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Abstract. Assessing impacts of climate change on hydro-
logic systems is critical for developing adaptation and mit-
igation strategies for water resource management, risk con-
trol, and ecosystem conservation practices. Such assessments
are commonly accomplished using outputs from a hydro-
logic model forced with future precipitation and temperature
projections. The algorithms used for the hydrologic model
components (e.g., runoff generation) can introduce signif-
icant uncertainties into the simulated hydrologic variables.
Here, a modeling framework was developed that integrates
multiple runoff generation algorithms with a routing model
and associated parameter optimizations. This framework is
able to identify uncertainties from both hydrologic model
components and climate forcings as well as associated pa-
rameterization. Three fundamentally different runoff genera-
tion approaches, runoff coefficient method (RCM, concep-
tual), variable infiltration capacity (VIC, physically based,
infiltration excess), and simple-TOPMODEL (STP, physi-
cally based, saturation excess), were coupled with the Hill-
slope River Routing model to simulate surface/subsurface
runoff and streamflow. A case study conducted in Santa Bar-
bara County, California, reveals increased surface runoff in
February and March but decreased runoff in other months,
a delayed (3 d, median) and shortened (6 d, median) wet sea-
son, and increased daily discharge especially for the extremes
(e.g., 100-year flood discharge, Q100). The Bayesian model
averaging analysis indicates that the probability of such an
increase can be up to 85 %. For projected changes in runoff
and discharge, general circulation models (GCMs) and emis-

sion scenarios are two major uncertainty sources, account-
ing for about half of the total uncertainty. For the changes
in seasonality, GCMs and hydrologic models are two major
uncertainty contributors (∼ 35 %). In contrast, the contribu-
tion of hydrologic model parameters to the total uncertainty
of changes in these hydrologic variables is relatively small
(<6 %), limiting the impacts of hydrologic model parame-
ter equifinality in climate change impact analysis. This study
provides useful information for practices associated with wa-
ter resources, risk control, and ecosystem conservation and
for studies related to hydrologic model evaluation and cli-
mate change impact analysis for the study region as well as
other Mediterranean regions.

1 Introduction

Streamflow is essential to humans and ecosystems, support-
ing human life and economic activities, providing habitat for
aquatic creatures, and exporting sediment/nutrients to coastal
ecosystems (Feng et al., 2016; Barnett et al., 2005; Milly et
al., 2005). Understanding streamflow characteristics is im-
portant for water-resource management, civil infrastructure
design and making adaptation strategies for economic and
ecological practices (Feng et al., 2019). With economic de-
velopment and population growth, the emission of green-
house gas is likely to increase during the 21st century (IPCC,
2014). The increase in global surface temperature is pro-
jected to exceed 2 ◦C by the end of 21st century even under
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moderate emission scenarios (e.g., representative concentra-
tion pathways, RCPs, 4.5 and 6.0) (IPCC, 2014). Intensified
hydro-meteorological processes, altered precipitation forms
and patterns, and intensified atmospheric river events and
oceanic anomalies (e.g., El Niño events) are projected and
likely to cause substantial impacts on hydrologic fluxes (Bar-
nett et al., 2005; Tao et al., 2011; Dai, 2013; Dettinger, 2011;
Vicky et al., 2018; Cai et al., 2014; Feng et al., 2019).

The integration of climate projections and hydrologic
models enables the investigation of hydrologic dynamics un-
der the future climate conditions. However, the simulated hy-
drologic fluxes contain uncertainties from various sources.
Due to the epistemic limitations (e.g., humans’ lack of
knowledge about hydrologic processes and boundary condi-
tions) and the complexities in nature (e.g., temporal and spa-
tial heterogeneity), hydrologic models are simplified repre-
sentations of natural hydrologic processes (Beven and Cloke,
2012). Generally, hydrologic models have modules simulat-
ing water partitioning at land surface (named runoff gen-
eration process in this study), evapotranspiration (ET), and
water transportation along terrestrial hillslopes and channels
(named the routing process here). Each process can be repre-
sented in different ways, which thus results in uncertainties
in simulated variables. For the runoff generation process, sur-
face runoff is mainly represented as infiltration excess over-
land flow (or Hortonian flow, Horton, 1933) or saturation ex-
cess overland flow. Infiltration excess overland flow occurs
when water falls on the soil surface at a rate higher than
that which the soil can absorb. Saturation excess overland
flow occurs when precipitation falls on completely saturated
soils. Surface runoff can also be quantified conceptually; for
example, a runoff coefficient can be used to generate sur-
face runoff as a proportion of precipitation rate. Subsurface
runoff is generally represented as functions of soil charac-
teristics and topographic features. The complexity of these
functions varies significantly, from simple linear to combina-
tions of multiple nonlinear. Parameterization can be another
uncertainty source. Due to the nonlinearity of hydrologic
processes, different combinations of model parameters can
achieve similar, if not identical, model performance. Model
parameter selections based on calibration metrics can result
in different optimal parameter values (i.e., parameter equi-
finality). When it comes to hydrologic impact assessments,
the climate forcings, which differ among general circulation
models (GCMs) due to the model discrepancy and the un-
certainty of future emission scenarios, also contribute to the
uncertainties in hydrologic simulations. Without appropriate
assessment of these uncertainties, standalone studies on the
climate change impacts can be difficult to interpret. System-
atic assessments of the relevant uncertainties associated with
simulated hydrologic fluxes are needed.

