Articles | Volume 23, issue 6
https://doi.org/10.5194/hess-23-2715-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-2715-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
Universität Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria
Marlis Hofer
Universität Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria
Fabien Maussion
Universität Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria
Ethan Gutmann
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Alexander Gohm
Universität Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria
Mathias W. Rotach
Universität Innsbruck, Department of Atmospheric and Cryospheric Sciences, Innsbruck, Austria
Related authors
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3263, https://doi.org/10.5194/egusphere-2024-3263, 2024
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of start and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help to make informed decisions about water usage, and the framework can be applied to other regions as well.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
EGUsphere, https://doi.org/10.5194/egusphere-2024-3146, https://doi.org/10.5194/egusphere-2024-3146, 2024
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1900, https://doi.org/10.5194/egusphere-2024-1900, 2024
Short summary
Short summary
This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere which would for example lead to higher potential for long-range transport.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
Weather Clim. Dynam., 5, 609–631, https://doi.org/10.5194/wcd-5-609-2024, https://doi.org/10.5194/wcd-5-609-2024, 2024
Short summary
Short summary
Day-to-day weather over mountains remains a significant challenge in the domain of weather forecast. Using a combination of measurements from several instrument platforms, including Doppler lidars, aircraft, and radiosondes, we developed a method that relies primarily on turbulence characteristics of the lowest layers of the atmosphere. As a result, we identified new ways in which atmosphere behaves over mountains during daytime, which may serve to further improve forecasting capabilities.
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387, https://doi.org/10.5194/egusphere-2024-387, 2024
Short summary
Short summary
Usually, glacier models are supplied with climate information from long (e.g. 100 year) simulations by global climate models. In this paper, we test the feasibility of supplying glacier models with shorter simulations, to get more accurate information on 5–10 year time scales. Reliable information on these time scales is very important, especially for water management experts to know how much meltwater to expect, for rivers, agriculture and drinking water.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andrew Wood
EGUsphere, https://doi.org/10.5194/egusphere-2023-2326, https://doi.org/10.5194/egusphere-2023-2326, 2023
Short summary
Short summary
There is a perceived mismatch between the spatial scales that global climate models can produce data and that needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We identified a potential set of water use decision metrics to assess their credibility in the Community Earth System Model v2 (CESM2). CESM2 can reliably reproduce many of these metrics and shows potential to support long-range water resource decisions.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023, https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
Short summary
On summer days over mountains, upslope winds transport moist air towards mountain tops and beyond, making local rain showers more likely. We use idealized simulations to investigate how mountain steepness affects this mechanism. We find that steeper mountains lead to a delayed onset and lower intensity of the storms, because less moisture accumulates over the ridges and the thermal updraft zone at the top is narrower and thus more prone to the intrusion of dry air from the environment.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Manuel Saigger and Alexander Gohm
Weather Clim. Dynam., 3, 279–303, https://doi.org/10.5194/wcd-3-279-2022, https://doi.org/10.5194/wcd-3-279-2022, 2022
Short summary
Short summary
In this work a special form of a foehn wind in an Alpine valley with a large-scale northwesterly flow is investigated. The study clarifies the origin of the air mass and the mechanisms by which this air enters the valley. A trajectory analysis shows that the location where the main airstream passes the crest line is more suitable for a foehn classification than the local or large-scale wind direction. Mountain waves and a lee rotor were crucial for importing air into the valley.
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Geosci. Model Dev., 15, 669–681, https://doi.org/10.5194/gmd-15-669-2022, https://doi.org/10.5194/gmd-15-669-2022, 2022
Short summary
Short summary
We present WRFlux, an open-source software that allows numerically consistent, time-averaged budget evaluation of prognostic variables for the numerical weather prediction model WRF as well as the transformation of the budget equations from the terrain-following grid of the model to the Cartesian coordinate system. We demonstrate the performance and a possible application of WRFlux and illustrate the detrimental effects of approximations that are inconsistent with the model numerics.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Short summary
Information on snow stability is important for avalanche forecasting. To improve the stability estimation in the snow cover model SNOWPACK, we suggested an improved parameterization for the critical crack length. We compared 3 years of field data to SNOWPACK simulations. The match between observed and modeled critical crack lengths greatly improved, and critical weak layers appear more prominently in the modeled vertical profile of critical crack length.
