Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Department of European and Mediterranean Cultures, University of
Basilicata, Matera, 75100, Italy
Silvano F. Dal Sasso
Department of European and Mediterranean Cultures, University of
Basilicata, Matera, 75100, Italy
Matthew T. Perks
School of Geography, Politics and Sociology, Newcastle University,
Newcastle-upon-Tyne, NE1 7RU, UK
Salvatore Manfreda
Department of Civil, Architectural and Environmental Engineering,
University of Naples Federico II, Naples, 80125, Italy
Related authors
Alonso Pizarro, Demetris Koutsoyiannis, and Alberto Montanari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-389, https://doi.org/10.5194/hess-2024-389, 2025
Revised manuscript accepted for HESS
Short summary
Short summary
We introduce RUMI, a new metric to improve rainfall-runoff simulations. RUMI better captures the link between observed and simulated stream flows by considering uncertainty at a core computation step. Tested on 99 catchments and with the GR4J model, it outperforms traditional metrics by providing more reliable and consistent results. RUMI paves the way for more accurate hydrological predictions.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Domenico Miglino, Seifeddine Jomaa, Michael Rode, Khim Cathleen Saddi, Francesco Isgrò, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 29, 4133–4151, https://doi.org/10.5194/hess-29-4133-2025, https://doi.org/10.5194/hess-29-4133-2025, 2025
Short summary
Short summary
Turbidity is a key factor for water quality monitoring. Here, an image-based procedure is tested in a full-scale river monitoring experiment using digital cameras. This approach can enhance our understanding of the real-time status of waterbodies, overcoming the spatial and temporal resolution limitations of existing methods. It also facilitates early-warning systems, advances water research through increased data availability and reduces operating costs.
Matthew T. Perks, Borbála Hortobágyi, Nick Everard, Susan Manson, Juliet Rowland, Andrew Large, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 29, 3727–3743, https://doi.org/10.5194/hess-29-3727-2025, https://doi.org/10.5194/hess-29-3727-2025, 2025
Short summary
Short summary
Accurate river flow measurements are essential for understanding river processes. This study evaluates the freely available software KLT-IV for automatic river surface velocity measurement. Analysing over 11 000 videos and comparing them with 274 traditional flow measurements, we find strong correlations (r² = 0.95–0.97) between KLT-IV and traditional methods. KLT-IV effectively estimates river flow with high accuracy, making it a valuable tool for autonomous water resource management.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Alonso Pizarro, Demetris Koutsoyiannis, and Alberto Montanari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-389, https://doi.org/10.5194/hess-2024-389, 2025
Revised manuscript accepted for HESS
Short summary
Short summary
We introduce RUMI, a new metric to improve rainfall-runoff simulations. RUMI better captures the link between observed and simulated stream flows by considering uncertainty at a core computation step. Tested on 99 catchments and with the GR4J model, it outperforms traditional metrics by providing more reliable and consistent results. RUMI paves the way for more accurate hydrological predictions.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Salvatore Manfreda, Domenico Miglino, and Cinzia Albertini
Hydrol. Earth Syst. Sci., 25, 4231–4242, https://doi.org/10.5194/hess-25-4231-2021, https://doi.org/10.5194/hess-25-4231-2021, 2021
Short summary
Short summary
In this work, we introduce a new theoretically derived probability distribution of the outflows of in-line detention dams. The method may be used to evaluate the impact of detention dams on flood occurrences and attenuation of floods. This may help and support risk management planning and design.
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020, https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Short summary
KLT-IV v1.0 offers a user-friendly graphical interface for the determination of river flow velocity and river discharge using videos acquired from both fixed and mobile remote sensing platforms. Platform motion can be accounted for using ground control points and/or stable features or a GPS device and inertial measurement unit sensor. Examples of the KLT-IV workflow are provided for two case studies where footage is acquired using unmanned aerial systems and fixed cameras.
Cited articles
Adrian, R.: Particle-Imaging Techniques For Experimental Fluid-Mechanics, Annu. Rev. Fluid Mech., 23, 261–304, https://doi.org/10.1146/annurev.fluid.23.1.261, 1991.
Adrian, R. J.: Twenty years of particle image velocimetry, Exp. Fluids, 39, 159–169, 2005.