Some studies have been performed to investigate uncer-
tainties mentioned above at both variable scales (for exam-
ple, Wilby and Harris, 2006; Vetter et al., 2015; Valentina
et al., 2017; Kay et al., 2009; Eisner et al., 2017; Su et al.,

2017; Schewe et al., 2014; Hagemann et al., 2013; Asadieh
and Krakauer, 2017; Chegwidden et al., 2019; Hattermann et
al., 2018; Addor et al., 2014; Vidal et al., 2016; Giuntoli et
al., 2018; Alder and Hostetler, 2019). Most previous studies
treated hydrologic models as a whole package. However, hy-
drologic models consist of multiple components (e.g., runoff
generation, ET, and routing). These components can be sig-
nificantly different among models. When considering the hy-
drologic model as a whole, it is difficult to quantify relative
uncertainty contributions from different components. Troin
et al. (2018) tested the uncertainties from hydrologic model
components for snow and potential ET. In this study, a con-
sistent hydrologic modeling framework that integrates mul-
tiple runoff generation process models with surface, subsur-
face, and channel routing processes and associated parameter
uncertainties was developed. This framework enables uncer-
tainties from different components representing hydrologic
processes and associated model parameters as well as model
forcings (e.g., precipitation and temperature) to be quanti-
fied and compared in a consistent manner. In this framework,
three runoff generation process models which represent three
fundamentally different approaches mentioned above were
used. The conceptual frameworks were adapted from the
Variable Infiltration Capacity model (Wood et al., 1992;
Liang et al., 1996) (infiltration excess), simple-TOPMODEL
(Niu et al., 2005; Beven et al., 1995; Beven, 2000) (satu-
ration excess), and the runoff coefficient method (Feng et
al., 2019) (conceptual). Each approach was coupled within
one routing model (i.e., Hillslope River Routing model, HRR
(Beighley et al., 2009)) to simulate the terrestrial hydrologi-
cal processes. This modeling framework was also integrated
with a Bayesian model averaging (BMA) analysis to assess
the performance of different model–forcing–parameter com-
binations and to provide actionable information (e.g., proba-
bility of estimated changes) for associated practices, such as
water resource management and ecology conservation.

A case study was presented for Santa Barbara County
(SBC), CA, a biodiverse region under a Mediterranean cli-
mate with a mix of highly developed and natural watersheds.
Previous studies (e.g., Feng et al., 2019) showed that the in-
tensified storm events concentrated in a shorter and delayed
wet season in SBC under future climate conditions will cause
significant increase in discharge, especially the extremes
(e.g., 100-year discharge). The climate change impacts on the
path and quantity of surface/subsurface runoff and discharge
will impact the soil erosion and sediment/nutrient transport
and subsequently affect the coastal ecosystems (Myers et al.,
2019; Feng et al., 2019). The longer dry season may also
contribute to the increased occurrence of droughts and wild-
fires (Myers et al., 2019). Therefore, changes in these hy-
drologic variables (e.g., runoff, discharge, and seasonality)
under future climate conditions and associated uncertainties
are essential to assess the vulnerability of coastal regions in
CA and make adaptation strategies to accommodate climate
change. In this study, we simulated future hydrologic vari-
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ables using three hydrologic models forced with climate out-
puts from 10 GCMs that were selected for their good perfor-
mance in representing historical meteorological characteris-
tics in the study region, under two emission scenarios (RCP
4.5 and RCP 8.5) (Feng et al., 2019). The main objectives
of this study were to (1) evaluate and compare the perfor-
mance of hydrologic models with different approaches rep-
resenting runoff generation process using a consistent mod-
eling framework; (2) quantify the relative contributions of
different sources (including hydrologic process models, pa-
rameterizations, GCM forcings, and emission scenarios) to
the total uncertainty in simulated surface/subsurface runoff,
streamflow, and seasonality; and (3) provide actionable infor-
mation and suggestions for studies and practices associated
with hydrologic impacts of climate change.

2 Methods

2.1 Study region

The study region is located in coastal Santa Barbara County
(SBC), California, where watersheds drain into the Santa
Barbara Channel from just west of the Ventura River to just
east of Point Conception (Fig. 1). The combined land area
is roughly 750 km2 with 135 watersheds ranging from 0.1
to 123 km2. The local climate is Mediterranean, with an av-
erage annual precipitation of roughly 600 mm (Feng et al.,
2019). Most of the annual precipitation occurs in fall/winter
with 85 % of rainfall occurring in the November–March pe-
riod. Thus, it is characterized by the intense and flashy floods
in winter time. More than 80 % of annual discharge occurs in
only a low number of large events during January–March,
and a large fraction of annual discharge happens within 1 d
(Beighley et al., 2003). River channels are typically filled
with sediment during the dry season (April–October) and
are scoured with the initiation of wet season floods (Scott
and Williams, 1978; Keller and Capelli, 1992). River flow is
the major source of sediment exported to the coastal sandy
beaches in SBC. Therefore, the timing of seasonality, path
of runoff, and magnitudes of flood events are critical to both
local community and coastal ecosystems.

2.2 Data

Daily precipitation and temperature with a spatial resolu-
tion of 0.0625◦× 0.0625◦ (roughly 6 by 6 km) (Livneh et
al., 2015), and daily streamflow from four USGS gauges
for the period 1984–2013 were used to calibrate and vali-
date the hydrologic models. The Global Soil Dataset for use
in Earth system models (GSDE) was used to estimate satu-
rated hydraulic conductivity and saturated moisture content.
The 16 d composite albedo product (MCD43C3) with a spa-
tial resolution of 0.05◦× 0.05◦ and the monthly aerosol op-
tical depth product (MOD08M3) with a spatial resolution
of 1.0◦× 1.0◦, both derived from NASA’s Moderate Reso-

lution Imaging Spectroradiometer (MODIS), were used to
determine net radiation for evapotranspiration (PET) estima-
tion. The aerosol optical depth product was downscaled to
0.05◦× 0.05◦ (Raoufi and Beighley, 2017).

For the historical (1986–2005) and future climate simu-
lations (2081–2100), downscaled precipitation and temper-
ature from 10 climate models (please refer to Pierce et
al., 2014, and Pierce et al. ,2015, for model details) in the
Coupled Model Inter-Comparison Project, Phase 5, (CMIP5)
(Taylor et al., 2012) for two emission scenarios, RCP 4.5 and
RCP 8.5 (Moss et al., 2010), were used. These 10 GCMs
were selected because they have the best performance in rep-
resenting historical climate dynamics at southwest U.S. and
California state scales (Pierce et al., 2018).

