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Abstract. The coarse grid spacing of global circulation mod-
els necessitates the application of downscaling techniques to
investigate the local impact of a changing global climate. Dif-
ficulties arise for data-sparse regions in complex topography,
as they are computationally demanding for dynamic down-
scaling and often not suitable for statistical downscaling due
to the lack of high-quality observational data. The Interme-
diate Complexity Atmospheric Research (ICAR) model is a
physics-based model that can be applied without relying on
measurements for training and is computationally more effi-
cient than dynamic downscaling models. This study presents
the first in-depth evaluation of multiyear precipitation time
series generated with ICAR on a 4×4km2 grid for the South
Island of New Zealand for an 11-year period, ranging from
2007 to 2017. It focuses on complex topography and evalu-
ates ICAR at 16 weather stations, 11 of which are situated
in the Southern Alps between 700 and 2150mm.s.l (m m.s.l
refers to meters above mean sea level). ICAR is assessed with
standard skill scores, and the effect of model top elevation,
topography, season, atmospheric background state and syn-
optic weather patterns on these scores are investigated. The
results show a strong dependence of ICAR skill on the choice
of the model top elevation, with the highest scores obtained
for 4km above topography. Furthermore, ICAR is found to
provide added value over its ERA-Interim reanalysis forc-
ing data set for alpine weather stations, improving the me-
dian of mean squared errors (MSEs) by 30% and up to 53%.
It performs similarly during all seasons with a MSE min-
imum during winter, while flow linearity and atmospheric
stability are found to increase skill scores. ICAR scores are
highest during weather patterns associated with flow perpen-

dicular to the Southern Alps and lowest for flow parallel to
the alpine range. While measured precipitation is underesti-
mated by ICAR, these results show the skill of ICAR in a
real-world application, and may be improved upon by fur-
ther observational calibration or bias correction techniques.
Based on these findings ICAR shows the potential to gener-
ate downscaled fields for long-term impact studies in data-
sparse regions with complex topography.

1 Introduction

Global circulation models (GCM) generate atmospheric data
sets on spatiotemporal grids that, especially in complex to-
pography, are too coarse to investigate the local impact of
a changing global climate. To bridge the gap between local
and GCM scales, a variety of downscaling methods and tech-
niques exist (Christensen et al., 2007), which are roughly
characterizable as dynamic downscaling (e.g., Hill, 1968;
Rasmussen et al., 2014), statistical downscaling (e.g., Klein
et al., 1959; Benestad et al., 2008) or intermediate complex-
ity downscaling (e.g., Sarker, 1966; Smith and Barstad, 2004;
Gutmann et al., 2016).

While dynamic downscaling results in a self-consistent set
of atmospheric fields, the computational cost required for
the fine spatial and temporal grid spacing is high, especially
for long-term simulations or sensitivity studies. The draw-
back of statistical downscaling is the associated requirement
of high-quality measurements for model training, rendering
it less applicable to data-sparse regions. Even more prob-
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lematic, as soon as observation-based training or calibration
is applied, the assumption of stationarity is introduced for
statistical downscaling, which may not hold under a chang-
ing climate (Maraun, 2013; Gutmann et al., 2012). There-
fore, overall, both classes are not ideally suited for the long-
term study of the regional effects of a changing global cli-
mate. These problems are particularly amplified in glacier-
ized areas, which are often located in hard-to-access, remote
regions and complex topography. For such regions weather
station deployment and maintenance is often impractical or
too expensive, resulting in a scarcity of continuous measure-
ments and the inapplicability of statistical downscaling ap-
proaches. In the case of dynamic downscaling the correct
representation of the influence of complex topography on lo-
cal weather and climate leads to a high computational cost.
This cost is further increased by the long response times of
glaciers to climatic changes, which are in the order of several
decades (Raper and Braithwaite, 2009). Therefore, process-
based glacier models require long-term information about the
state of the atmosphere above the glacier to investigate the
impact of a changing global climate.

The Intermediate Complexity Atmospheric Research
(ICAR) model (Gutmann et al., 2016) offers a computation-
ally frugal and physics-based alternative that does not rely
on measurements, with linear mountain wave theory as its
theoretical foundation. In comparison to other downscaling
approaches of intermediate complexity (e.g., Sarker, 1966;
Rhea, 1977; Smith and Barstad, 2004; Georgakakos et al.,
2005), ICAR is a more general atmospheric model that re-
quires fewer simplifying assumptions about the state of the
atmosphere, such as spatial and temporal homogeneity of
the background flow. Furthermore, in contrast to the linear
theory of orography precipitation (LOP; Smith and Barstad,
2004), ICAR considers a detailed vertical structure of the at-
mosphere and employs a complex microphysics scheme as
opposed to the characteristic timescales for cloud water con-
version and hydrometeor fallout of the LOP. With regards to
dynamical downscaling, in particular the Weather Research
and Forecasting model, Gutmann et al. (2016) showed that
ICAR may reduce the required computational time for one
simulated year for a domain in the western USA by a factor
of at least 140.