Anderson, K. E., Paul, A. J., McCauley, E., Jackson, L. J., Post, J. R., and
Nisbet, R. M.: Instream flow needs in streams and rivers: The importance of
understanding ecological dynamics, Front. Ecol. Environ., 4, 309–318,
https://doi.org/10.1890/1540-9295(2006)4[309:IFNISA]2.0.CO;2, 2006.
Batalla, R. J. and Vericat, D.: Hydrological and sediment transport dynamics
of flushing flows: Implications for management in large Mediterranean rivers, River Res. Appl., 25, 297–314, https://doi.org/10.1002/rra.1160, 2009.
Bechle, A., Wu Chin, H., Liu, W.-C., and Kimura, N.: Development and Application of an Automated River-Estuary Discharge Imaging System, J.
Hydraul. Eng., 138, 327–339, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000521, 2012.
Brevis, W., Niño, Y., and Jirka, G. H.: Integrating cross-correlation and
relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50,
135–147, 2011.
Buckingham, E.: On physically similar systems; Illustrations of the use of
dimensional equations, Phys. Rev., 4, 345–376, https://doi.org/10.1103/PhysRev.4.345, 1914.
Cardwell, N. D., Vlachos, P. P., and Thole, K. A.: A multi-parametric
particle-pairing algorithm for particle tracking in single and multiphase
flows, Meas. Sci. Technol., 22, 105406, https://doi.org/10.1088/0957-0233/22/10/105406, 2011.
Dal Sasso, S. F., Pizarro, A., Samela, C., Mita, L., and Manfreda, S.:
Exploring the optimal experimental setup for surface flow velocity
measurements using PTV, Environ. Monit. Assess., 190, 460, https://doi.org/10.1007/s10661-018-6848-3, 2018.
Dal Sasso, S. F., Pizarro, A., and Manfreda, S.: Metrics for the quantification of seeding characteristics to enhance image velocimetry
performance in rivers, Remote Sens., 12, 1789, https://doi.org/10.3390/rs12111789, 2020.
Detert, M., Johnson, E. D., and Weitbrecht, V.: Proof-of-concept for low-cost
and non-contact synoptic airborne river flow measurements, Int. J. Remote
Sens., 38, 2780–2807, https://doi.org/10.1080/01431161.2017.1294782, 2017.
Efron, B.: Double exponential families and their use in generalized linear
regression, J. Am. Stat. Assoc., 81, 709–721, https://doi.org/10.1080/01621459.1986.10478327, 1986.
Eltner, A., Sardemann, H., and Grundmann, J.: Technical Note: Flow velocity
and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery, Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, 2020.
Evans, J. H.: Dimensional Analysis and the Buckingham Pi Theorem, Am. J.
Phys., 40, 1815–1822, https://doi.org/10.1119/1.1987069, 1972.
Fujita, I., Muste, M., and Kruger, A.: Large-scale particle image velocimetry
for flow analysis in hydraulic engineering applications, J. Hydraul. Res., 36, 397–414, 1998.
Good, S. P., Rodriguez-Iturbe, I., and Caylor, K. K.: Analytical expressions
of variability in ecosystem structure and function obtained from threedimensional stochastic vegetation modelling, P. Roy. Soc. A, 469, 20130003, https://doi.org/10.1098/rspa.2013.0003, 2013.
Huang, W. C., Young, C. C., and Liu, W. C.: Application of an automated
discharge imaging system and LSPIV during typhoon events in Taiwan, Water, 10, 280, https://doi.org/10.3390/w10030280, 2018.
ISO 748: Measurement of Liquid Flow in Open Channel – Velocity-Area Methods, 1997.
Kinzel, P. J. and Legleiter, C. J.: sUAS-based remote sensing of river
discharge using thermal particle image velocimetry and bathymetric lidar,
Remote Sens., 11, 2317, https://doi.org/10.3390/rs11192317, 2019.
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B.: Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers, J. Hydrol., 394, 42–52, 2010.
Leitão, J. P., Peña-Haro, S., Lüthi, B., Scheidegger, A., and Moy de Vitry, M.: Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry, J. Hydrol., 565, 791–804, https://doi.org/10.1016/j.jhydrol.2018.09.001, 2018.
