the op-
tima. (III) In terms of confusion, as the local optima increase,
the possible paths for finding the globally optimal solution
are complicated, which makes it harder to find the global op-
timum. (IV) In terms of ruggedness, if the objective function
values are fluctuating, i.e., increasing or decreasing, it is dif-
ficult to determine the correct direction for the evolutionary
process (Weise, 2009). To further illustrate that the overall
structure of the fitness landscapes, such as the “big bowl”
shape, can easily guide the algorithm towards the global op-
timum, while a surface that is tough with many local optima
may present difficulties (Weise, 2009; Maier et al., 2014;
Kallel et al., 1998), detailed information for the fitness land-
scape is provided in the Supplement.

The evolutionary process of dynamic parameters in indi-
vidual parameter spaces is investigated (see Fig. 5b) using
violin plots. The violin plots are a tool to visualize the kernel
density distribution of the data points (Hintze and Nelson,
1998; Piel et al., 2010). The anatomy of the violin plot and
the associated information can be found in the Supplement.
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Figure 5. (a) Intuitive sketches of three-dimensional fitness landscapes with possible properties. The vertical axis denotes the objective
function values and the horizontal axes denote the parameter space. The arrows represent various paths that the population could follow
while evolving on the fitness landscape. (b) Evolutionary processes in individual parameter spaces using violin plots. The vertical axis of the
violin plot denotes parameter values; the horizontal axis denotes the probability values. (c) Evolutionary processes in multiparameter space
using parallel coordinates. These parallel axes represent individual parameters. The polylines describe the parameter set. The evolutionary
process evolves toward minimizing the objective function values f (x). Hence, the color changes in parallel coordinates could represent the
evolutional direction of the fitness landscapes. (d) Spotting the envelope of lines between axes adjacent to the scatter plot (Zhang et al.,
2014). (e) Multi-relational 3D parallel coordinate plots (Heinrich and Weiskopf, 2015).
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Figure 6. Evolutionary processes of seasonal dynamic parameters in the individual parameter spaces in the Hanzhong basin.

We use probability distributions of the violin plots to con-
figure the elements of the evolution processes representing
the possible properties of the fitness landscapes. The verti-
cal axis of the violin plot denotes parameter values; the hor-
izontal axis denotes the probability values. With an adequate
parameter space and sufficient density of coverage in indi-
vidual parameters, the thinner distribution type of violin plot
indicates that fewer local optimal solutions hamper evolu-
tionary processes. For example, a unimodal distribution is
an ideal evolutionary process to estimate the best solution.
Conversely, a multimodal or flat distribution signifies that the
search is indecisive due to prominent interference from local
optima. Namely, the search may fail to find a global opti-
mum (Dakhlaoui et al., 2017; Rahnamay Naeini et al., 2018;
Vrugt and Beven, 2018). The four types of distributions of
violin plots (unimodal, bimodal, multimodal, and flat distri-
butions) with an increasing number of peaks match the prop-
erty sketches of the fitness landscapes.

The evolutionary process of dynamic parameters in mul-
tiparameter space is investigated regarding the entire param-
eter set as a whole (see Fig. 5c). Parallel coordinates repre-
sent a data visualization technique for multivariate data that
is easy to interpret, which are applied to configure the evolu-
tionary processes in the multiparameter space. The polylines
describe multivariate items that intersect with parallel axes.
These parallel axes represent variables that can be used for
the analysis of multiple properties of a multivariate dataset
(Heinrich and Weiskopf, 2015; Janetzko et al., 2016; Johans-
son and Forsell, 2016). More detailed information on the par-
allel coordinates is given in the Supplement. When used in

hydrological models, the variables on the dimension axes de-
note individual parameters. The polylines of the parallel co-
ordinates symbolize the parameter sets in all loops of one
evolutionary process. The width of the parameter set distribu-
tion of the polylines in the parallel coordinates is used to as-
sess the ability to find the global optimum in the multiparam-
eter space. The higher the width of the parameter set distribu-
tion, the more difficult it is to determine the correct direction
for the evolutionary process. The parameter set is challenging
to converge to the global optimum. Moreover, the evolution-
ary process evolves toward minimizing the objective function
values f (x). Hence, the color changes in parallel coordinates
(see Fig. 5c) could represent the evolutional direction of the
fitness landscapes, which is illustrated in Fig. 5a (III). The
direction of the arrow represents the direction of evolution.
Also, the violin plot can visualize the probability distribution
of each variable (i.e., parameter) along the dimension axis
(Janetzko et al., 2016) (see Fig. 5b and c). Interestingly, in
the axis configuration of parallel coordinates, the envelope
of lines between adjacent axes can be spotted on the scat-
ter plot, which represents the relationships between param-
eters. Hence, the linear and nonlinear relationships between
variables mapped on adjacent axes can be directly analyzed
(Vrotsou et al., 2010), as shown in Fig. 5d. Moreover, using
multi-relational 3D parallel coordinates (Yao and Wu, 2016)
(see Fig. 5e) is regarded as another approach to exhibit the
relationship between any two parameters and explore new
phenomena for a run of hydrological models in ongoing re-
search.
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Figure 7. Evolutionary processes of seasonal dynamic parameters in multiparameter space in the Hanzhong basin.