At the time of writing, ICAR has been evaluated in an
idealized hill experiment, as well as by comparing monthly
precipitation fields generated by ICAR for Colorado, USA,
with WRF output and an observation-based gridded data set
(Gutmann et al., 2016). Furthermore, ICAR was employed to
generate downscaled atmospheric fields as input for a glacier
mass balance model to simulate meltwater runoff in the west-
ern Himalayas (Engelhardt et al., 2017). Recently Bernhardt
et al. (2018) applied ICAR to investigate differences in pre-
cipitation patterns and amounts for a domain in the European
Alps, emerging from the choice of the microphysics scheme
and associated parameters. However, Gutmann et al. (2016)
evaluated ICAR for season totals and based on 1 year of pre-

cipitation data, whereas Bernhardt et al. (2018) only investi-
gated a 7 month period.

This study conducts the first multiyear evaluation of
ICAR, and compares ICAR precipitation fields to data from
individual weather stations in different terrains. As a start-
ing point for investigating the added value of ICAR, New
Zealand is chosen. Here the precipitation regime is strongly
orographically influenced by the Southern Alps (Sturman
and Wanner, 2001). The island is isolated from major land
masses and moist air from the surrounding ocean is advected
toward the orographic ridge of the Southern Alps at a pre-
dominantly right angle. Measurements from 16 weather sta-
tions within the study domain, 11 of which are alpine sta-
tions located in complex topography, are used to quantify
added value with regards to ERA-Interim interpolated to sta-
tion location. Furthermore the model performance is diag-
nosed with respect to season, background atmospheric state
and synoptic weather patterns. Average and seasonal precip-
itation patterns are compared to an operational gridded rain-
fall data set. Additionally, the influence of the choice of the
model top height onto the downscaled results is discussed.

2 ICAR – description and setup

2.1 Overview

ICAR (Gutmann et al., 2016) is a 3-D atmospheric model
based on linear mountain wave theory. As input, ICAR re-
quires a digital elevation model and a forcing data set with
4-D atmospheric variables generated by, for instance, a cou-
pled atmosphere–ocean general circulation model or an at-
mospheric reanalysis such as ERA-Interim. The forcing data
set should contain at least the horizontal wind components,
pressure, temperature and water vapor mixing ratio, with the
possibility to additionally include hydrometeor fields, incom-
ing long- and short-wave radiation or the skin temperature
of water bodies. ICAR employs linear mountain wave the-
ory to calculate the wind field from the topography infor-
mation and the horizontal wind components to avoid a nu-
merical solution of the Navier–Stokes equations of motion –
the core of dynamical downscaling models. With this wind
field, ICAR advects atmospheric quantities, such as temper-
ature and moisture as supplied by the forcing data set at the
domain boundaries. In its standard setup ICAR applies the
Thompson microphysical scheme (Thompson et al., 2008), a
double-moment scheme in cloud ice and rain and a single-
moment scheme for the remaining quantities to compute the
mixing ratios of water vapor, cloud water, rain, cloud ice,
graupel and snow.

The classic approach of linear mountain wave theory pre-
dicts the wind field based on the topography and the back-
ground state of the atmosphere (Sawyer, 1962; Smith, 1979).
With the background state known, its perturbation due to to-
pography is given by a set of analytical equations (Barstad
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and Grønås, 2006). However, linear theory does not take in-
teractions among waves or waves and turbulence into ac-
count, nor does it account for transient and nonlinear phe-
nomena such as time-varying wave amplitudes, gravity wave
breaking or low-level blocking and flow splitting. A basic
discussion of the limitations implicit to these assumptions
can be found in Nappo (2012). In ICAR, the atmospheric
background state is given by the forcing data set. This yields
a time sequence of steady-state wind fields between which
ICAR interpolates linearly. A detailed description of the
model is given in Gutmann et al. (2016).

To avoid unstable atmospheric conditions present in the
forcing data set or caused by the microphysics, ICAR en-
forces stability by ignoring imaginary values of the Brunt–
Väisälä frequency and substituting them with a minimum
positive value of 3.2×10−4 s−1. In the version of ICAR em-
ployed in this study, the reflection of mountain waves at the
interface of atmospheric layers is neglected.

2.2 Model setup

ICAR can be run without relying on measurements for
observation-based calibrations. Therefore, it is of particu-
lar interest for data-absent, mountainous or glacierized re-
gions (e.g., Pepin et al., 2015). This study aims at quantify-
ing a baseline performance of ICAR with default settings as
it would be applied for a region where no observations are
available. For individual sites, improvement is then possible
by performing data-based calibration, as routinely performed
in regional climate-model-based downscaling. However, the
model top of ICAR could not be adopted from default set-
tings (Horak et al., 2019), see Sect. 2.3. The ICAR configura-
tion used in this study (configuration file available as down-
load, see Horak et al., 2019) employs the wind field com-
putation process as described in Sect. 2.1 and by Gutmann
et al. (2016), an upwind advection scheme to transport quan-
tities within the wind field and the Thompson microphysics
scheme. Coupling between the surface and the atmosphere
is neglected, i.e., no turbulent surface fluxes of heat, mois-
ture or momentum are considered. Atmospheric fields were
downscaled to a 4× 4km2 horizontal grid and to an hourly
time step.

2.3 Model top

For dynamic downscaling models the position of the model
top is a critical parameter. In principal, a higher model top
implies a more faithful representation of atmospheric pro-
cesses and physics that, in turn, leads to an increased compu-
tational cost, whereas a lower setting has the opposite effect.
In light of these requirements, the ICAR default setting of
5.7km above topography as used in Gutmann et al. (2016)
is comparatively low. Preliminary studies indicated that for
a model top at 5.7 km only a small added value can be ob-
tained for the South Island of New Zealand. Additionally,

these preliminary studies showed that different choices for
the model top elevation influenced the precipitation patterns
and amounts throughout the study domain, leading to signif-
icant changes in model skill. Therefore, a sensitivity analysis
was conducted to identify the optimal elevation of the model
top for this study.

