Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5095-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5095-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
Department of Earth and Planetary Science, University of California,
Berkeley, California, USA
Department of Environmental Systems Science, ETH Zurich, Zurich,
Switzerland
Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
Sarah E. Godsey
Department of Earth and Planetary Science, University of California,
Berkeley, California, USA
Department of Geosciences, Idaho State University, Pocatello, Idaho,
USA
Madeline Solomon
Department of Geography, University of California, Berkeley,
California, USA
Randall Osterhuber
Central Sierra Snow Laboratory, Norden, California, USA
Joseph R. McConnell
Division of Hydrological Sciences, Desert Research Institute, Reno,
Nevada, USA
Daniele Penna
Department of Environmental Systems Science, ETH Zurich, Zurich,
Switzerland
Department of Agriculture, Food, Environment and Forestry, University
of Florence, Florence, Italy
Related authors
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci., 29, 3673–3685, https://doi.org/10.5194/hess-29-3673-2025, https://doi.org/10.5194/hess-29-3673-2025, 2025
Short summary
Short summary
This study explores how streams react to rain and how water travels through the landscape to reach them, two processes rarely studied together. Using detailed data from two temperate areas, we show that streams respond to rain much faster than rainwater travels to them. Wetter conditions lead to stronger runoff by releasing older stored water, while heavy rainfall moves newer rainwater to streams faster. These findings offer new insights into how water moves through the environment.
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Quentin Duchemin, Maria Grazia Zanoni, Marius G. Floriancic, Hansjörg Seybold, Guillaume Obozinski, James W. Kirchner, and Paolo Benettin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1591, https://doi.org/10.5194/egusphere-2025-1591, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce GAMCR, a data-driven model that estimates how catchments respond to individual precipitation events. We validate GAMCR on synthetic data and demonstrate its ability to investigate the characteristic runoff responses from real-world hydrologic series. GAMCR provides new data-driven opportunities to understand and compare hydrological behavior across different catchments worldwide.
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613, https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary
Short summary
Some streams respond to rainfall with flow that peaks twice: a sharp first peak followed by a broad second peak. We analyzed data from a catchment in Luxembourg to better understand the processes behind this phenomenon. Our results show that the first peak is mostly driven directly by rainfall, and the second peak is mostly driven by rain that infiltrates to groundwater. We also show that the relative importance of these two processes depends on how wet the landscape is before the rain falls.
Zahra Eslami, Hansjörg Seybold, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-35, https://doi.org/10.5194/egusphere-2025-35, 2025
Short summary
Short summary
We used a new method to measure how streamflow responds to precipitation across a network of watersheds in Iran. Our analysis shows that streamflow is more sensitive to precipitation when groundwater levels are shallower, climates are more humid, topography is steeper, and drainage basins are smaller. These results are a step toward more sustainable water resource management and more effective flood risk mitigation.
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4295–4308, https://doi.org/10.5194/hess-28-4295-2024, https://doi.org/10.5194/hess-28-4295-2024, 2024
Short summary
Short summary
We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021, https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
Scott T. Allen and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-683, https://doi.org/10.5194/hess-2020-683, 2021
Revised manuscript not accepted
Short summary
Short summary
Extracting water from plant stems can introduce analytical errors in isotope analyses. We demonstrate that sensitivities to suspected errors can be evaluated and that conclusions drawn from extracted plant water isotope ratios are neither generally valid nor generally invalid. Ultimately, imperfect measurements of plant and soil water isotope ratios can continue to support useful inferences if study designs are appropriately matched to their likely biases and uncertainties.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci., 29, 3673–3685, https://doi.org/10.5194/hess-29-3673-2025, https://doi.org/10.5194/hess-29-3673-2025, 2025
Short summary
Short summary
This study explores how streams react to rain and how water travels through the landscape to reach them, two processes rarely studied together. Using detailed data from two temperate areas, we show that streams respond to rain much faster than rainwater travels to them. Wetter conditions lead to stronger runoff by releasing older stored water, while heavy rainfall moves newer rainwater to streams faster. These findings offer new insights into how water moves through the environment.
