Articles | Volume 23, issue 9
https://doi.org/10.5194/hess-23-3969-2019
https://doi.org/10.5194/hess-23-3969-2019
Research article
 | 
27 Sep 2019
Research article |  | 27 Sep 2019

Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues

Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud

Related authors

Modeling the response of soil moisture to climate variability in the Mediterranean region
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021,https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Detection and attribution of flood trends in Mediterranean basins
Yves Tramblay, Louise Mimeau, Luc Neppel, Freddy Vinet, and Eric Sauquet
Hydrol. Earth Syst. Sci., 23, 4419–4431, https://doi.org/10.5194/hess-23-4419-2019,https://doi.org/10.5194/hess-23-4419-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025,https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025,https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025,https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary

Cited articles

Akhtar, M., Ahmad, N., and Booij, M.: The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios, J. Hydrol., 355, 148–163, 2008. a
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat. Geosci., 5, 127–132, 2012. a, b, c
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. a, b
Bajracharya, B., Uddin, K., Chettri, N., Shrestha, B., and Siddiqui, S. A.: Understanding land cover change using a harmonized classification system in the Himalaya: a case study from Sagarmatha National Park, Nepal, Mt. Res. Dev., 30, 143–156, 2010. a, b, c, d
Bajracharya, S. R.: Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data, International Centre for Integrated Mountain Development, 2014. a
Download
Short summary
In a context of climate change, the quantification of the contributions of glacier melt, snowmelt, and rain to the river streamflow is a key issue for assessing the current and future water resource availability. This study discusses the representation of the snow and glacier processes in hydrological models and its impact on the estimated flow components, and also addresses the issue of defining the glacier contribution to the river streamflow.
Share