2.4 Digital elevation model

The model domain in this study, as depicted in Fig. 1, en-
compasses the entire South Island of New Zealand and a
small section of the North Island. The digital elevation model
(DEM) employed was upscaled from the 1′×1′ ETOPO1 Ice
(Amante and Eakins, 2009) DEM to 4×4km2, corresponding
to 205× 225 grid points. As peaks represented by only one
grid point increase the wave energy in the high-frequency
part of the spectrum, leading to unphysical atmospheric per-
turbations, the topography was smoothed by a 3× 3 mov-
ing window algorithm (Guo and Chen, 1994, p. 34). A sim-
ilar type of smoothing, which is common when using the
weather research and forecasting pre-processing system, was
performed in previous studies employing ICAR (Gutmann
et al., 2016; Engelhardt et al., 2017).

2.5 Forcing data and reference

In this study, ERA-Interim reanalysis data (ERAI; Dee et al.,
2011) are used as the forcing data set for ICAR. Reanalysis
data are obtained from computationally expensive state-of-
the-art general circulation model re-forecasts constrained by
quality-controlled observations with a variational data assim-
ilation procedure. Therefore, reanalysis data are of a partic-
ular relevance for data-scarce high mountain regions around
the globe, where the application of solely interpolation-based
gridded historical data sets is problematic. ERAI employs a
horizontal grid spacing of 0.75 ◦× 0.75 ◦ (globally), corre-
sponding to approximately 81×110km2 within the study do-
main, and extends to the 0.1hPa pressure level in the vertical.
The assembled ICAR forcing file contains ERAI zonal and
meridional winds (U and V , respectively), potential temper-
ature (2), pressure (p), specific humidity (qv), cloud liquid
water mixing ratio( qc), cloud ice water mixing ratio (qi) and
surface pressure (p0) at each 6h forcing time step and every
grid point within the domain.

ERA-Interim reanalysis data were also used as ICAR
forcing in the study of Bernhardt et al. (2018). Bernhardt
et al. (2018), however, evaluated only the precipitation sum
over a 7 month period. They emphasized the importance
of mountain weather station networks with respect to al-
lowing for a more detailed evaluation of ICAR. Gutmann
et al. (2016) used the North American Regional Reanalysis
(NARR), which has a 32km grid spacing (Mesinger et al.,
2006). Engelhardt et al. (2017) used output from the Norwe-
gian Earth System Model (NorESM), downscaled to a grid
spacing of 25km by the regional climate model REMO, as
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Figure 1. The South Island of New Zealand. Shown are the coast
(black line), the topography above an elevation of 1000mm.s.l.
(gray shading), glacierized areas (blue shading), the approximate
location of the main alpine crest (red line) and the location of test
regions (dashed outlines) northwest and southeast of the mainland
used to determine flow linearity. The alpine weather stations consid-
ered in the evaluation of this study are indicated by white triangles,
whereas coastal weather stations are represented by orange disks.
The numbers next to the markers are ordered from lowest to high-
est weather station elevation and may be used to look up additional
information for each station in Table 1.

ICAR input for a simulation period from 2006 to 2099. In this
study, ERAI are preferred over regional reanalysis data sets
due to their global availability and, thus, more widespread
applicability.

2.6 Convective precipitation

The ICAR configuration for this study, as described in
Sect. 2.2, is able to model orographic precipitation and, at
least in part, precipitation driven by the synoptic scale. To
account for convective precipitation, convective precipitation
from ERAI (field name: cp; parameter ID: 143), PCP, is re-
sampled to the ICAR time step, bilinearly interpolated in
space to the sites of interest and then added to the ICAR pre-
cipitation time series PI:

P(t)= PI(t)+PCP(t), (1)

where in the following the P(t) time series is referred to as
ICARCP, and PI(t) is referred to as ICAR. This is a com-
mon technique that allows for the inclusion of types of pre-
cipitation not accounted for by the downscaling model (e.g.,
Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al.,

2017; Roth et al., 2018). Table 1 shows the mean annual pre-
cipitation at each site for ICARCP and ERAI, as well as the
ratio of ERAI convective precipitation to ERAI total precip-
itation.

3 Study domain and observational data

3.1 Overview

This study focuses on the Southern Alps of New Zealand lo-
cated in the southwestern Pacific Ocean. The Southern Alps
are oriented southwest–northeast and run almost parallel to
the western coast of the South Island. They are approxi-
mately 800km long and 60km wide, extend across a lati-
tude range from 41 to 46 ◦ S and consist of a series of ranges
and basins (Barrell et al., 2011). Of the 3144 glaciers in New
Zealand with a surface area larger than 0.01km2, all except
18 lie within the Southern Alps (Chinn, 2001). The domain
and glacierized areas are depicted in Fig. 1.