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Quentin Duchemin, Maria Grazia Zanoni, Marius G. Floriancic, Hansjörg Seybold, Guillaume Obozinski, James W. Kirchner, and Paolo Benettin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1591, https://doi.org/10.5194/egusphere-2025-1591, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce GAMCR, a data-driven model that estimates how catchments respond to individual precipitation events. We validate GAMCR on synthetic data and demonstrate its ability to investigate the characteristic runoff responses from real-world hydrologic series. GAMCR provides new data-driven opportunities to understand and compare hydrological behavior across different catchments worldwide.
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613, https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary
Short summary
Some streams respond to rainfall with flow that peaks twice: a sharp first peak followed by a broad second peak. We analyzed data from a catchment in Luxembourg to better understand the processes behind this phenomenon. Our results show that the first peak is mostly driven directly by rainfall, and the second peak is mostly driven by rain that infiltrates to groundwater. We also show that the relative importance of these two processes depends on how wet the landscape is before the rain falls.
Zahra Eslami, Hansjörg Seybold, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-35, https://doi.org/10.5194/egusphere-2025-35, 2025
Short summary
Short summary
We used a new method to measure how streamflow responds to precipitation across a network of watersheds in Iran. Our analysis shows that streamflow is more sensitive to precipitation when groundwater levels are shallower, climates are more humid, topography is steeper, and drainage basins are smaller. These results are a step toward more sustainable water resource management and more effective flood risk mitigation.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4295–4308, https://doi.org/10.5194/hess-28-4295-2024, https://doi.org/10.5194/hess-28-4295-2024, 2024
Short summary
Short summary
We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022, https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary
Short summary
Monitoring sediment transport is relevant for flood safety and river restoration. However, the spatial and temporal variability of sediment transport processes makes their prediction challenging. We investigate the feasibility of a general calibration relationship between sediment transport rates and the impact signals recorded by metal plates installed in the channel bed. We present a new calibration method based on flume experiments and apply it to an extensive dataset of field measurements.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Nikos Theodoratos and James W. Kirchner
Earth Surf. Dynam., 9, 1545–1561, https://doi.org/10.5194/esurf-9-1545-2021, https://doi.org/10.5194/esurf-9-1545-2021, 2021
Short summary
Short summary
We examine stream-power incision and linear diffusion landscape evolution models with and without incision thresholds. We present a steady-state relationship between curvature and the steepness index, which plots as a straight line. We view this line as a counterpart to the slope–area relationship for the case of landscapes with hillslope diffusion. We show that simple shifts and rotations of this line graphically express the topographic response of landscapes to changes in model parameters.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Scott T. Allen and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-683, https://doi.org/10.5194/hess-2020-683, 2021
Revised manuscript not accepted
Short summary
Short summary
Extracting water from plant stems can introduce analytical errors in isotope analyses. We demonstrate that sensitivities to suspected errors can be evaluated and that conclusions drawn from extracted plant water isotope ratios are neither generally valid nor generally invalid. Ultimately, imperfect measurements of plant and soil water isotope ratios can continue to support useful inferences if study designs are appropriately matched to their likely biases and uncertainties.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Cited articles
Allen-Diaz, B. H.: Water table and plant species relationships in Sierra
Nevada meadows, Am. Midl. Nat., 126, 30–43, https://doi.org/10.2307/2426147, 1991.
Bailey, R. G., Avers, P. E., King, T., and McNab, W. H.: Ecoregions and
subregions of the United States with supplementary table of map unit
descriptions, U.S. Department of Agriculture, Forest Service, Washington,
D.C., 1994.
Barnard, H. R., Graham, C. B., Van Verseveld, W. J., Brooks, J. R., Bond, B.
J., and McDonnell, J. J.: Mechanistic assessment of hillslope transpiration
controls of diel subsurface flow: a steady-state irrigation approach,
Ecohydrology, 3, 133–142, https://doi.org/10.1002/eco.114,
2010.
Beven, K.: On the generalized kinematic routing method, Water Resour. Res.,
15, 1238–1242, https://doi.org/10.1029/WR015i005p01238, 1979.