2.3 Hydrologic modeling framework

2.3.1 Hydrologic model development

This modeling framework was developed on the basis of
the Hillslope River Routing model (HRR) (Beighley et al.,
2009). The watersheds were delineated using the digital el-
evation model (DEM) data with a resolution of 3′′ (∼ 90 m
at the Equator) (Yamazaki et al., 2017). The sub-basins were
irregular-shape catchments defined by the flow accumulation
area threshold. In this study, the threshold was 1 km2, which
means the sub-basins (model units) were a size of roughly
1 km2. The hydrogeological inputs of hydrologic models,
including surface roughness, saturated hydraulic conductiv-
ity, soil thickness, porosity, plane slope, channel slope, and
channel roughness, were averaged over each sub-basin. This
indicates these parameters were averaged for each model
unit, the majority of which has an area of roughly 1 km2,
with less than 1 % having an area of <1 km2. The geome-
try of each sub-basin (plane length and width) was calcu-
lated based on an “open-book” assumption, which assumes
each sub-basin is a rectangle divided by the river channel
into two identical parts like an open book. Please refer to
Beighley et al. (2009) for more details. The grid-based po-
tential ET (PET) was estimated using the method of Raoufi
and Beighley (2017). The precipitation and PET were ex-
tracted for each sub-basin using an area-weighted average
method. Then the water-balance model (i.e., runoff gener-
ation method) was applied to each model unit to simulate
runoff generation processes. Here, three runoff generation
methods, runoff coefficient (Feng et al., 2019) and the meth-
ods used in variable infiltration capacity (VIC) (Wood et al.,
1992; Liang et al., 1996) and simple-TOPMODEL model
(Niu et al., 2005; Beven, 2000; Beven et al., 1995), were used
to simulate the generation of surface and subsurface runoff
excess. The routing methods within the HRR model (i.e.,
kinematic wave for surface and subsurface lateral routing and
Muskingum–Cunge for channel routing) were used to simu-
late the transport of runoff excess. To clarify, we denote the
three runoff generation algorithms, runoff coefficient, runoff
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Figure 1. Study region with USGS streamflow gauges. The inset figure indicates the location of SBC in the state of California (CA).

generation method used in variable infiltration capacity and
runoff generation method used in simple-TOPMODEL, as
RCM, VIC, and STP, respectively. Three hydrologic models
which integrate one of these runoff generation methods with
the HRR routing model are referenced as RCM-HRR, VIC-
HRR, and STP-HRR, respectively. The differences between
simulations from these three models were considered to be
the uncertainty resulting from hydrologic models. The three
runoff generation algorithms were described in the Supple-
ment.

The water movement between soil layers in the soil ma-
trix was similar to that in the modified VIC-2L model (Liang
et al., 1996). The soil was divided into two layers: upper
layer (0.6 m) and lower layer (1.2 m). The soil thickness data
were from the Soil Survey Geographic (SSURGO) Data Base
for Santa Barbara County (NRCS, 1995). After the surface
runoff was determined, the infiltrated water was added to the
upper soil layer, and the soil moisture was updated. If the
upper soil was oversaturated, the excess water was returned
to the surface. The evapotranspiration was estimated using
Eq. (S15) in the Supplement. The interaction between the
upper and lower soil layers was simulated using the Clapper–
Hornberger equation (Eqs. S16–S17). Subsurface runoff was
generated from the bottom of the lower soil layer. After
the water fluxes (runoff, ET, and water movement between
soil layers) were determined, the soil moisture was updated,
which would be used for the water balance calculation in
the next time step. After water excess for surface and sub-
surface runoff was quantified, the kinematic wave approach
was applied to simulate the transport of runoff from the
planes (surface and subsurface), and the Muskingum–Cunge
method was used for channel routing following the conserva-
tion equations (Eqs. S18–S20) (Beighley et al., 2009). Two
conceptual parameters, Ks_all and Kss_all, were used in the
routing model to account for spatial heterogeneity at the
model unit scale and uncertainties in the hydro-geologic in-
puts associated with the plane routing processes (e.g., surface
roughness and saturated hydraulic conductivity). A concep-
tual illustration of the hydrologic models is shown in Fig. 2.

2.3.2 Model calibration

After the models were set up, a state-of-the-art optimiza-
tion algorithm, the Borg Multiobjective Evolutionary Algo-
rithm (Borg MOEA) (Hadka and Reed, 2013), was adopted
to optimize the model parameters (Table 1). The models were
spun up for 1 year to ensure the equilibrium status. For each
model, there were four parameters calibrated for runoff gen-
eration processes and two parameters calibrated for routing
processes. Ks_all and Kss_all are conceptual parameters, and
they can be different for different model structures even for
the same study region. Therefore, they were calibrated for
each model separately. The Nash–Sutcliffe model efficiency
coefficient (NSE) (Eq. 1) was used to assess model perfor-
mance, as it accounts for model performance in terms of both
timing and magnitudes of peak flow and base flow that are
particularly important in this study. The optimal parameter
set was determined after the improvement of error was mini-
mized (here it was defined as 1NSE<0.005).

NSE= 1−
∑T
t=1(Q

t
s−Q

t
o)

2∑T
t=1(Q

t
o−Qo)2

, (1)

where Qt
s and Qt

o are simulated and observed discharge at
time t , respectively (m3 s−1), and Qo is the mean observed
discharge during the study period of length T (m3 s−1).

To quantify the uncertainties from model parameters, we
selected 10 parameter sets using the following criteria: (1) se-
lect 4 parameter sets with the highest NSE based on the cal-
ibration results; (2) rank the remaining parameter sets based
on their performance (i.e., NSE) and randomly select 6 sets
from the top 20 % candidates. This parameter selection pro-
cess enabled us to take both parameter dominance and vari-
ability into account while maintaining the high model perfor-
mance, which is important for the uncertainty analysis. These
10 parameter sets were then used for uncertainty analysis.