New Zealand’s climate is characterized as humid and mar-
itime with prevailing westerly winds. The average precipi-
tation patterns are influenced by the Southern Alps, which
act as a topographic barrier for these moist winds (Chinn,
2001). The resulting orographically influenced precipitation
regime is characterized by a precipitation maximum of up
to 14myr−1 on the western flanks close to the main divide
of the Southern Alps. Along the west coast, 5myr−1 of pre-
cipitation is observed on average, whereas the plains east of
the main divide receive less than 1myr−1 (Griffiths and Mc-
Saveney, 1983; Henderson and Thompson, 1999). Addition-
ally, the strong westerly winds in the Southern Alps may lead
to significant spillover, distributing precipitation to leeward
slopes (Chater and Sturman, 1998).

3.2 Observational data

Precipitation time series from the weather stations in com-
plex topography were supplied by the National Institute of
Water and Atmospheric Research of New Zealand (NIWA)
and the University of Otago, New Zealand (Cullen and
Conway, 2015). At coastal weather stations, records from
the New Zealand National Climate Database (NCD, https://
cliflo.niwa.co.nz, last access: 18 June 2019) were employed.
The individual time series extend over an 11-year period,
with the shortest time series covering 0.8 years and the
longest 11 years. Details concerning the weather stations,
accumulated annual precipitation and time series length are
listed in Table 1. Furthermore, Table 1 includes an aver-
age downwind distance 1 from the main alpine crest of the
Southern Alps. It is calculated with regards to westerly and
northwesterly flow – the wind directions associated with the
largest mean precipitation.

Different instruments were employed to measure rainfall
at the weather stations in the study region. At Christchurch,
Invercargill and Kaikoura precipitation measurements were
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Table 1. List of weather stations used in this study sorted by their elevation. The table lists the station number (No.), elevation (z), latitude
(Lat), longitude (Long), name, average distance downwind of the main crest of the Southern Alps (1) based on westerly and northwesterly
flow, mean annual precipitation (P ) with the standard deviation both calculated for the years when data were available at the respective
weather station, fraction of convective precipitation in ERAI annual sum fcp, length of the time series (l) and number of days removed due to
missing entries or failed quality checks (dm). The superscript following the station name indicates the data provider: NCD (1), NIWA (2) and
University of Otago (3). Precipitation data for Larkins and Potts were linearly extrapolated to a full year. 1 was not considered for coastal
weathers stations, and no values were assigned for Mahanga and Larkins as they lie north and south, respectively, of the main alpine crest.

No. z (m m.s.l.) Lat (◦) Long (◦) Name 1 (km) P (m yr−1) fcp (1) l (yr) dm (d)

Measured ICARCP ERAI

Coastal stations

1 0 −46.42 168.33 Invercargill1 1.0± 0.1 1.7± 0.1 1.1± 0.1 0.47 11.0 1
2 4 −41.33 174.80 Wellington1 0.8± 0.1 1.1± 0.1 0.8± 0.1 0.67 11.0 4
3 37 −43.49 172.53 Christchurch1 0.5± 0.1 0.8± 0.1 0.7± 0.1 0.78 11.0 1
4 39 −42.72 170.98 Hokitika1 2.8± 0.2 3.2± 0.3 1.6± 0.2 0.29 4.7 3
5 105 −42.42 173.70 Kaikoura1 0.6± 0.1 1.1± 0.1 0.7± 0.1 0.80 5.8 68

Alpine stations

6 738 −42.95 171.57 Arthur’s Pass2 7 4.4± 0.5 2.3± 0.2 1.3± 0.1 0.27 6.5 9
7 765 −43.74 170.10 Aoraki/Cook2 7 4.1± 0.6 2.8± 0.3 1.5± 0.1 0.17 10.5 2
8 1280 −44.38 168.93 Albert Burn2 11 2.9± 0.2 1.6± 0.2 2.0± 0.2 0.28 3.2 2
9 1390 −43.13 170.91 Ivory2

−2 7.3± 0.5 5.7± 0.8 1.6± 0.1 0.41 6.4 22
10 1650 −44.08 169.43 Brewster3 0 6.0± 0.4 2.4± 0.2 1.7± 0.1 0.15 5.3 10
11 1655 −42.88 171.53 Philistine2 0 4.8± 0.6 4.1± 0.4 1.4± 0.1 0.42 5.4 6
12 1752 −43.29 171.00 Rakaia2 12 2.1± 0.2 2.3± 0.2 1.5± 0.1 0.32 6.7 10
13 1818 −43.72 170.06 Mueller Hut2 3 5.1± 1.2 3.4± 0.4 1.6± 0.1 0.34 3.2 10
14 1925 −44.88 168.49 Larkins2 – 1.1 1.0 1.9 0.30 0.8 2
15 1955 −42.02 172.65 Mahanga2 – 2.2± 0.1 1.8± 0.1 1.2± 0.1 0.40 5.3 14
16 2128 −43.50 170.93 Potts2 35 2.0 0.9 1.6 0.41 0.9 2