Bishop, K. H.: Episodic increases in stream acidity, catchment flow pathways
and hydrograph separation, PhD dissertation, Department of Geography,
University of Cambridge, Cambridge, 1991.
Bond, B. J., Jones, J. A., Moore, G., Phillips, N., Post, D., and McDonnell,
J. J.: The zone of vegetation influence on baseflow revealed by diel
patterns of streamflow and vegetation water use in a headwater basin,
Hydrol. Process., 16, 1671–1677, https://doi.org/10.1002/hyp.5022, 2002.
Boronina, A., Golubev, S., and Balderer, W.: Estimation of actual
evapotranspiration from an alluvial aquifer of the Kouris catchment (Cyprus)
using continuous streamflow records, Hydrol. Process., 19, 4055–4068, https://doi.org/10.1002/hyp.5871, 2005.
Brumm, M., Wang, C. Y., and Manga, M.: Spring temperatures in the Sagehen
Basin, Sierra Nevada, CA: implications for heat flow and groundwater
circulation, Geofluids, 9, 195–207, https://doi.org/10.1111/j.1468-8123.2009.00254.x, 2009.
Burt, T. P.: Diurnal variations in stream discharge and throughflow during a
period of low flow, J. Hydrol., 41, 291–301, https://doi.org/10.1016/0022-1694(79)90067-2, 1979.
Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Loheide, S. P., Jin,
W., Billinger, M. A., and Zhan, X. Y.: A field investigation of
phreatophyte-induced fluctuations in the water table, Water Resour. Res.,
43, W02404, https://doi.org/10.1029/2005wr004627, 2007.
Cadol, D., Kampf, S., and Wohl, E.: Effects of evapotranspiration on
baseflow in a tropical headwater catchment, J. Hydrol., 462, 4–14, https://doi.org/10.1016/j.jhydrol.2012.04.060, 2012.
Colbeck, S. C.: A theory of water percolation in snow, J. Glaciol., 11, 369–385, https://doi.org/10.3189/S0022143000022346, 1972.
Cooper, A. E., Kirchner, J. W., Wolf, S., Lombardozzi, D. L., Sullivan, B.
W., Tyler, S. W., and Harpold, A. A.: Snowmelt causes differences of
limitations on transpiration in a Sierra Nevada conifer forest, Agr. Forest Meteorol., 291, 108089, https://doi.org/10.1016/j.agrformet.2020.108089, 2020.
Czikowsky, M. J. and Fitzjarrald, D. R.: Evidence of seasonal changes in
evapotranspiration in eastern U.S. hydrological records, J. Hydrometeorol., 5, 974–988, https://doi.org/10.1175/1525-7541(2004)005<0974:EOSCIE>2.0.CO;2, 2004.
Dozier, J.: Spectral signature of alpine snow cover from the landsat
thematic mapper, Remote Sens. Environ., 28, 9–22, https://doi.org/10.1016/0034-4257(89)90101-6, 1989.
Dunford, E. G. and Fletcher, P. W.: Effect of removal of stream-bank
vegetation upon water yield, Transactions, American Geophysical Union, 28,
105–110, https://doi.org/10.1029/TR028i001p00105, 1947.
Erman, D. C., Andrews, E. D., and Yoder-Williams, M.: Effects of winter
floods on fishes in the Sierra Nevada,
Can. J. Fish. Aquat. Sci., 45, 2195–2200, https://doi.org/10.1139/f88-255, 1988.
Fahle, M. and Dietrich, O.: Estimation of evapotranspiration using diurnal
groundwater level fluctuations: Comparison of different approaches with
groundwater lysimeter data, Water Resour. Res., 50, 273–286, https://doi.org/10.1002/2013wr014472, 2014.
Fonley, M., Mantilla, R., Small, S. J., and Curtu, R.: On the propagation of diel signals in river networks using analytic solutions of flow equations, Hydrol. Earth Syst. Sci., 20, 2899–2912, https://doi.org/10.5194/hess-20-2899-2016, 2016.
Godsey, S. E. and Kirchner, J. W.: Dynamic, discontinuous stream networks:
hydrologically driven variations in active drainage density, flowing
channels, and stream order, Hydrol. Process., 28, 5791–5803,
https://doi.org/10.1002/hyp.10310, 2014.