Taking the Hanzhong basin as an example, the results for
investigating the evolutionary processes of seasonal dynamic
parameters in the individual parameter spaces are shown in
Fig. 6. The parameter Ks presents the thinner distribution of
violin plots in all subperiods, which shows that its evolution-
ary processes are disturbed by fewer local optima and less
hindered. However, the ability to find the global optimum
of other parameters is generally poor. The results are con-
sistent with the response of seasonal dynamic parameters to
catchment characteristics shown in Fig. 3d. The results in the
Mumahe basin and Xunhe basin are shown in Figs. S3 and
S4 in the Supplement. The results are similar to those for the
Hanzhong basin.

The evolutionary processes of dynamic parameters in mul-
tiparameter space are investigated and shown in Figs. 7 and
8. Firstly, the parameter sets from the first two loops are not
investigated because their results have high uncertainties as
to the warm-up of the global optimization algorithm. The di-
rection of the evolutionary processes is analyzed according
to the color changes in parallel coordinates. The polylines
at Ks search to the final values with the minimum number
of iterations, i.e., the fastest speed in all subperiods. How-
ever, the polylines at other parameters are fluctuating, i.e.,
increasing and decreasing. It implies that it is difficult to find
the right direction to determine the global optimum. In addi-
tion, the width of the parameter set distribution of the poly-
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Figure 8. Evolutionary processes of seasonal dynamic parameters with magnified details on the axes in multiparameter space in the Hanzhong
basin.

lines decreases sequentially in the dry period, rainfall period
I, rainfall period III, and rainfall period II. The result indi-
cates that the ability to find the global optimum increases
in four subperiods, which is consistent with the simulation
performance in four subperiods (shown in Fig. 3c). The re-
sults in the Mumahe basin and Xunhe basin are similar to the
Hanzhong basin and shown in Figs. S5–S8.

5.2 Correlation between parameters

According to the values of MIC shown in Fig. 4b, signifi-
cant linear and nonlinear correlation existed between param-

eters, which verifies Bárdossy’s (2007) view. Namely, the dy-
namic changes in one parameter might be interfered with by
other parameters due to their interdependence. However, ac-
cording to the assessment results of model performance, the
model performance with a seasonal dynamic parameter set
shows significant improvement. Even though individual pa-
rameters cannot respond well to dynamic catchment charac-
teristics, a dynamic parameter set could carry the informa-
tion extracted from dynamic catchment characteristics and
improve the model performance.
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5.3 Limitations

Still, there are several limitations that we will address in fu-
ture studies: (1) more catchments with various characteristics
will be investigated to explore the impact of the spatial vari-
ability of watershed features on model performance. (2) Be-
sides seasonal-scale variability, more timescales for dynamic
parameters in catchment response, such as annual-scale vari-
ability and long-term changes, will be further studied. (3)
The study uses a five-parameter model, which is considered a
small parameter space. We will explore a higher-dimensional
hydrological model using the methodology and procedure
demonstrated in the current study. (4) Quantifiable metrics to
assess the evolutionary processes will be developed. The vi-
olin plot uses a nonparametric density estimation based on a
smooth kernel function with a fixed global radius. The PDF
(probability density function) and CDF (cumulative distri-
bution function) values of data can be used to quantify vi-
olin plots in the case of uniform, multimodal, skewed, and
clipped data (Yapo et al., 1996). Hence, mathematical bench-
mark functions with PDF and CDF will be used for assess-
ing the evolutionary processes of dynamic parameters in the
next research. In addition, a dispersion metric is suggested to
evaluate the polylines in the parallel coordinate and the evo-
lutionary processes in the multiparameter space. The metric
measures average Euclidian distances, which were normal-
ized to ensure comparability (Arsenault et al., 2014). How-
ever, the application of quantitative evaluation metrics needs
a significant amount of experimentation, validation, analysis,
and discussion, which cannot all be considered in this study.
We will clarify and investigate this critical issue in another
study.