carried out with a tipping-bucket rain gauge, while different
gauges were employed at the remaining coastal stations: a
standard rain gauge at Hokitika and a drop gauge at Welling-
ton. Precipitation at Mount Brewster was measured with a
tipping-bucket rain gauge, and data post-processing is de-
scribed in detail by Cullen and Conway (2015). Cullen and
Conway (2015) identified the period for reliable precipitation
data at the site as extending approximately from the end of
December until the end of April; during this period the data
were adjusted for gauge undercatch. Outside of this period,
Cullen and Conway applied a scaling function to extrapolate
from rain gauge data at a site 30km southwest of Brewster
Glacier at 320mm.s.l (meters above mean sea level). Pre-
cipitation at the alpine NIWA stations was measured with
tipping-bucket rain gauges. Heating systems were not in-
stalled, however, a wind shield was in place at Mueller Hut.
The raw data available from the NCD are provided by the
Meteorological Service of New Zealand, the NIWA and, in
three cases, unidentified observing authorities. For this study,
all NIWA and NCD input data were subject to basic plausi-
bility checks. They identified and flagged data points exceed-
ing 20 standard deviations from the mean, data points with
negative values, or data points with excessive temporal per-
sistence. Marked entries were then manually reviewed and

removed from the data set if physically unreasonable values
were found. The quality-controlled data were then used for
further processing and resampled to daily accumulated pre-
cipitation P24 h. Days that had gaps in their original time se-
ries were not considered for further analysis. The number of
missing days is documented in Table 1.

To compare simulated precipitation patterns across the
South Island of New Zealand to an observational data set,
the NIWA virtual climate station gridded daily rainfall prod-
uct (VCSR; Tait and Turner, 2005) is employed. The VCSR
is an observation-based data set interpolated to a horizon-
tal grid spacing of 3′ or approximately 5km. It scales rain-
fall at high elevations and remote locations using data from
mesoscale model simulations. While the VCSR does not nec-
essarily represent the actual distribution of precipitation (Tait
et al., 2012), and may miss precipitation events (Tait and
Turner, 2005), it serves as an approximation of an obser-
vational gridded data set and is based on observations and
expert judgment.
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4 Methods and results

4.1 Evaluation strategy

In this study, ICARCP time series (see Sect. 2.6) are evalu-
ated in terms of the added value over total precipitation from
the ERAI reanalysis. Added value in this context is used as in
the investigation of regional climate-model-based downscal-
ing, where it is defined as the comparative performance of
the regional climate model output to the global driving data
(e.g., Di Luca et al., 2015). Similar studies with a focus on
quantifying the added value over the driving input have been
performed for full dynamic downscaling (for a review see
Torma et al., 2015). This way, our study serves as a guide re-
garding the conditions under which ICAR can add value over
ERAI (if it can at all) with a particular focus on complex ter-
rain. The aim is not a downscaling method intercomparison
(e.g., ICAR versus WRF; Gutmann et al., 2016).

The available data are grouped by selected criteria that
are expected to affect the added value, in particular the to-
pographic complexity, seasons, flow linearity and the synop-
tic situation. Flow linearity is characterized by the inverse
nondimensional mountain height, which in the following is
referred to as Froude number, calculated for test volumes up-
stream of the weather stations. The synoptic situation is de-
termined by weather patterns as employed in an operational
weather pattern classification scheme.

4.2 Skill scores and significance test

Mainly two scores are employed to quantify the added value
of ICARCP over ERAI: the MSE-based (MSE: mean squared
error) skill score SSMSE and the Heidke skill score HSS. The
MSE-based skill score (Wilks, 2011b, chap. 8) is given by

SSMSE = 1−
MSE
MSEr

, (2)

where MSE is the MSE of ICARCP P24 h, and MSEr is the
MSE of P24 h of the reference model (here, ERAI). This
way, SSMSE can be interpreted as the percentage improve-
ment (reduction of error) due to ICARCP relative to ERAI.
The contingency-table-based Heidke Skill score (HSS;
Wilks, 2011b, chap. 8) is used to analyze events that are char-
acterized by either their occurrence or absence, such as, P24 h
exceeding a given threshold, or whether the tested model is
able to correctly diagnose the occurrences in comparison to a
reference model. Thresholds investigated in this study are 1,
25 and 50mm for 24h accumulated precipitation. The HSS
is defined as

HSS(r)=
r − rr

1.0− rr
, (3)

where r is the proportion correct of ICARCP, and rr is the
proportion correct of the ERAI reference model. The propor-
tion correct is given by r = (a+d)/n, with n= a+b+c+d.

In this context a is the number of times the event was fore-
cast and observed to occur (hits) b is the number of events
that were forecast but not observed (false hits), c is the num-
ber of events that were not forecast but observed (false alarm
or missed event), d is the number of times an event was nei-
ther forecast nor observed (correct misses) and n is the total
number of cases.

The scores defined by Eqs. (2) and (3) both yield values in
the interval (−∞,1] and condense the information regard-
ing whether the tested model performs better with respect
to a skill measure than a reference model into one number.
A model exactly reproducing the measurements corresponds
to a score of one, a score of zero is achieved if the model
performs equally as well as the reference model, and lower
scores are found if the model is outperformed by the refer-
ence model.

Moving block bootstrap (MBB) is employed to determine
the significance of the skill scores (Wilks, 2011a, chap. 5).
The procedure is similar to ordinary bootstrapping with the
distinction that, instead of n individual observations, blocks
of length L are resampled. For the time series considered in
this study values of L range between one and nine, with the
autocorrelation structure of the time series preserved within
each block, and different blocks independent of each other.
Each skill score is recalculated for 10000 MBBs of the orig-
inal data, yielding a sampling distribution of the respective
score. If the fifth percentile of this distribution is positive,
the score obtained from the original time series is considered
significant.