Godsey, S. E., Kirchner, J. W., and Tague, C. L.: Effects of changes in
winter snowpacks on summer low flows: case studies in the Sierra Nevada,
California, USA, Hydrol. Process., 28, 5048–5064, https://doi.org/10.1002/hyp.9943, 2014.
Graham, C. B., Barnard, H. R., Kavanagh, K. L., and McNamara, J. P.:
Catchment scale controls the temporal connection of transpiration and diel
fluctuations in streamflow, Hydrol. Process., 27, 2541–2556,
https://doi.org/10.1002/hyp.9334, 2013.
Granier, A.: Evaluation of transpiration in a Douglas-fir stand by means of
sap flow measurements, Tree Physiol., 3, 309–319, https://doi.org/10.1093/treephys/3.4.309, 1987.
Gribovszki, Z., Kalicz, P., Szilagyi, J., and Kucsara, M.: Riparian zone
evapotranspiration estimation from diurnal groundwater level fluctuations,
J. Hydrol., 349, 6–17, https://doi.org/10.1016/j.jhydrol.2007.10.049, 2008.
Gribovszki, Z., Szilagyi, J., and Kalicz, P.: Diurnal fluctuations in
shallow groundwater levels and streamflow rates and their interpretation – A
review, J. Hydrol., 385, 371–383, https://doi.org/10.1016/j.jhydrol.2010.02.001, 2010.
Guo, Q.: USFS Tahoe National Forest airborne LiDAR, National Center for
Airborne Laser Mapping (NCALM), distributed by OpenTopography, https://doi.org/10.5069/G9V122Q1, 2014.
Healy, R. W. and Cook, P. G.: Uisng groundwater levels to estimate
recharge, Hydrogeol. J., 10, 91–109, https://doi.org/10.1007/s10040-001-0178-0, 2002.
Hiekel, W.: Zur Charakteristik des Abflussverhaltens in der thüringer
Waldflussgebieten des Vesser und Zahmen Gera, Archiv für Naturschutz, 4,
51–82, 1964.
Hudson, F. S.: Mount Lincoln-Castle Peak area Sierra Nevada, California,
Geol. Soc. Am. Bull., 62, 931–952, https://doi.org/10.1130/0016-7606(1951)62[931:mlpasn]2.0.co;2, 1951.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huntington, J.: Airborne lidar measurement of Sagehen Creek snowpack,
National Center for Airborne Laser Mapping (NCALM), distributed by
OpenTopography, https://doi.org/10.5069/G90K26HR, 2013.
Jiang, Z., Huete, A. R., Didan, K., and Miura, T.: Development of a two-band
Enhanced Vegetation Index without a blud band, Remote Sens. Environ., 112, 3833–3845, https://doi.org/10.1016/j.rse.2008.06.006, 2008.
Johnson, C. M. and Needham, P. R.: Ionic composition of Sagehen Creek,
California, following an adjacent fire, Ecology, 47, 636–639, https://doi.org/10.2307/1933944, 1966.
Jordan, P.: Meltwater movement in a deep snowpack 1. Field observations,
Water Resour. Res., 19, 971–978, https://doi.org/10.1029/WR019i004p00971, 1983.
Kirchner, J. W.: Catchments as simple dynamical systems: catchment
characterization, rainfall-runoff modeling, and doing hydrology backward,
Water Resour. Res., 45, W02429, https://doi.org/10.1029/2008WR006912, 2009.
Kirchner, J. W.: Airborne laser mapping of Independence Lake, CA, National
Center for Airborne Laser Mapping (NCALM), distributed by OpenTopography, https://doi.org/10.5069/G96D5QXM, 2012.
Kirchner, J. W., Godsey, S. E., Solomon, M., Osterhuber, R., McConnell, J. R., and Penna, D.: Daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen and Independence Creeks, Sierra Nevada, USA, EnviDat, https://doi.org/10.16904/envidat.155, 2020.