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019, https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary
Short summary
To provide estimates of past glacier mass changes, an adequate initial state is required. However, information about past glacier states at regional or global scales is largely incomplete. Our study presents a new way to initialize the Open Global Glacier Model from past climate information and present-day geometries. We show that even with perfectly known but incomplete boundary conditions, the problem of model initialization leads to nonunique solutions, and we propose an ensemble approach.
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019, https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
Short summary
We have implemented a frontal ablation parameterization into the Open Global Glacier Model and have shown that inversion methods based on mass conservation systematically underestimate the mass turnover (and therefore the thickness) of tidewater glaciers when neglecting frontal ablation. This underestimation can rise up to 19 % on a regional scale. Not accounting for frontal ablation will have an impact on the estimate of the glaciers’ potential contribution to sea level rise.
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Short summary
This study presents airborne measurements in shallow convection over land to investigate the dynamic properties of clouds focusing on possible narrow downdraughts in the surrounding of the clouds. A characteristic narrow downdraught region (
subsiding shell) is found directly outside the cloud borders for the mean vertical wind distribution. The
subsiding shellresults from the distribution of the highly variable updraughts and downdraughts in the near vicinity of the cloud.
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Hugues Goosse, Pierre-Yves Barriat, Quentin Dalaiden, François Klein, Ben Marzeion, Fabien Maussion, Paolo Pelucchi, and Anouk Vlug
Clim. Past, 14, 1119–1133, https://doi.org/10.5194/cp-14-1119-2018, https://doi.org/10.5194/cp-14-1119-2018, 2018
Short summary
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Cameron Wobus, Ethan Gutmann, Russell Jones, Matthew Rissing, Naoki Mizukami, Mark Lorie, Hardee Mahoney, Andrew W. Wood, David Mills, and Jeremy Martinich
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017, https://doi.org/10.5194/nhess-17-2199-2017, 2017
Short summary
Short summary
We linked modeled changes in the frequency of historical 100-year flood events to a national inventory of built assets within mapped floodplains of the United States. This allowed us to project changes in inland flooding damages nationwide under two alternative greenhouse gas (GHG) emissions scenarios. Our results suggest that more aggressive GHG reductions could reduce the projected monetary damages from inland flooding, potentially saving billions of dollars annually by the end of the century.
Stephan Peter Galos, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, and Georg Kaser
The Cryosphere, 11, 1417–1439, https://doi.org/10.5194/tc-11-1417-2017, https://doi.org/10.5194/tc-11-1417-2017, 2017
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Daniel Leukauf, Alexander Gohm, and Mathias W. Rotach
Atmos. Chem. Phys., 16, 13049–13066, https://doi.org/10.5194/acp-16-13049-2016, https://doi.org/10.5194/acp-16-13049-2016, 2016
Short summary
Short summary
Since populated valleys suffer often from poor air quality, it is of interest to better understand the various mechanisms relevant to remove pollutants from the valley atmosphere. One mechanism is the transport by along-slope flows, which are generated during fair-weather days. In this study we quantify the amount of tracer that is removed from a valley atmosphere and the amount that is re-circulated within the valleys. For this study we are using the numerical weather model WRF.
Wolfgang Gurgiser, Irmgard Juen, Katrin Singer, Martina Neuburger, Simone Schauwecker, Marlis Hofer, and Georg Kaser
Earth Syst. Dynam., 7, 499–515, https://doi.org/10.5194/esd-7-499-2016, https://doi.org/10.5194/esd-7-499-2016, 2016
Short summary
Short summary
Working on the interface of water availability and water demand in a small Andean catchment, peasants’ reports on detrimental precipitation changes during the last decades have attracted our scientific interest. We could not confirm any precipitation trends in this period with nearby precipitation records, but we found precipitation patterns that very likely pose challenges for rain-fed farming – in addition to potential other stresses by environmental and sociopolitical changes.
S. Biskop, F. Maussion, P. Krause, and M. Fink
Hydrol. Earth Syst. Sci., 20, 209–225, https://doi.org/10.5194/hess-20-209-2016, https://doi.org/10.5194/hess-20-209-2016, 2016
Short summary
Short summary
In this study, the hydrological model J2000g was extended and applied to four selected endorheic lake basins in the southern-central part of the TP aiming to provide a more quantitative understanding of the key factors controlling their water balance. The model results indicated that the relative contribution of glacier runoff to total water inflow (between 14 and 30 %) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas.
N. Kljun, P. Calanca, M. W. Rotach, and H. P. Schmid
Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, https://doi.org/10.5194/gmd-8-3695-2015, 2015
Short summary
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
M. N. Lang, A. Gohm, and J. S. Wagner
Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015, https://doi.org/10.5194/acp-15-11981-2015, 2015
F. Maussion, W. Gurgiser, M. Großhauser, G. Kaser, and B. Marzeion
The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, https://doi.org/10.5194/tc-9-1663-2015, 2015
Short summary
Short summary
Using a newly developed open-source tool, we downscale the glacier surface energy and mass balance fluxes at Shallap Glacier. This allows an unprecedented quantification of the ENSO influence on a tropical glacier at climatological time scales (1980-2013). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported and provide keys to understand its mechanism.
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Short summary
We investigate the impact of surface debris on glacier energy and mass fluxes and on atmosphere-glacier feedbacks in the Karakoram range, by including debris in an interactively coupled atmosphere-glacier model. The model is run from 1 May to 1 October 2004, with a simple specification of debris thickness. We find an appreciable reduction in ablation that exceeds 5m w.e. on glacier tongues, as well as significant alterations to near-surface air temperatures and boundary layer dynamics.
G. Massaro, I. Stiperski, B. Pospichal, and M. W. Rotach
Atmos. Meas. Tech., 8, 3355–3367, https://doi.org/10.5194/amt-8-3355-2015, https://doi.org/10.5194/amt-8-3355-2015, 2015
J. S. Wagner, A. Gohm, and M. W. Rotach
Atmos. Chem. Phys., 15, 6589–6603, https://doi.org/10.5194/acp-15-6589-2015, https://doi.org/10.5194/acp-15-6589-2015, 2015
J. Curio, F. Maussion, and D. Scherer
Earth Syst. Dynam., 6, 109–124, https://doi.org/10.5194/esd-6-109-2015, https://doi.org/10.5194/esd-6-109-2015, 2015
M. Hofer, B. Marzeion, and T. Mölg
Geosci. Model Dev., 8, 579–593, https://doi.org/10.5194/gmd-8-579-2015, https://doi.org/10.5194/gmd-8-579-2015, 2015
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, https://doi.org/10.5194/tc-8-1429-2014, 2014
E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl
Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, https://doi.org/10.5194/cp-10-91-2014, 2014
K. Zink, A. Pauling, M. W. Rotach, H. Vogel, P. Kaufmann, and B. Clot
Geosci. Model Dev., 6, 1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, https://doi.org/10.5194/gmd-6-1961-2013, 2013
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, https://doi.org/10.5194/tc-7-779-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief
Model: Procedures, Data Sources and Analysis, US Department of
Commerce, National Oceanic and Atmospheric Administration, National
Environmental Satellite, Data, and Information Service, National Geophysical
Data Center, Marine Geology and Geophysics Division Colorado, 2009. a
Barrell, D., Andersen, B., and Denton, G.: Glacial Geomorphology
of the Central South Island, New Zealand, GNS Science Monograph, GNS
Science, 2011. a
Barstad, I. and Grønås, S.: Dynamical structures for southwesterly
airflow over southern Norway: the role of dissipation, Tellus A, 58, 2–18,
https://doi.org/10.1111/j.1600-0870.2006.00152.x, 2006. a
Barstad, I. and Schüller, F.: An Extension of Smith's Linear Theory of
Orographic Precipitation: Introduction of Vertical Layers*, J.
Atmos. Sci., 68, 2695–2709, https://doi.org/10.1175/JAS-D-10-05016.1, 2011. a
Benestad, R. E., Hanssen-Bauer, I., and Chen, D.: Empirical-Statistical
Downscaling, World Scientific, p. 22, https://doi.org/10.1142/6908, 2008. a
Bernhardt, M., Härer, S., Feigl, M., and Schulz, K.: Der Wert Alpiner
Forschungseinzugsgebiete im Bereich der Fernerkundung, der
Schneedeckenmodellierung und der lokalen Klimamodellierung,
Österreichische Wasser- und Abfallwirtschaft,
https://doi.org/10.1007/s00506-018-0510-8, 2018. a, b, c, d
Chater, A. M. and Sturman, A. P.: Atmospheric Conditions Influencing the
Spillover of Rainfall to Lee of the Southern Alps, New Zealand,
International J. Climatol., 18, 77–92,
https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M, 1998. a
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I.,
Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R., Rueda, M., Mearns, V.,
Menéndez, L., G, C., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.:
Regional Climate Projections, in: Climate Change 2007: The
Physical Science Basis, Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hølm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Di Luca, A., de Elía, R., and Laprise, R.: Challenges in the quest for
added value of regional climate dynamical downscaling, Current Climate Change Reports, 1, 10–21, https://doi.org/10.1007/s40641-015-0003-9, 2015. a
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review
and proposed framework, Meteorol. Appl., 15, 51–64, 2008. a
Ebert, E. E.: Neighborhood Verification: A Strategy for Rewarding Close
Forecasts, Weather Forecast., 24, 1498–1510,
https://doi.org/10.1175/2009WAF2222251.1, 2009. a
Emanuel, K. A.: Atmospheric Convection, Oxford University Press, New York, 1994. a
Engelhardt, M., Leclercq, P., Eidhammer, T., Kumar, P., Landgren, O., and
Rasmussen, R.: Meltwater runoff in a changing climate (1951–2099) at Chhota
Shigri Glacier, Western Himalaya, Northern India, Ann. Glaciol., 58,
1–12, https://doi.org/10.1017/aog.2017.13, 2017. a, b, c, d
Georgakakos, K., Graham, N., Carpenter, T., and Yao, H.: Integrating
climate-hydrology forecasts and multi-objective reservoir management for
northern California, EOS T. Am. Geophys. Un., 86,
122–127, https://doi.org/10.1029/2005EO120002, 2005. a
Goodison, B., Sevruk, B., and Klemm, S.: WMO solid precipitation measurement
intercomparison: Objectives, methodology, analysis, Atmos. Depos, 179,
57–64, 1989. a
Griffiths, G. A. and McSaveney, M.: Distribution of mean annual precipitation
across some steepland regions of New Zealand, New Zeal. J.
Sci., 26, 197–209, 1983. a
Groisman, P. Y. and Legates, D. R.: Documenting and detecting long-term
precipitation trends: Where we are and what should be done, Climatic Change,
31, 601–622, https://doi.org/10.1007/BF01095163, 1995. a, b
Guo, Y. and Chen, S.: Terrain and land use for the fifth-generation Penn
State/NCAR Mesoscale Modeling System (MM5): Program TERRAIN, Tech. rep.,
NCAR, https://doi.org/10.5065/D68C9T67, 1994. a
Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Gochis, D. J., Clark,
M. P., Dudhia, J., and Thompson, G.: A Comparison of Statistical and
Dynamical Downscaling of Winter Precipitation over Complex Terrain, J.
Climate, 25, 262–281, https://doi.org/10.1175/2011JCLI4109.1, 2012. a
Hill, G.: Grid telescoping in numerical weather prediction, J. Appl.
Meteorol., 7, 29–38,
https://doi.org/10.1175/1520-0450(1968)007<0029:GTINWP>2.0.CO;2, 1968. a
Horak, J., Hofer, M., Maussion, F., Gutmann, E., Gohm, A., and Rotach, M. W.:
Dataset – Assessing the Added Value of the Intermediate Complexity
Atmospheric Research Model (ICAR) for Precipitation in Complex Topography,
https://doi.org/10.5281/zenodo.1135131, 2019. a, b, c, d
Hoyer, S. and Hamman, J.: xarray: ND labeled Arrays and Datasets in Python,
Journal of Open Research Software, 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jarosch, A. H., Anslow, F. S., and Clarke, G. K.: High-resolution precipitation
and temperature downscaling for glacier models, Clim. Dynam., 38,
391–409, 2012. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year
reanalysis project, B. Am. Meteorol. Soc., 77,
437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kerr, T., Owens, I., and Henderson, R.: The precipitation distribution in the
Lake Pukaki Catchment, J. Hydrol. (New Zealand), 50, 361–382,
2011. a
Kidson, J. W.: An automated procedure for the identification of synoptic types
applied to the New Zealand region, Int. J. Climatol., 14,
711–721, https://doi.org/10.1002/joc.3370140702, 1994a. a, b
Kidson, J. W.: Relationship of New Zealand daily and monthly weather patterns
to synoptic weather types, Int. J. Climatol., 14,
723–737, https://doi.org/10.1002/joc.3370140703, 1994b. a, b
Kidson, J. W.: An analysis of New Zealand synoptic types and their use in
defining weather regimes, Int. J. Climatol., 20, 299–316,
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B, 2000. a, b, c
Klein, W. H., Lewis, B. M., and Enger, I.: Objective Prediction of Five-Day
Mean Temperatures During Winter, J. Meteorol., 16, 672–682,
https://doi.org/10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2, 1959. a
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the
inflation issue, J. Climate, 26, 2137–2143,
https://doi.org/10.1175/JCLI-D-12-00821.1, 2013. a
Maussion, F., Siller, M., Rothenberg, D., Roth, T., Dusch, M., and Landmann,
J.: fmaussion/salem: v0. 2.4, Zenodo,
https://doi.org/10.5281/zenodo.2605265, 2019. a
McKinney, W.: Data structures for statistical computing in python, in:
Proceedings of the 9th Python in Science Conference, vol. 445, 51–56,
Austin, TX, 2010. a
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North
American regional reanalysis, B. Am. Meteorol.
Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a
Met Office: Cartopy: a cartographic python library with a Matplotlib
interface, Exeter, Devon, available at: http://scitools.org.uk/cartopy (last access: 18 June 2019),
2010. a
Nappo, C. J.: The Linear Theory, in: An Introduction to Atmospheric Gravity
Waves, edited by: Nappo, C. J., vol. 102 of International Geophysics,
29–56, Academic Press, https://doi.org/10.1016/B978-0-12-385223-6.00002-1, 2012. a
Paeth, H., Pollinger, F., Mächel, H., Figura, C., Wahl, S., Ohlwein, C.,
and Hense, A.: An efficient model approach for very high resolution
orographic precipitation, Q. J.e Royal Meteor.
Soc., 143, 2221–2234, https://doi.org/10.1002/qj.3080, 2017. a
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent
warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430,
https://doi.org/10.1038/nclimate2563, 2015. a
Purdy, J. and Austin, G.: The role of synoptic cloud in orographic rainfall in
the Southern Alps of New Zealand, Meteorol. Appl., 10, 355–365,
https://doi.org/10.1017/S1350482703001087, 2003. a
Raper, S. C. B. and Braithwaite, R. J.: Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry, The Cryosphere, 3, 183–194, https://doi.org/10.5194/tc-3-183-2009, 2009. a
Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., Dudhia, J., Chen, F., Barlage, M., Yates, D., and Zhang, G.: Climate change impacts on the
water balance of the Colorado headwaters: high-resolution regional climate
model simulations, J. Hydrometeorol., 15, 1091–1116,
https://doi.org/10.1175/JHM-D-13-0118.1, 2014. a
Reinecke, P. A. and Durran, D. R.: Estimating topographic blocking using a
Froude number when the static stability is nonuniform, J.
Atmos. Sci., 65, 1035–1048, https://doi.org/10.1175/2007JAS2100.1, 2008. a
Rhea, J. O.: Orographic Precipitation Model for Hydrometeorological Use,
PhD thesis, Colorado State University, Fort Collins, Colorado, USA, 1977. a
Roth, A., Hock, R., Schuler, T. V., Bieniek, P. A., Pelto, M., and Aschwanden,
A.: Modeling winter precipitation over the Juneau Icefield, Alaska, using a
linear model of orographic precipitation, Front. Earth Sci., 6, 20,
https://doi.org/10.3389/feart.2018.00020, 2018. a
Sarker, R.: A dynamical model of orographic rainfall, Mon. Weather
Rev., 94, 555–572, https://doi.org/10.1175/1520-0493(1966)094<0555:ADMOOR>2.3.CO;2,
1966. a, b
Sawyer, J.: Gravity waves in the atmosphere as a three-dimensional problem,
Q. J. Roy. Meteor. Soc., 88, 412–425,
https://doi.org/10.1002/qj.49708837805, 1962. a
Siler, N. and Durran, D.: Assessing the Impact of the Tropopause on Mountain
Waves and Orographic Precipitation Using Linear Theory and Numerical
Simulations, J. Atmos. Sci., 72, 803–820,
https://doi.org/10.1175/JAS-D-14-0200.1, 2015. a, b
Smith, R. B.: The influence of mountains on the atmosphere, Adv.
Geophys., 21, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9, 1979. a
Smith, R. B.: Linear theory of stratified hydrostatic flow past an isolated
mountain, Tellus, 32, 348–364, https://doi.org/10.3402/tellusa.v32i4.10590, 1980. a, b
Sturman, A. and Wanner, H.: A comparative review of the weather and climate of
the Southern Alps of New Zealand and the European Alps, Mt. Res.
Dev., 21, 359–369, 2001. a
Tait, A. and Turner, R.: Generating multiyear gridded daily rainfall over New
Zealand, J. Appl. Meteorol., 44, 1315–1323,
https://doi.org/10.1175/JAM2279.1, 2005. a, b
Tait, A., Sturman, J., and Clark, M.: An assessment of the accuracy of
interpolated daily rainfall for New Zealand, J. Hydrol. (New
Zealand), 51, 25–44, 2012. a
Theis, S. E., Hense, A., and Damrath, U.: Probabilistic precipitation forecasts
from a deterministic model: a pragmatic approach, Meteorol.
Appl., 12, 257–268, https://doi.org/10.1017/S1350482705001763, 2005. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics scheme.
Part II: Implementation of a new snow parameterization, Mon. Weather
Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008. a
Torma, C., Giogi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain—Precipitation over the
Alps, J. Geophys. Res.-Atmos., 120, 3957–3972,
https://doi.org/10.1002/2014JD022781, 2015. a
van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A
Structure for Efficient Numerical Computation, Comput. Sci.
Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011.
a
Weidemann, S., Sauter, T., Schneider, L., and Schneider, C.: Impact of two
conceptual precipitation downscaling schemes on mass-balance modeling of Gran
Campo Nevado ice cap, Patagonia, J. Glaciol., 59, 1106–1116,
https://doi.org/10.3189/2013JoG13J046, 2013. a
Wilks, D.: Chap. 5 – Frequentist Statistical Inference, in: Statistical
Methods in the Atmospheric Sciences, edited by: Wilks, D. S., vol. 100 of International Geophysics, 133–186, Academic Press,
https://doi.org/10.1016/B978-0-12-385022-5.00005-1, 2011a. a
Yang, D. and Ohata, T.: A bias-corrected Siberian regional precipitation
climatology, J. Hydrometeorol., 2, 122–139,
https://doi.org/10.1175/1525-7541(2001)002<0122:ABCSRP>2.0.CO;2, 2001. a
Yang, D., Ishida, S., Goodison, B. E., and Gunther, T.: Bias correction of
daily precipitation measurements for Greenland, J. Geophys.
Res.-Atmos., 104, 6171–6181, https://doi.org/10.1029/1998JD200110, 1999. a
Short summary
This study presents an in-depth evaluation of the Intermediate Complexity Atmospheric Research (ICAR) model for high-resolution precipitation fields in complex topography. ICAR is evaluated with data from weather stations located in the Southern Alps of New Zealand. While ICAR underestimates rainfall amounts, it clearly improves over a coarser global model and shows potential to generate precipitation fields for long-term impact studies focused on the local impact of a changing global climate.
This study presents an in-depth evaluation of the Intermediate Complexity Atmospheric Research...