2.4 Uncertainty analysis

The uncertainty was quantified by running each of the 30 hy-
drologic model-parameter sets (i.e., 3 hydrologic models and
10 parameter sets, 3× 10= 30) with each of the 20 forcing
sets (i.e., 10 GCMs and 2 emission scenarios, 10× 2= 20)
for a total of 600 simulations. Here, we used GCM out-
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Figure 2. The conceptual framework of the hydrologic models used in this study. Portions of this figure were adapted from the work of
Beighley et al. (2009). (a) shows the grid-based climate inputs for hydrologic models; (b) shows water balance models; P is precipitation;
ET is evapotranspiration; Es is soil evaporation; Ec is canopy evaporation; ET is transpiration; es is water available for surface runoff; ess
is water available for subsurface runoff; θU is relative soil moisture in the upper soil layer; θL is relative soil moisture in lower soil layer; I
is infiltration; K is water flux from the upper layer to the lower layer; and D is diffusive water flux from the lower layer to the upper layer;
(c) shows the HRR routing model; the “open-book” assumption: two identical planes (P1 and P2) with the channel (Ch) in the center of each
sub-basin; qs is surface runoff; qss is subsurface runoff;Q is discharge in the river channel, and WT is the groundwater table. The parameters
in red italic are for surface runoff generation; the parameters in blue italic are for subsurface runoff generation. The first columns in the tables
indicate the models that the parameters are used for. The definition of these parameters can be found in the Supplement.

puts as the forcings of hydrologic models for both historical
(1986–2005) and future (2081–2100) periods. For each sim-
ulation scenario (i.e., the combination of hydrologic model,
parameter set, GCM, and RCP), the historical and future
daily streamflow and runoff were simulated and the relative
changes (%) were quantified. Note that there is no RCP for
the historical period, and we used the same historical simula-
tion for RCP 4.5 and 8.5. To evaluate the uncertainty sources
and their relative significance in these simulated changes in
runoff, discharge, and seasonality for the future period, the
analysis of variance (ANOVA) (Vetter et al., 2015; Addor et
al., 2014; Hattermann et al., 2018; Chegwidden et al., 2019)
was used. The contribution of each uncertainty source for a
variable of interest (e.g., monthly runoff, 100-year flood dis-
charge, or the duration of the wet season) was defined as the
fraction of its variance to the total variance. The total vari-
ance was quantified as the total sum of squares (SStotal) of
differences between the simulations and the mean of all sim-
ulations (Eq. 2):

SSTotal =

NHyd∑
i=1

Npara∑
j=1

NGCM∑
k=1

NRCP∑
l=1

(qijkl − qoooo)
2, (2)

where qijkl is the simulated value of the variable of inter-
est by the ith hydrologic model with the j th parameter set,
forced by the kth GCM projection under the lth RCP sce-
nario; qoooo is the overall average of the simulated variable.
Next, the SSTotal can be divided into 15 parts representing the
four main effects (or first-order effects) and six second-order,

four third-order, and one fourth-order interaction effects. For
clarity, the third and fourth orders of interaction effects were
combined and represented as SS3.4 in Eq. (3).

SSTotal = SSHyd+SSpara+SSGCM+SSRCP+SSHyd.para

+SSHyd.GCM+SSHyd.RCP+SSpara.GCM

+SSpara.RCP+SSGCM.RCP+SS3.4,

(3)

where SSHyd, SSpara, SSGCM, and SSRCP are the main ef-
fects (i.e., uncertainties or variance) from hydrologic mod-
els, hydrologic model parameters, GCMs and RCPs, re-
spectively; SSHyd.para, SSHyd.GCM,SSHyd.RCP, SSpara.GCM,
SSpara.RCP, and SSGCM.RCP are uncertainties from interac-
tions between the hydrologic models and parameterization,
hydrologic models and GCMs, hydrologic models and RCPs,
parameterization and GCMs, parametrization and RCPs, and
GCMs and RCPs, respectively. The calculation of each order
is illustrated in Eqs. (S21)–(S23).

To avoid bias from the difference in sample sizes of uncer-
tainty sources (i.e., 3 hydrologic models, 3 parameter sets,
10 GCMs and 2 RCPs), a subsampling step was performed
by following Vetter et al. (2015). In the subsampling step, 2
samples (i.e., the minimum number of uncertainty sources,
here RCPs) from each source were randomly selected, that
is, 2 hydrologic models, 2 parameter sets, 2 GCMs, and 2
RCPs, which indicates that NHyd, Npara, NGCM, and NRCP in
Eqs. (2) and (S21)–(S22) are all equal to 2. This generated
C2

3 ×C
2
10×C

2
10×C

2
2 = 6075 subsamples. For each subsam-
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Table 1. Calibrated parameters for hydrologic models.

Parameters Description Unit Range RCM-HRR VIC-HRR STP-HRR

Ks_all coefficient to adjust surface
roughness

– 1–20 X X X

Kss_all coefficient to adjust horizontal
hydraulic conductivity

– 10–200 X X X

Ksat_all coefficient to adjust vertical hy-
draulic conductivity

– 0.01–5.0 X

C1 dry runoff coefficient – 0–0.3 X

C2 wet runoff coefficient – 0.2–0.8 X

θt soil moisture threshold separat-
ing dry and wet conditions

– 0.2–0.8 X

bin Infiltration curve shape
parameter

– 0.005–0.5 X

Dm maximum baseflow m d−1 0–0.037 X

Ds fraction of DM where non-
linear baseflow begins

– 0–0.005 X

Ws fraction of the maximum soil
moisture where nonlinear
baseflow occurs

– 0.92–1.0 X

fover Surface runoff coefficient m−1 0.1–5 X

fdrain Subsurface runoff coefficient m−1 0.1–5 X

Qm maximum baseflow m d−1 0.864–1728 X

ϕsat Saturated suction head in the
soil

m −3.05–0 X

ple, the fractional sum of squares was calculated for each ef-
fect using Eqs. (S21)–(S23), and then the average of variance
fractions of each source is used as the uncertainty contribu-
tion from that source using Eq. (S24).