6 Conclusions

The seasonal dynamics of parameters are among the practi-
cal considerations to compensate for structural defects of hy-
drological models and improve model performance. In this
study, a framework was proposed to extract dynamic catch-
ment characteristics using a series of data-mining methods.
The information extraction included the selection and gen-
eration of climate and land use indices, screening of in-
dices, processing of redundant information among indices,
and clustering of hydrological processes based on the in-
dices. The extracted information and model calibration were
effectively integrated through subperiod calibration opera-
tions. The recommended calibration operation considered the
sensitivity and correlation of parameters, the dimensions of
parameters, and considerable temporal memory in the model
states between two adjacent subperiods. Multi-metric assess-
ment of model performance was designed for various flow
phases and the temporal transitivity of parameters.

The study showed that the proposed framework signifi-
cantly improves the accuracy and robustness of the hydro-
logical model. However, there was a generally poor response
of the seasonal dynamic parameter set to dynamic catchment
characteristics. Hence, the investigation for this issue was ex-
panded considering the evolutionary processes of seasonal
dynamic parameters optimized by global optimization and
the intricate and significant correlation between parameters.
Consequently, the poor response of the seasonal dynamic pa-
rameter set to catchment dynamics might be attributed in part
to the possible failure in finding the global optimum when
optimizing the seasonal dynamic parameters and strong cor-
relation between parameters. Even though individual param-
eters could not respond well to dynamic catchment charac-
teristics, a dynamic parameter set could carry the informa-
tion extracted from dynamic catchment characteristics and
improve the model performance. In addition, a novel tool for
visualizing the evolutionary processes of seasonal dynamic
parameters was designed using geometry visualization tech-
niques, which is also regarded as an important tool to un-
derstand a model running with dynamic hydrological model
parameters in the next research. More case studies and ap-
plications of hydrological models can be performed in the
future. They are expected to yield insights into the predictive
performance of hydrological models.

Hydrol. Earth Syst. Sci., 24, 5859–5874, 2020 https://doi.org/10.5194/hess-24-5859-2020



T. Lan et al.: A framework for seasonal variations of hydrological model parameters 5871

Appendix A

Table A1. Climatic–land surface indices.

Indices Descriptive names Definitions Units

RT Total precipitation Current half-monthly total precipitation mm

RX1day Maximum 1 d precipitation Half-monthly highest 1 d precipitation mm
RX5day Maximum 5 d precipitation Half-monthly highest consecutive 5 d precipitation mm
R25pday Moderate precipitation days Count of days when RR (daily precipitation amount) < 25th percentile days
R75pday Heavy precipitation days Count of days when RR≥ 75th percentile days
PET Total pan evaporation Current half-monthly total pan evaporation mm
PEx Maximum 1 d pan evaporation Half-monthly highest 1 d pan evaporation mm
PEn Minimum 1 d pan evaporation Half-monthly lowest 1 d pan evaporation mm
QT−1 Antecedent streamflow Antecedent half-monthly average streamflow m3 s1

C Runoff coefficient Ratio of runoff volume to rainfall volume

Table A2. Definitions of parameters, state variables, and fluxes used
in the HYMOD (Wagener et al., 2001).

Label Property Range Description

Huz Parameter 0–1000 (mm) Maximum height of soil-moisture-accounting tank
B Parameter 0–1.99 Scaled distribution function shape
alpha Parameter 0–0.99 Quick–slow split
Kq Parameter 0–0.99 Quick-flow-routing tank rate
Ks Parameter 0–0.99 Slow-flow-routing tank rate

XHuz State variable (mm) Upper zone soil moisture tank state height
XCuz State variable (mm) Upper zone soil moisture tank state contents
Xq State variable (mm) Quick-flow tank states contents
Xs State variable (mm) Slow-flow tank state contents

AE Fluxes (mm per day) Actual evapotranspiration flux

OV Fluxes (mm per day) Precipitation excess flux
Qq Fluxes (mm per day) Quick-flow flux
Qs Fluxes (mm per day) Slow-flow flux
Qsim Fluxes (mm per day) Total streamflow flux
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Code availability. The digital elevation model (DEM) of the study
area is derived from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) global digital elevation model
(GDEM) with a cell size of 30× 30 m, which can be obtained
from https://asterweb.jpl.nasa.gov/gdem.asp (last access: Decem-
ber 2020) (NASA, 2020). The climatic datasets consist of daily rain-
fall datasets and pan evaporation datasets provided by the China
Climatic Data Sharing Service System, which can be obtained
from https://data.cma.cn/en/?r=data/online&t=6 (last access: De-
cember 2020) (CMDC, 2020). Daily streamflow used to support this
paper can be made available for interested readers by contacting the
corresponding author at linkr@mail.sysu.edu.cn.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-5859-2020-supplement.
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