Lloyd, P. M., Stansby, P. K., and Ball, D. J.: Unsteady surface-velocity field measurement using particle tracking velocimetry, J. Hydraul. Res., 33, 519–534, 1995.
Manfreda, S.: On the derivation of flow rating curves in data-scarce environments, J. Hydrol., 562, 151–154, https://doi.org/10.1016/j.jhydrol.2018.04.058, 2018.
Manfreda, S., Caylor, K. K., and Good, S. P.: An ecohydrological framework to
explain shifts in vegetation organization across climatological gradients,
Ecohydrology, 10, e1809, https://doi.org/10.1002/eco.1809, 2017.
Manfreda, S., Link, O., and Pizarro, A.: A theoretically derived probability
distribution of scour, Water, 10, 1520, https://doi.org/10.3390/w10111520, 2018a.
Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P.,
Mallinis, G., Dor, E. B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P.,
Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., and Toth, B.: On the use of unmanned aerial systems for
environmental monitoring, Remote Sens., 10, 641, https://doi.org/10.3390/rs10040641, 2018b.
Manfreda, S., Pizarro, A., Moramarco, T., Cimorelli, L., Pianese, D., and
Barbetta, S.: Potential advantages of flow-area rating curves compared to
classic stage-discharge-relations, J. Hydrol., 585, 124752, https://doi.org/10.1016/j.jhydrol.2020.124752, 2020.
Melville, B. W. and Sutherland, A. J.: Design method for local scour at bridge piers, J. Hydraul. Eng., 114, 1210–1226, 1988.
Muste, M., Fujita, I., and Hauet, A.: Large-scale particle image velocimetry
for measurements in riverine environments, Water Resour. Res., 44, W00D19, https://doi.org/10.1029/2008WR006950, 2008.
Nobach, H., Damaschke, N., and Tropea, C.: High-precision sub-pixel
interpolation in particle image velocimetry image processing, Exp. Fluids,
39, 299–304, 2005.
Ohmi, K. and Li, H.-Y.: Particle-tracking velocimetry with new algorithms,
Meas. Sci. Technol., 11, 603–616, https://doi.org/10.1088/0957-0233/11/6/303, 2000.
Owe, M.: Long-term streamflow observations in relation to basin development,
J. Hydrol., 78, 243–260, 1985.
Pearce, S., Ljubičić, R., Peña-Haro, S., Perks, M., Tauro, F.,
Pizarro, A., Dal Sasso, S., Strelnikova, D., Grimaldi, S., Maddock, I., Paulus, G., Plavšić, J., Prodanović, D., and Manfreda, S.: An
Evaluation of Image Velocimetry Techniques under Low Flow Conditions and
High Seeding Densities Using Unmanned Aerial Systems, Remote Sens., 12, 232, https://doi.org/10.3390/rs12020232, 2020.
Perks, M., Sasso, S. F. D., Hauet, A., Le Coz, J., Pearce, S., Peña-Haro, S., Tauro, F., Grimaldi, S., Hortobágyi, B., Jodeau, M., Maddock, I., Pénard, L., and Manfreda, S.: Towards harmonization of image velocimetry techniques for river surface velocity observations, Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, 2020.
Perks, M. T., Russell, A. J., and Large, A. R. G.: Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs), Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, 2016.
Peterson, S. D., Chuang, H. S., and Wereley, S. T.: Three-dimensional particle tracking using micro-particle image velocimetry hardware, Meas. Sci. Technol., 19, 115406, https://doi.org/10.1088/0957-0233/19/11/115406, 2008.
Pizarro, A., Samela, C., Fiorentino, M., Link, O., and Manfreda, S.: BRISENT:
An Entropy-Based Model for Bridge-Pier Scour Estimation under Complex Hydraulic Scenarios, Water, 9, 889, https://doi.org/10.3390/w9110889, 2017a.
Pizarro, A., Ettmer, B., Manfreda, S., Rojas, A., and Link, O.: Dimensionless
effective flow work for estimation of pier scour caused by flood waves, J.
Hydraul. Eng., 143, 06017006, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001295, 2017b.