4.3 Model top sensitivity study

The results of a sensitivity study used to determine the op-
timal position of the model top by varying the number of
vertical model levels are summarized in Fig. 2. Simulations
for six different model top elevations were run for a 2-year
reference period (2014–2015) and the MSE was calculated
for the ICAR and ICARCP time series at all alpine weather
stations. The reference period was chosen as the time slice
when a maximum of observational data was available, with
measured time series for 9 out of 11 alpine weather stations
(except for Potts and Larkins) being available during this pe-
riod. The model top setting yielding the lowest average MSE
for the alpine stations was considered optimal.

The lowest average MSE for ICAR was found for a
model top elevation of 2.5km above topography, whereas for
ICARCP the minimum was at 4.0km, see Fig. 2a. Setting the
model top higher or lower quickly deteriorates model perfor-
mance for ICAR and ICARCP alike. Furthermore, the sensi-
tivity analysis indicates that the majority of skill is already
present in the ICAR time series. Nonetheless, the inclusion
of ERAI convective precipitation, as described in Sect. 2.6,
results in an additional reduction in the MSE for the ICARCP
time series at all simulated model top settings. The results
are similar when, instead of the mean MSE, the mean SSMSE
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Figure 2. The average (a) and MSE (b) SSMSE of ICAR and ICARCP time series from simulations for the reference period from 2014 to
2015 at alpine weather stations as a function of the chosen model top (in kilometers above topography). Connecting lines serve as guides
for the eye. Panel (c) shows the distribution of skill scores for simulations with a model top set 4.0km above topography at alpine weather
stations for the reference period (2014–2015), the full study period (2007–2017) and the reduced study period, where the reference period
has been removed from the data set (2007–2013 and 2016–2017). The lower boundary of each box indicates the 25th percentile, the upper
boundary the 75th percentile and the dashed horizontal line the mean. Whiskers show the minimum and maximum values of the data set.

is investigated (see Fig. 2b). The mean skill maxima for
ICAR and ICARCP are again found at 2.5 and 4.0km, re-
spectively, with ICARCP achieving the highest mean skill of
0.24. Therefore, all following analyses, unless stated other-
wise, focus on the ICARCP time series obtained with a model
top set to 4.0km above topography.

The mean MSE over all alpine weather stations is al-
most constant when calculated either for the reference pe-
riod (2014–2015), the full study period (2007–2017) or the
reduced study period, where the reference period is ex-
cluded from the time series (2007–2013 and 2015–2017), see
Fig. 2c. This result indicates that the reference period is rep-
resentative of the full study period.

4.4 Overall performance of ICAR for alpine and
coastal weather stations

The performance of ICARCP at individual stations is pre-
sented in Table 2 and summarized in Fig. 3. For the alpine
weather stations, values of SSMSE calculated across the en-
tire period for which data are available (see Table 1 for de-
tails) indicate a median SSMSE of 0.3, equivalent to a me-
dian reduction of error of 30% relative to ERAI for locations
in complex alpine topography. Six of the eleven alpine sta-
tions have significant scores above zero, three are negative.
Regarding the topographic situation (see Fig. 1), six alpine
weather stations are downwind of the main alpine ridge, with
respect to the predominant wind directions. The results indi-
cate a negative correlation between SSMSE and the average
distance downwind to the main alpine crest (1), with the
weather stations farthest leeward (Albert Burn, Rakaia and
Potts) exhibiting, apart from Mahanga, the lowest scores ob-
served. No 1 value was assigned to Mahanga as it is located
to the north of the alpine crest and situated approximately

Figure 3. Box and whisker plots of all assessed skill scores (x axis)
obtained for ICARCP with ERAI as a reference. All skill scores
were calculated using the entire P24 h time series available at each
weather station for (a) alpine weather stations and (b) coastal
weather stations. The lower boundary of the box indicates the 25th
percentile, the upper boundary the 75th percentile and the horizontal
line the median. Whiskers show the minimum and maximum values
of the data set. The circles show the individual values of each skill
measure for all stations.

80km downwind from the coast. The topography to its west
and northwest to the coast is constituted by scattered moun-
tain ranges with elevations between 1000 and 1800m.

In terms of HSS at alpine stations, median scores above
0.14 are found for the P24 h thresholds 25 and 50mm, respec-
tively, see Fig. 3b. The only weather stations with compara-
tively large negative scores are Mahanga and Rakaia, the for-
mer of which is located downstream of mountainous terrain
and the latter of which is the second farthest downwind of the
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Table 2. Time series characteristics for all of the weather stations, as well as a detailed overview of performance metrics for both ICARCP
and ERAI obtained for each individual site. Empty cells indicate that less than 10 days were available for the calculation of the corresponding
score. An asterisk (∗) preceding a positive score denotes that the score is not significant with regards to the criteria laid out in Sect. 4.2.