2.5 Probability of estimated changes

In addition to quantifying uncertainties and associated contri-
butions from different sources, an evaluation of the probabil-
ity of uncertain changes in discharge can be useful to provide
actionable information for the stakeholders such as water-
resource managers. In this study, Bayesian model averaging
(BMA) (Duan et al., 2007) was used to evaluate the model
performance in reproducing historical hydrologic conditions,
and then weights were assigned to each of them based on
their performance. A model with better performance was as-
signed a higher weight, assuming it has a higher probability
of representing the truth. Note that there is no RCP for the
historical period, so only combinations of hydrologic mod-
els, parameter sets and GCMs (3×10×10= 300) were eval-
uated. Here the models’ performance in representing annual

mean discharge (Qm) and annual maximum daily discharge
(Qp) is evaluated. Here, the annual mean discharge was de-
fined as the average of daily streamflow in a year. In this
study region, there is typically no rain for most times of a
year, and it is not uncommon in such a Mediterranean climate
region that the annual runoff is mainly generated from one
major storm event. Therefore, the annual mean/max series
are representative of the characteristics of the discharge dy-
namics. The details of this procedure can be found in the Sup-
plement. After the weights of model ensemble were obtained
using the BMA method, the statistics of posterior probabil-
ity distribution (here it was assumed to be normal distribu-
tion) of estimated changes inQm,Qp, andQ100 in the future
(2081–2100) relative to the historical period 1986–2005 were
calculated using Eqs. (S29)–(S34).

2.6 Definition of hydrologic seasonality

To quantify the onset and duration of hydrologic seasons, we
calculated the accumulative discharge in the whole basin for
each water year. Then the day showing the 10 % of accumu-
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lative annual discharge was defined as the onset of the wet
season, and the number of days between 10 % and 90 % of
the accumulated discharge series was defined as the duration
of the wet season.

3 Results and discussion

3.1 Hydrologic model performance

The three hydrologic models performed well in representing
streamflow dynamics in the study region. The NSE varies
within 0.56–0.67 and 0.53–0.62 for the calibration and vali-
dation periods, respectively, in Mission Creek (USGS gauge
no. 11119750) (Fig. 3). At other calibrated watersheds, the
models perform similarly well, with NSE varying between
0.45 and 0.60 for the calibration period and between 0.42
and 0.62 for the validation period (Figs. S1–S3 in the Supple-
ment). Simulated streamflow from the three models matches
the in situ measurements in both magnitudes and timing of
hydrographs at event scales (Fig. 3b). At annual scale, simu-
lated annual peak flows are comparable to the observations in
most years. However, in some years with extreme events, for
example in January 1995, February 1998, and January 2005
(highlighted in Fig. 3c), the simulated peaks are much lower
than the gauge records. This disparity can be attributed to the
input bias (e.g., precipitation or streamflow measurements).
This was identified using an “extreme scenario” simulation,
which assumed 100 % precipitation is transformed to surface
runoff (i.e., without any loss due to, for example, infiltration
or evapotranspiration) and transported immediately to river
channels and represents the maximum streamflow consider-
ing groundwater is minimal in the study region (Beighley
et al., 2003). Even in this extreme scenario, the simulated
peaks were still lower (events highlighted in red in Fig. 3c)
or slightly higher (event highlighted in blue in Fig. 3c) than
the gauge observations. This is likely because model forc-
ings are biased low for these events. One possible source of
this bias can be the grid-based precipitation dataset which
averages the precipitation rates over the grid masking spatial
heterogeneity and thus reducing precipitation rates at some
locations. The uncertainties in gauge measurements can also
be a bias source. For example, in typical conditions the uncer-
tainty in streamflow measurements ranges between 6 % and
19 % in small watersheds, but it can be higher during large
storm events when accurate stage measurements are more
difficult (Harmel et al., 2006). Beighley et al. (2003) also
identified the overestimation of gauge records for the 1995
January event at gauge 11119940. As for mean annual dis-
charge, all three models tend to overestimate it for the study
period, mainly due to the overestimation of subsurface flow
during dry seasons (Fig. 3d). This highlights challenges in
simulating hydrologic processes in semiarid regions under a
Mediterranean climate.

