Articles | Volume 24, issue 5
Hydrol. Earth Syst. Sci., 24, 2253–2267, 2020
https://doi.org/10.5194/hess-24-2253-2020
Hydrol. Earth Syst. Sci., 24, 2253–2267, 2020
https://doi.org/10.5194/hess-24-2253-2020

Research article 08 May 2020

Research article | 08 May 2020

Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model components for climate change impact assessments

Dongmei Feng and Edward Beighley

Related authors

Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021,https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Uncertainty analysis
Do surface lateral flows matter for data assimilation of soil moisture observations into hyperresolution land models?
Yohei Sawada
Hydrol. Earth Syst. Sci., 24, 3881–3898, https://doi.org/10.5194/hess-24-3881-2020,https://doi.org/10.5194/hess-24-3881-2020, 2020
Short summary
Assessing the sources of uncertainty associated with the calculation of rainfall kinetic energy and erosivity – application to the Upper Llobregat Basin, NE Spain
G. Catari, J. Latron, and F. Gallart
Hydrol. Earth Syst. Sci., 15, 679–688, https://doi.org/10.5194/hess-15-679-2011,https://doi.org/10.5194/hess-15-679-2011, 2011

Cited articles

Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014wr015549, 2014. 
Aguilera, R. and Melack, J. M.: Relationships Among Nutrient and Sediment Fluxes, Hydrological Variability, Fire, and Land Cover in Coastal California Catchments, J. Geophys. Res.-Biogeosc., 123, 2568–2589, https://doi.org/10.1029/2017JG004119, 2018. 
Alder, J. R. and Hostetler, S. W.: The Dependence of Hydroclimate Projections in Snow-Dominated Regions of the Western United States on the Choice of Statistically Downscaled Climate Data, Water Resour. Res., 55, 2279–2300, https://doi.org/10.1029/2018WR023458, 2019. 
Asadieh, B. and Krakauer, N. Y.: Global change in streamflow extremes under climate change over the 21st century, Hydrol. Earth Syst. Sci., 21, 5863–5874, https://doi.org/10.5194/hess-21-5863-2017, 2017. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 
Download
Short summary
Assessment of climate change impacts on hydrologic systems is critical for making adaptation strategies but subject to uncertainties from various sources. This study developed a framework to investigate such uncertainties from both hydrologic model components and climate forcings as well as associated parameterization. Results of this study reveal variable uncertainty compositions for different hydrological quantities and imply limited impact of hydrologic model parameter equifinality.