No. Name Length (yr) Days with P24 h above (%) SSMSE (1) RMSE (mm d−1) Bias (mm d−1) HSS (1)

1mm 25mm 50mm ICARCP ERAI ICARCP ERAI 1mm 25mm 50mm

Coastal stations

1 Invercargill 11.0 42 0.8 0.0 −2.16 5 3 1.9 0.2 −0 −2.76 –
2 Wellington 11.0 29 1.3 0.2 −0.54 5 4 0.7 −0.0 −0.37 −0.27 –
3 Christchurch 11.0 21 0.7 0.0 −1.01 4 3 0.6 0.5 0.1 −0.39 –
4 Hokitika 4.7 46 10.3 2.7 −0.81 12 9 1.0 −3.2 −0.07 −0.33 −0.9
5 Kaikoura 5.8 23 1.2 0.3 −1.79 8 4 1.6 0.2 0.07 −1.96 –

Alpine stations

6 Arthur’s Pass 6.5 43 16.1 7.8 0.42 18 24 −5.8 −8.6 ∗0.04 0.34 0.17
7 Aoraki/Cook 10.5 41 14.0 6.1 0.46 17 23 −3.4 −6.8 0.07 0.35 0.34
8 Albert Burn 3.2 49 11.2 3.0 −0.23 10 9 −3.6 −2.5 −0.03 −0.05 0.09
9 Ivory 6.4 53 20.4 13.2 0.53 30 44 −5.0 −16.4 −0.01 0.4 0.36

10 Brewster 5.3 45 25.0 11.9 0.21 22 24 −10.4 −11.9 −0.01 0.18 0.1
11 Philistine 5.4 52 14.3 7.6 0.43 21 28 −1.0 −8.8 −0.02 0.2 0.18
12 Rakaia 6.7 44 6.8 2.2 ∗0.05 9 10 0.4 −1.9 ∗0.01 −0.14 ∗0.02
13 Mueller Hut 3.2 51 14.1 7.6 0.4 25 32 −4.0 −9.4 0 ∗0.11 0.3
14 Larkins 0.8 37 2.3 0.3 ∗0.3 5 6 −0.2 2.3 0.13 – –
15 Mahanga 5.3 43 7.2 2.7 −0.04 13 13 −1.4 −2.9 ∗0.04 −0.15 −0.15
16 Potts 0.9 39 5.9 2.1 −0.07 15 15 −3.0 −1.0 ∗0.11 0 –

main alpine crest. For days with P24 h exceeding 1mm, sig-
nificant added value of ICARCP over ERAI is only found at
2 of the 11 locations. The fact that only small negative scores
are found and the median score is 0.01 for all alpine stations
indicates that ICARCP performs very similarly to ERAI at
this threshold, and that ICARCP does not improve on mod-
eling the frequency of precipitation. Table 2 contains addi-
tional information about the relative abundance of threshold
exceedances at each weather station.

A direct comparison of measured and simulated P24 h time
series at the Albert Burn and Ivory alpine stations is shown in
Fig. 4. These two sites were selected as the SSMSE was lowest
at Albert Burn and highest at Ivory among all alpine stations
for the entire period. During 2015 (second half shown) the
skill difference is largest, with SSMSE values of −0.39 and
0.58, respectively. The two weather stations are separated
by a distance of about 210km and are at a similar elevation,
with Albert Burn at 1280mm.s.l. and Ivory at 1390 mm.s.l.
However, Albert Burn is located 11km downstream of the
main alpine ridge, whereas Ivory lies approximately 2km up-
stream of it according to the definition in Sect. 3.2. At both
sites ICAR reproduces the features of the measured precipi-
tation time series, but in the case of Albert Burn it underes-
timates measured precipitation amounts by almost 50% on
average; furthermore, at Ivory, where ICAR performs best in
terms of SSMSE, precipitation is still underestimated by ap-
proximately 22%.

For the coastal weather stations, figure 3b shows that
no added value could be found as quantified by SSMSE
and HSS for the thresholds P24 h > 25 and P24 h > 50mm.

Slightly positive values of HSS at P24 h > 1mm were only
found for the Christchurch and Kaikoura sites, both of which
are located along the east coast of the South Island of
New Zealand. As ICAR is based on linear mountain wave
theory, this result is expected: improvements for P24 h are
mainly deemed to manifest themselves in complex topogra-
phy. Hence, in the following only stations in complex topog-
raphy are considered.

4.5 Seasonal variations of ICAR performance

Simulations with ICAR show the seasonal variation of pre-
cipitation across the South Island. Figure 5 illustrates the
10-year mean daily precipitation P24 h and seasonal differ-
ences to it as computed using four different methods: the
observation-based and expert-judgment-based VCSR, ICAR,
ICARCP and ERAI. For the weather station data in this study,
skill measures were calculated for each season individually
and are shown in Fig. 6.

Overall, the average precipitation pattern of VCSR
(Fig. 5a) is best captured by ICARCP (Fig. 5k). While ICAR
and ICARCP patterns are very similar, the former is, when
compared to VCSR, too dry to the east of the Southern Alps,
particularly between approximately 44 and 45 ◦ S. However,
VCSR indicates larger amounts of precipitation, along the
southwest and west coast of the South Island, which are
underestimated by ICAR and ICARCP. Furthermore VCSR
shows a precipitation maximum in the Southern Alps be-
tween 43 and 44 ◦ S of approximately 20 to 40 mm d−1.
While this maximum is found in ICAR and ICARCP pat-
terns, it is confined to a smaller area and shifted westward,
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Figure 4. Observed and simulated example time series of P24 h during the second half of 2015 at (a) Albert Burn and (b) Ivory. At these sites
the respective lowest and highest SSMSE were achieved, during 2015: SSMSE was −0.39 for Albert Burn and 0.58 for Ivory. The sites are
210 km apart and are located at elevations of 1280 and 1390mm.s.l., respectively. While Albert Burn lies approximately 11km downstream
of the main alpine ridge, Ivory is located 1km upstream relative to the predominant westerlies and northwesterlies.

located along the 1000mm.s.l. contour line in Figs. 5f and
k. Nonetheless, the characteristics of the west–east precipita-
tion profile observed on the South Island of New Zealand
(e.g., Henderson and Thompson, 1999) are captured by
ICAR and ICARCP. This is, to some extent, also the case
for ERAI (Fig. 5p), albeit with much lower maxima and flat-
ter west–east gradients. While above the ocean no data are
available for the VCSR, the results clearly show that ICAR
is able to generate precipitation with seasonal variation above
the ocean where no topography is present (Fig. 5f–j).