Among the three hydrologic models, STP-HRR has the
best overall performance (i.e., highest average NSE), mainly
due to its better ability to capture flood peaks than the other
two models (Figs. 3, S1–S3). The peak performance is likely
a result of the STP-HRR representing the runoff generation
process as an exponential relationship between soil moisture
and runoff rates, which makes runoff generation more sen-
sitive to soil moisture dynamics as compared to the other
two models. This algorithm is well suited to representing
the significant nonlinearity of hydrologic response to rain-
fall in the study region. RCM-HRR and VIC-HRR have sim-
ilar overall performance (i.e., similar average NSE); how-
ever, they represent hydrologic dynamics differently. VIC-
HRR tends to perform better in representing small peak flows
than RCM-HRR but worse in simulating mean flow (or total
discharge volume) (Figs. 3, S1–S3). This is because as the
wet season proceeds, the lower soil layer is close to satura-
tion (i.e., relative soil moisture is higher than the threshold
Ws for VIC-HRR), which initiates the quadratic relationship
between soil moisture and subsurface runoff in VIC-HRR.
This quadratic response to soil moisture conditions can lead
to much higher subsurface runoff (1–2 orders of magnitude
higher than that of RCM-HRR), which contributes to the
lower performance in reproducing the total volume of dis-
charge. This also explains that VIC-HRR generates the high-
est subsurface runoff during the wet season (Fig. 4). In ad-
dition, VIC-HRR also generates the most surface runoff dur-
ing the wet season (Fig. 4). This is because when soil is al-
most saturated, surface runoff in VIC-HRR is almost a lin-
ear function of precipitation with a coefficient of 1 (much
larger than RCM-HRR, which is 0.2 (C2), and STP-HRR,
which is around 0.5 depending on the watershed topogra-
phy). The higher surface and subsurface runoff generated by
VIC-HRR lead to the overestimation of mean annual flow
(Fig. 3d). However, there are no in situ measurements of
surface and subsurface runoff fluxes, and it is difficult to
evaluate model performance for these quantities. In Fig. 4,
the simulated surface and subsurface runoff from National
Land Data Assimilation Systems VIC model (NLDAS-VIC)
(Xia et al., 2012) outputs are shown for the purpose of com-
parison. The NLDAS-VIC runoff simulations are from the
same runoff generation model (i.e., VIC) as used in this work
and have similar spatial/temporal resolutions to those in this
study, which makes it a suitable reference for comparison.
A similar pattern, i.e., a very high subsurface runoff, even
higher than surface runoff, during the wet season, can be
found from NLDAS-VIC simulations. The surface runoff of
NLDAS-VIC is lower than those generated by the models
in this study, which is probably because of the difference
in precipitation inputs. The NLDAS precipitation input is
lower during the wet season than that used in this study for
the study region. In addition, the difference in spatial reso-
lutions of precipitation (0.125◦ for NLDAS vs. 0.0625◦ for
this study) can also contribute to the difference in simulated
runoff.
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Figure 3. Model performance for calibration and validation periods: (a) model performance (assessed by NSE) during the calibration process;
the x axis is the normalized calibration process; the “normalized calibration process” means the x axis range is normalized by the number of
iterations during calibration; (b) hydrographs simulated by three calibrated models and measured by the USGS gauge; in order to show the
details of the hydrographs, they are zoomed in to the wet season in 2001; the model performance is similar in other years; (c) simulated annual
peak flow during calibration (water year 1985–2005) and validation (water year 2006–2011) periods as compared with in situ observations;
black texts indicate model performance (i.e., NSE); the points highlighted in red arrows indicate the events were not reproduced by models
due to the input (e.g., precipitation or discharge observation) bias; the point highlighted in blue arrow is similar to those in red but at a
lower probability; and (d) simulated and observed annual mean flow during calibration and validation periods. For clarity, only results for
the Mission Creek watershed (USGS gauge no. 11119750) are shown here; results for other gauged watersheds are similar and can be found
in the Supplement (Figs. S1–S3).

These results may suggest that STP-HRR is more suit-
able than VIC-HRR in representing hydrologic processes in
Mediterranean regions, where 80 % of annual precipitation is
concentrated in a short period (roughly 3 months). As the wet
season proceeds, the soil is close to saturation conditions, un-
der which the saturation excess overland flow is dominant.
That explains why STP-HRR performs best in this study
region. VIC-HRR is probably more suitable to the regions
where precipitation events are sparsely distributed where soil
is not easy to get saturated. Although RCM is an empirical
method, it performs fairly well in this study, mainly because
it captures the nonlinearity of hydrologic processes through
a switch between dry and wet surface runoff coefficients (C1
and C2) based on the soil moisture conditions.

Ten sets of parameters were selected for each model
(Fig. 5). Most optimal parameter sets (red circles in Fig. 5)
are very close, except for C1,Ks_all in RCM-HRR andKs_all,
Ds in VIC-HRR, suggesting that most parameters are impor-
tant factors controlling model performance. For the randomly
selected parameters (green circles in Fig. 5), most of them
spread over the whole range, suggesting sufficient space for
uncertainty analysis.

3.2 Impacts and uncertainty analysis

The projected changes in monthly runoff (surface, subsur-
face, and total) during 2081–2100 compared to the 1986–
2005 range between −100 % and 300 % (Fig. 6a). The me-
dian changes indicate that surface runoff will probably in-
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Figure 4. Simulated monthly surface and subsurface runoff for the
Mission Creek watershed (USGS gauge no. 11119750) by three
models for the calibration period (water year 1985–2005). Surface
runoff is denoted by “SR” and subsurface runoff is denoted by “SS”
in this figure. Monthly surface and subsurface runoff from National
Land Data Assimilation Systems (NLDAS) VIC model simulation
for the same period are shown here for comparison purposes.

crease in February and March and decrease in other months
(Fig. 6a). This is because in the future, the onset of the wet
season will be delayed and more severe storm events will oc-
cur during the shorter wet season (mainly during February
and March) (Feng et al., 2019). The decrease in subsurface
runoff in all months is probably because of the decrease in
the frequency (or total number) of storm events (Feng et al.,
2019). The changes in monthly total runoff show a similar
pattern to the surface runoff, suggesting the more pronounced
changes in surface runoff as compared to subsurface runoff.
The major uncertainty sources are GCM and RCP, which
account for ∼ 45 % of the total uncertainty (Fig. 6b). Hy-
drologic models contribute ∼ 10 % of the total uncertainty
(Fig. 6b). This suggests that the climate patterns (e.g., storm
event frequency and intensity) are more important factors
controlling the runoff generation than the hydrologic model
algorithms.

For the 28 major watersheds in SBC, the projected changes
inQm during 2081–2100 as compared to the historical period
1986–2005 range from −100 % to 220 % (Fig. S4). The me-
dian changes for each of these major watersheds are slightly
above 0 %, varying between 1 % and 8 %. The major uncer-
tainty sources are GCM and RCP, which account for ∼ 54 %
of the total uncertainty. Among the first-order factors (i.e.,
GCM, RCP, hydrologic model, and parameterization), hydro-
logic model ranks third after GCM and RCP, accounting for
10 %–15 % of total uncertainty. In contrast, parameterization
only induces less than 2 % of the total uncertainty. The re-
maining 25 %–35 % uncertainty is from the second-, third-,
and fourth-order interactions between the four major sources.
The projected relative changes in Qp and Q100 are similar
in magnitude, both varying from −90 % to 250 % (Figs. S5

Figure 5. Parameters (black circles) sampled during the calibration
process and their corresponding performance (assessed by NSE).
The red circles indicate the four parameter sets with the highest
NSE values, and the green circles indicate six randomly selected
parameter sets from the top 20 % samples (ranked by NSE). These
10 parameter sets were used for uncertainty analysis. In this figure,
the parameter values are normalized by their ranges (shown in Ta-
ble 1), so the range of the x axis is 0–1. The parameters were sam-
pled throughout their whole ranges; however, for clarity, samples
with NSE lower than 0.3 are not shown in this figure.