Pizarro, A., Dal Sasso, S. F., Perks, M. T., and Manfreda, S.: Data on spatial distribution of tracers for optical sensing of stream surface flow
(Version 0.1), [Dataset], Zenodo, https://doi.org/10.5281/zenodo.3761859, 2020a.
Pizarro, A., Dal Sasso, S. F., Perks, M. T., and Manfreda, S.: Identifying
the optimal spatial distribution of tracers for optical sensing of stream
surface flow (Version 0.1), [codes], OSF, https://doi.org/10.17605/OSF.IO/8EGQW, 2020b.
Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T.,
and Kompenhans, J.: Particle image velocimetry: a practical guide, Springer, Cham, Switzerland, 2018.
Strelnikova, D., Paulus, G., Käfer, S., Anders, K.-H., Mayr, P., Mader,
H., Scherling, U., and Schneeberger, R.: Drone-Based Optical Measurements of
Heterogeneous Surface Velocity Fields around Fish Passages at Hydropower Dams, Remote Sens., 12, 384, https://doi.org/10.3390/rs12030384, 2020.
Tauro, F. and Grimaldi, S.: Ice dices for monitoring stream surface velocity, J. Hydro-environ. Res., 14, 143–149, 2017.
Tauro, F. and Salvatori, S.: Surface flows from images: ten days of observations from the Tiber River gauge-cam station, Hydrol. Res., 48, 646–655, 2017.
Tauro, F., Porfiri, M., and Grimaldi, S.: Orienting the camera and firing
lasers to enhance large scale particle image velocimetry for streamflow
monitoring, Water Resour. Res., 50, 7470–7483, 2014.
Tauro, F., Pagano, C., Phamduy, P., Grimaldi, S., and Porfiri, M.: Large-scale particle image velocimetry from an unmanned aerial vehicle,
IEEE/ASME T. Mechatron., 20, 3269–3275, 2015.
Tauro, F., Petroselli, A., Porfiri, M., Giandomenico, L., Bernardi, G.,
Mele, F., Spina, D., and Grimaldi, S.: A novel permanent gauge-cam station
for surface-flow observations on the Tiber River, Geosci. Instrum. Meth. Data Syst., 5, 241–251, 2016.
Tauro, F., Piscopia, R., and Grimaldi, S.: Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?, Water Resour. Res., 53, 10374–10394, 2017.
Tauro, F., Selker, J., Van De Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri, M., Manfreda, S., Caylor, K., Moramarco, T., Benveniste, J., Ciraolo, G., Estes, L., Domeneghetti, A., Perks, M. T., Corbari, C., Rabiei,
E., Ravazzani, G., Bogena, H., Harfouche, A., Broccai, L., Maltese, A.,
Wickert, A., Tarpanelli, A., Good, S., Lopez Alcala, J. M., Petroselli, A.,
Cudennec, C., Blume, T., Hut, R., and Grimaldia, S.: Measurements and
observations in the XXI century (MOXXI): Innovation and multi-disciplinarity
to sense the hydrological cycle, Hydrolog. Sci. J., 63, 169–196, https://doi.org/10.1080/02626667.2017.1420191, 2018.
Tauro, F., Piscopia, R., and Grimaldi, S.: PTV-Stream: A simplified particle
tracking velocimetry framework for stream surface flow monitoring, Catena,
172, 378–386, https://doi.org/10.1016/j.catena.2018.09.009, 2019.
Thielicke, W. and Stamhuis, E. J.: PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB, J. Open Res. Softw., 2, e30, https://doi.org/10.5334/jors.bl, 2014.
Wu, Q. X. and Pairman, D.: A relaxation labeling technique for computing sea
surface velocities from sea surface temperature, IEEE T. Geosci. Remote, 33, 216–220, 1995.
Short summary
An innovative approach is presented to optimise image-velocimetry performances for surface flow velocity estimates (and thus remotely sensed river discharges). Synthetic images were generated under different tracer characteristics using a numerical approach. Based on the results, the Seeding Distribution Index was introduced as a descriptor of the optimal portion of the video to analyse. A field case study was considered as a proof of concept of the proposed framework showing error reductions.
An innovative approach is presented to optimise image-velocimetry performances for surface flow...