The seasonal variations of precipitation patterns as derived
from the VCSR data set (Fig. 5b–e) are best reproduced by
ICARCP (Fig. 5l–o). However, the improvements over the
corresponding ICAR patterns (Fig. 5g–j) are small and the
remainder of this paragraph applies to ICAR and ICARCP
alike. When comparing VCSR and ICARCP the similarities
are largest for winter (JJA, Fig. 5c, m) and summer (DJF,
Fig. 5e, o). The differences increase for the remaining sea-
sons, with the Southern Alps being particularly affected. For
autumn (MAM), VCSR shows the precipitation as below av-
erage (Fig. 5b), whereas ICARCP indicates above average
precipitation (Fig. 5l). For spring (SON), in contrast, VCSR
shows an increase in precipitation throughout the Southern
Alps (Fig. 5d), whereas ICARCP shows the central part of
the Southern Alps as drier than average (Fig. 5n). ERAI,
in comparison to VCSR, lacks the fine grid spacing needed
to resolve local effects of the topography. However, the pat-
terns roughly capture the seasonal variations of precipitation
across the South Island, although at a much lower magnitude
(Fig. 5q–t).

Seasonal averages of daily accumulated precipitation
P24 h(se) derived from measurements at the alpine weather
stations show winter as the driest season, summer as the
wettest and the transitional seasons in between (see Fig. S1
in the Supplement). P24 h(se) values as simulated by ICARCP
also correctly show winter as the driest season, autumn in be-
tween and summer as the wettest season, with spring being
as wet as summer in ICARCP. However, P24 h(se) values de-
rived from ICARCP underestimate seasonal averages derived
from measurements by up to 37%. ERAI, in comparison, is
not able to reproduce this pattern in the seasonal averages
derived from measurements at all. Here, spring is the wettest
season and autumn is the driest.

Added value of ICARCP in terms of SSMSE is found for
spring, summer and autumn with median values greater than
0.36. For a model based on linear theory, better performance
may be expected during the winter half of the year, when
convective available potential energy is lower and convec-
tive events are rarer. This is not reflected in the median of
SSMSE for winter, which is the lowest of all seasons with
0.08 and has the largest spread of values (see Fig. 6a). How-
ever, the seasonal variation of the root mean squared error
(RMSE) for ICARCP shows a minimum during the winter
season, see Fig. 6b. This is also the case for ERAI, resulting
in the lowest RMSE values of ERAI during winter compared
with the other seasons. As the RMSE decrease during win-
ter is larger for ERAI than it is for ICARCP, this results in
a correspondingly lower value of SSMSE in comparison to
the other seasons. For HSS the 1mm threshold shows almost
no seasonal variation with low median scores of less than
0.05 during all seasons. At the higher thresholds the pattern
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Figure 5. The top four panels show patterns of P24 h averaged over 2007–2016 for VCSR (left), ICAR (second column), ICARCP (third
column) and ERAI (right) over the South Island of New Zealand and surrounding ocean. Rows two to five show seasonal deviations of the
all-year average patterns, for autumn (MAM, second row), winter (JJA, third row), spring (SON, fourth row) and summer (DJF, bottom).
Each panel shows the coastline and the 1000mm.s.l. contour line of the topography. High-resolution plots are available in Horak et al.
(2019).

is different. For P24 h > 25mm the highest scores are found
during autumn and summer with the lowest scores during the
remaining seasons. At P24 h > 50mm the seasonal variation
is stronger and shows less spread among the stations, with the
highest median score during winter and summer and the low-
est scores during the transitional seasons. While ICAR most
consistently provides added value at higher thresholds, site
specific improvements are even observed at P24 h > 1mm.

4.6 Sensitivity of ICAR performance to upstream flow
linearity

As a model that is based on linear theory, ICAR is expected to
perform best in cases where linear theory is a valid approx-
imation of the atmospheric flow at the sites of interest. An
indicator of whether this is the case or not is the nondimen-
sional mountain height (e.g., Smith, 1980), hereafter referred
to as the Froude number F :

F =
Un

NH
, (4)

where Un denotes the horizontal wind speed perpendicular
to the Southern Alps, N is the Brunt–Väisälä frequency and
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Figure 6. Panel (a) shows values of SSMSE and HSS (from left to right) for all seasons (colors of the boxes) and panel (b) the root mean
squared errors (RMSE) of ICARCP and ERAI for all alpine stations. Each box and whisker plot is associated with a season (indicated by box
color) and a skill measure (x axis). The lower boundary of each boxplot indicates the 25th percentile, its upper boundary denotes the 75th
percentile and the black line is the median. