Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 427–450, 2020
https://doi.org/10.5194/hess-24-427-2020
Hydrol. Earth Syst. Sci., 24, 427–450, 2020
https://doi.org/10.5194/hess-24-427-2020
Research article
28 Jan 2020
Research article | 28 Jan 2020

Cross-validating precipitation datasets in the Indus River basin

Jean-Philippe Baudouin et al.

Related authors

Synoptic processes of winter precipitation in the Upper Indus Basin
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021,https://doi.org/10.5194/wcd-2-1187-2021, 2021
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022,https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022,https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary

Cited articles

Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res.-Atmos., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003. a
Adler, R., Sapiano, M., Huffman, G., Bolvin, D., Wang, J., Gu, G., Nelkin, E., Xie, P., Chiu, L., Ferraro, R., Schneider, U., and Becker, A.: New Global Precipitation Climatology Project monthly analysis product corrects satellite data shifts, GEWEX News, 26, 7–9, 2016. a, b
Ali, G., Rasul, G., Mahmood, T., Zaman, Q., and Cheema, S.: Validation of APHRODITE precipitation data for humid and sub humid regions of Pakistan, Pakistan Journal of Meteorology, 9, 57–69, 2012. a, b, c
Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61, https://doi.org/10.5194/hess-8-47-2004, 2004. a, b, c
Archer, D. R., Forsythe, N., Fowler, H. J., and Shah, S. M.: Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions, Hydrol. Earth Syst. Sci., 14, 1669–1680, https://doi.org/10.5194/hess-14-1669-2010, 2010. a
Download
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.