and 7). The median changes in Qp and Q100 for each wa-
tershed are higher than those of Qm, ranging between 10 %
and 40 %. For most of the watersheds, GCM and RCP are
the two major uncertainty contributors for Qp and Q100, ac-
counting for ∼ 45 % of total uncertainties. The hydrologic
model contributes ∼ 14 % of total uncertainties in Qp and
Q100. Compared to Qm, Qp and Q100 get more uncertainty
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Figure 6. (a) Projected relative changes (%) in monthly surface
runoff, subsurface runoff, and total runoff in the whole study re-
gion during 2081–2100 as compared to the historical period (1986–
2005); (b) relative contributions (%) of the uncertainties for the pro-
jected changes in the monthly total runoff; Hydro: hydrologic mod-
els; Para: hydrologic model parameters; GCM: general circulation
model; RCP: representative concentration pathway (emission sce-
narios); “other” is the uncertainty from the third and fourth orders
of interactions between the four major sources (i.e., GCMs, RCPs,
hydrologic models, and parameters).

from the hydrologic models, which is likely due to highly
nonlinear rainfall–runoff behavior and larger differences be-
tween runoff generation methods in generating peak flows as
compared to average flow conditions.

Changes in Qm, Qp, and Q100 are higher under RCP 8.5,
but the uncertainties are also higher (Fig. 8), which sug-
gests the higher contribution of RCP 8.5 in the uncertainties
of higher-order interactions between RCP and other factors
(i.e., GCM, hydrologic model, and parameters). In Mission
Creek watershed (USGS gauge no. 11119750), the probabil-
ity of increase in Qm under RCP 4.5 is only 51 %. However,
this probability increases to 64 % under RCP 8.5. For the less
frequent events (Qp and Q100), the probabilities of positive
changes are higher: 78 % and 85 % for Qp and Q100, respec-
tively, under RCP 8.5. This implies that if RCP 8.5 happens
in the future, the extreme events will probably get intensified.

Consistent with the work of Feng et al. (2019), this study
suggests a delayed onset and shorter duration of the wet sea-
son (Fig. 9a). The median changes show that the wet sea-
son will start later by 3 d and become shorter by ∼ 6 d. The
major uncertainty sources for both onset and duration of
the wet season are GCM (∼ 20 %) and hydrologic models
(∼ 15 %). Different from discharge and runoff, the seasonal-

ity shows more uncertainty from hydrological models (15 %
vs. 12 %) and model parameters (∼ 6 % vs. 2 %) (Fig. 9b).
This is because the seasonality integrates the runoff genera-
tion, paths, and transport processes for both surface and sub-
surface runoff, which are important for the timing and quan-
tity of simulated discharge.

As the major carrier of nutrients/sediment, surface runoff
and discharge are crucial for beach ecosystems in the study
region (Myers et al., 2019; Aguilera and Melack, 2018). Nu-
trients and sediment build up over land surface and in chan-
nels during the dry season and get flushed with the initi-
ation of the wet season (Scott and Williams, 1978; Keller
and Capelli, 1992; Bende-Michl et al., 2013; Aguilera and
Melack, 2018). The nutrients/sediment fluxes are positively
correlated with hydrologic variability, and the majority of
them occurs at the beginning of the wet season (Aguilera
and Melack, 2018; Homyak et al., 2014). Therefore, both
timing and magnitude of runoff and discharge will impact
the nutrients/sediment export to the coastal ecosystems. The
findings in this study reveal that the surface runoff and river
discharge (especially the extremes) will increase but get de-
layed during the wet season (Figs. 6 and 9), implying that the
nutrients/sediment fluxes will likely increase and occur in a
shorter and delayed period. The decrease in runoff (both sur-
face and subsurface) during the dry season suggests that the
soil moisture will be lower under future climate conditions in
the study region. The longer and drier dry season will proba-
bly increase the occurrence of severe droughts and wildfires.

Compared to previous studies (e.g., Vetter et al., 2015,
Schewe et al., 2014; Hagemann et al., 2013; Troin et al.,
2018; and Asadieh and Krakauer, 2017), this work identi-
fies relatively low uncertainty contributions from hydrologic
models. The main reason for this is probably that the hydro-
logic model uncertainty in this study was only from runoff
generation algorithms and associated parameters. As is, the
three hydrologic models share common algorithms for ET
and plane/channel routing and the same model configuration
(e.g., soil matrix and model unit definition). These similar-
ities among models likely reduced the differences in sim-
ulated runoff and discharge. In addition, the uniform cali-
bration approach and parameter selection criteria were also
likely to eliminate user/method bias, which is common in
studies that consider more than one hydrologic model. In
contrast, the hydrologic models used in previous studies have
their own model component algorithms (e.g., ET and rout-
ing algorithms) and model configurations. For example, the
VIC model (here VIC refers to the original VIC model and
is different from the model used in this study; to clarify, in
the following text, VIC refers to the original VIC model,
while VIC-HRR refers to the model used in this study) ap-
plies an ET algorithm different from the one used in this
study (Raoufi and Beighley, 2017), uses the grid-based model
units, ignoring the spatial arrangement, and has its own rout-
ing scheme which adopts the synthetic unit hydrograph con-
cept. When comparing models owning their own component
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Figure 7. (a) Projected relative changes (%) in 100-year flood discharge (Q100) in the major SBC watersheds (indicated by the grey wa-
tersheds in the map) during 2081–2100 as compared to the historical period (1986–2005); each bar depicts relative changes in minimum,
maximum, median, and the 1st and 3rd quartiles for the ensemble outputs; bars from left to right spatially correspond to watersheds from
west to east. For clarity, only watersheds with drainage areas larger than 7 km2, which account for roughly 83 % of the study area, are shown.
(b) Relative contributions (%) of the uncertainties in the projected changes at each of these watersheds; Hydro: hydrologic models; Para:
hydrologic model parameters; GCM: general circulation model; RCP: representative concentration pathway (emission scenarios); “other” is
the uncertainty from the third and fourth orders of interactions between the four major sources (i.e., GCMs, RCPs, hydrologic models, and
parameters).

Figure 8. Probability of changes in Qm, Qp, and Q100 at the Mission Creek watershed (no. 20 in the Fig. 7 map). The numbers in the plot
are the probabilities of positive changes in Qm, Qp, and Q100 (areas of shaded regions) under each emission scenario (blue numbers are for
RCP 4.5 and red numbers are for RCP 8.5).
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Figure 9. (a) Projected change (days) in the onset and duration of
the wet season in SBC; positive (negative) values indicate later (ear-
lier) onset or longer (shorter) duration of the wet season; (b) rela-
tive contributions (%) of the uncertainties of the projected changes
in seasonality. Hydro: hydrologic models; Para: hydrologic model
parameters; GCM: general circulation model; RCP: representative
concentration pathway (emission scenarios); “other” is the uncer-
tainty from the third and fourth orders of interactions between the
four major sources (i.e., GCMs, RCPs, hydrologic models, and pa-
rameters).

algorithms, the differences between models likely resulted in
larger uncertainties in the simulation from hydrologic models
in previous studies.

This study can also provide useful information for hy-
drologic model evaluation and selection. As discussed in
Sect. 3.1, the STP-HRR model is more suitable than the other
two models for the study region, mainly due to its ability to
represent the highly nonlinear hydrological response to pre-
cipitation forcings. This implies hydrologic models adopt-
ing the saturation excess runoff generation algorithms may
be more suitable for areas with a Mediterranean climate.
The uncertainties from hydrologic models are larger than
those from the hydrologic model parameters for all vari-
ables (i.e., discharge, runoff and seasonality), suggesting the
inter-model variability is larger than the intra-model variabil-
ity (from model parameters). This implies that model se-
lection is more important than the parameter selection and
that the parameter equifinality (or non-uniqueness) is less of
a concern when quantifying climate change impacts on hy-
drologic fluxes using an ensemble of GCM forcings. In this
study, only the runoff generation algorithm was investigated.
Other hydrologic model components, such as ET algorithms
and routing methods, also have variants. The choice of these
components may also make a difference in the total uncer-
tainties in simulated runoff and streamflow. In addition, the
methods for GCM downscaling can also contribute to the un-
certainty in predicted changes in hydrology. Further study
integrating different algorithms for hydrologic model com-
ponents as well as GCM downscaling methods can be con-
ducted in the future. Such analysis can be useful to guide
stakeholders to select appropriate hydrologic algorithms and
to develop actionable adaptation and mitigation strategies to
accommodate climate change.

This is the first study investigating hydrologic model un-
certainty solely from runoff generation algorithms for a re-
gion with a Mediterranean climate. The framework devel-
oped in this study can be potentially used to identify the in-
ternal uncertainties of hydrologic models, i.e., uncertainties
from hydrologic model components (e.g., runoff generation
algorithms, ET algorithms, and routing models), which is
particularly important for assessing model performance and
quantifying the relative roles of different components in the
uncertainty of simulations. This study region is a represen-
tative Mediterranean area characterized by dry summers and
wet winters. This climate pattern and the highly nonlinear
relationship between climate and hydrology significantly im-
pact local society, agriculture, and ecosystems, as discussed
before. The findings in this study, including the favorability
of the STP algorithm, the important role of GCM selection,
and the negligible role of hydrologic model parameters in the
uncertainty, can be useful for studies associated with hydro-
logic model evaluation and climate change impact analysis
for other Mediterranean regions.

4 Conclusions

A modeling framework which integrates multiple runoff gen-
eration algorithms (VIC, STP, and RCM) with the HRR rout-
ing model was developed. Forced with an ensemble of GCM
outputs under different emission scenarios, this framework
is able to quantify the climate change impacts on surface
and subsurface runoff, streamflow, and hydrologic season-
ality and evaluate the associated uncertainties from different
sources (i.e., RCPs, GCMs, hydrologic process models and
parameterization). The results show that the surface runoff
will likely increase in February and March while decrease
in other months, and the subsurface runoff will likely de-
crease due to changes in the patterns of storm events. The
median changes in mean annual discharge for the major wa-
tersheds in SBC are 1 %–8 %, with an uncertainty of 320 %
(here, uncertainty refers to the range of predicted relative
changes among models, that is, from −100 % to +220 %);
the median changes in annual peak discharge and 100-year
flood discharge are higher than those of mean annual dis-
charge, varying between 10 % and 40 %, but with a higher
uncertainty of 340 % (−90 % to +250 %). The results based
on the BMA analysis indicate that there is a high proba-
bility (up to 85 %) that streamflow, especially the extreme
quantities (e.g.,Q100) under RCP 8.5, will increase. The sea-
sonality analysis shows that the wet season will be delayed
(by 3 d, median) and shortened (by 6 d, median). For the un-
certainties in the projected changes in runoff and discharge,
GCM and RCP are the top two contributors, accounting for
roughly 50 % of total uncertainties at most major watersheds
in SBC, while hydrologic process models (i.e., runoff gen-
eration modules) contribute ∼ 12 % on average, with the re-
maining 30 %–40 % of the uncertainty coming from the inter-
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actions between these individual sources. Hydrologic model
parameters alone contribute less than 2 % of the uncertainty.
In contrast, for the changes in seasonality, the uncertainty
contributions from hydrologic models (∼ 15 %) and hydro-
logic model parameters (∼ 6 %) are higher as compared to
those for runoff and discharge, making GCMs and hydro-
logic models the two major uncertainty sources.

Unique to the framework in this study, the uncertainties
from different hydrologic model components (e.g., runoff
generation process) and associated model parameterizations
can be identified and quantified. The results can be useful for
practices and studies in many fields, e.g., water resources,
risk controls, and ecosystem conservation, for the study re-
gion as well as other Mediterranean regions.
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