Klinker, H. and Hansen, H.: Bemerkungen zu tagesperiodischen Variationen
des Grundwasserhorizontes und des Wasserstandes in kleinen Wasserläufen,
Zeitschrift für Meteorologie, 17, 240–245, 1964.
Kobayashi, D., Suzuki, K., and Nomura, M.: Diurnal fluctuation in stream
flow and in specific electric conductance during drought periods, J.
Hydrol., 115, 105–114, https://doi.org/10.1016/0022-1694(90)90200-H, 1990.
Kozeny, J.: Über den kapillaren Aufstieg des Grundwassers und die
täglich wiederkehrenden Schwankungen des Borhlochwasserspiegels,
Wasserkraft und Wasserwirtschaft, 30, 61–68, 1935.
Loheide, S. P.: A method for estimating subdaily evapotranspiration of
shallow groundwater using diurnal water table fluctuations, Ecohydrology, 1,
59–66, https://doi.org/10.1002/eco.7, 2008.
Loheide, S. P. and Lundquist, J. D.: Snowmelt-induced diel fluxes through
the hyporheic zone, Water Resour. Res., 45, W07404, https://doi.org/10.1029/2008wr007329, 2009.
Loheide, S. P., Butler, J. J., and Gorelick, S. M.: Estimation of
groundwater consumption by phreatophytes using diurnal water table
fluctuations: A saturated-unsaturated flow assessment, Water Resour. Res.,
41, W07030, https://doi.org/10.1029/2005wr003942, 2005.
Lundquist, J. D. and Cayan, D. R.: Seasonal and spatial patterns in diurnal
cycles in streamflow in the western United States, J. Hydrometerol., 3, 591–603, https://doi.org/10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2, 2002.
Lundquist, J. D. and Dettinger, M. D.: Linking diurnal cycles of river flow
to interannual variations in climate, Proceedings, 17th Conference on
Hydrology, American Meteorological Society, J2.4, available at: https://ams.confex.com/ams/annual2003/webprogram/Paper55265.html (last access: 28 October 2020), 2003.
Lundquist, J. D. and Dettinger, M. D.: How snowpack heterogeneity affects
diurnal streamflow timing, Water Resour. Res., 41, W05007, https://doi.org/10.1029/2004wr003649, 2005.
Lundquist, J. D., Dettinger, M. D., and Cayan, D. R.: Snow-fed streamflow
timing at different basin scales: Case study of the Tuolumne River above
Hetch Hetchy, Yosemite, California, Water Resour. Res., 41, W07005, https://doi.org/10.1029/2004wr003933, 2005.
Magnusson, J., Kobierska, F., Huxol, S., Hayashi, M., Jonas, T., and
Kirchner, J. W.: Melt water driven stream and groundwater fluctuations in a
glacier forefield (Dammagletscher, Switzerland), Hydrol. Process., 28,
823–836, https://doi.org/10.1002/hyp.9633, 2014.
Manning, A. H., Clark, J. F., Diaz, S. H., Rademacher, L. K., Earman, S.,
and Plummer, L. N.: Evolution of groundwater age in a mountain watershed
over a period of thirteen years, J. Hydrol., 460, 13–28, https://doi.org/10.1016/j.jhydrol.2012.06.030, 2012.
Mast, M. A. and Clow, D. W.: Environmental characteristics and water
quality of Hydrologic Benchmark Stations in the Western United States,
1963–95, US Geological Survey Circular 1173-D, US Geological Survey, Denver, Colorado, USA, 115 pp., 2000.
Meyboom, P.: Three observations on streamflow depletion by phreatophytes, J.
Hydrol., 2, 248–261, https://doi.org/10.1016/0022-1694(65)90040-5, 1965.
Mutzner, R., Weijs, S. V., Tarolli, P., Calaf, M., Oldroyd, H. J., and
Parlange, M. B.: Controls on the diurnal streamflow cycles in two subbasins
of an alpine headwater catchment, Water Resour. Res., 51, 3403–3418, https://doi.org/10.1002/2014WR016581, 2015.
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011.
Rademacher, L. K., Clark, J. F., Clow, D. W., and Hudson, G. B.: Old
groundwater influence on stream hydrochemistry and catchment response times
in a Sierra Nevada catchment: Sagehen Creek, California, Water Resour. Res.,
41, W02004, https://doi.org/10.1029/2003WR002805, 2005.
Reigner, I. C.: A method for estimating streamflow loss by
evapotranspiration from the riparian zone, Forest Sci., 12, 130–139, 1966.
Riggs, G. A., Hall, D. K., and Salomonson, V. V.: A snow index for the
Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer,
Proceedings of IGARSS '94 – 1994 IEEE International Geoscience and Remote
Sensing Symposium, 8–12 August 1994, Pasadena, California, USA, 1942–1944, https://doi.org/10.1109/IGARSS.1994.399618, 1994.
Riggs, G. A., Hall, D. K., and Roman, M. O.: MODIS Snow Products Collection
6 User Guide, MODIS Land Surface Reflectance Science Computing Facility,
Greenbelt, Maryland, USA, 2016.
Soylu, M. E., Lenters, J. D., Istanbulluoglu, E., and Loheide, S. P.: On
evapotranspiration and shallow groundwater fluctuations: A Fourier-based
improvement to the White method, Water Resour. Res., 48, W06506, https://doi.org/10.1029/2011wr010964, 2012.
Sylvester, A. G. and Raines, G. L.: Geologic map of the Independence Lake
and Hobart Mills 7.5' Quadrangles, Nevada and Sierra Counties, California,
California Department of Conservation, Sacramento, CA, 2017.
Szilagyi, J., Gribovszki, Z., Kalicz, P., and Kucsara, M.: On diurnal
riparian zone groundwater-level and streamflow fluctuations, J. Hydrol.,
349, 1–5, https://doi.org/10.1016/j.jhydrol.2007.09.014, 2008.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in
subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res.,
42, W02411, https://doi.org/10.1029/2004WR003800, 2006.
Troxell, H. C.: The diurnal fluctuation in the ground-water and flow of the
Santa Ana River and its meaning, Transactions, American Geophysical Union,
17, 496–504, https://doi.org/10.1029/TR017i002p00496, 1936.
Tschinkel, H. M.: Short-term fluctuation in streamflow as related to
evaporation and transpiration, J. Geophys. Res., 68,
6459–6469, https://doi.org/10.1029/JZ068i024p06459, 1963.
Tucker, C. J.: Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Uriostegui, S. H., Bibby, R. K., Esser, B. K., and Clark, J. F.: Quantifying
annual groundwater recharge and storage in the central Sierra Nevada using
naturally occurring 35S, Hydrol. Process., 31, 1382–1397, https://doi.org/10.1002/hyp.11112, 2017.
van Meerveld, H. J. I., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S., and Seibert, J.: Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution, Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, 2019.
Vermote, E. F., Roger, J. C., and Ray, J. P.: MODIS Surface Reflectance
User's Guide, Collection 6, MODIS Land Surface Reflectance Science Computing
Facility, Greenbelt, Maryland, USA, 2015.
White, W. N.: Method of estimating ground-water supplies based on discharge
by plants and evaporation from soil – Results of investigations in
Escalante Valley, Utah US Geological Survey Water Supply Paper 659-A,
US Government Printing Office, Washington, D.C., USA, 1932.
Wicht, C. L.: Diurnal fluctuations in Jonkershoek streams due to evaporation
and transpiration, Journal of the South African Forestry Association, 7,
34–49, 1941.
Woelber, B., Maneta, M. P., Harper, J., Jencso, K. G., Gardner, W. P., Wilcox, A. C., and López-Moreno, I.: The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response, Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, 2018.
Wondzell, S. M., Gooseff, M. N., and McGlynn, B. L.: Flow velocity and the
hydrologic behavior of streams during baseflow, Geophys. Res. Lett., 34,
L24404, https://doi.org/10.1029/2007gl031256, 2007.
Wondzell, S. M., Gooseff, M. N., and McGlynn, B. L.: An analysis of
alternative conceptual models relating hyporheic exchange flow to diel
fluctuations in discharge during baseflow recession, Hydrol. Process.,
24, 686–694, https://doi.org/10.1002/hyp.7507, 2010.
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration....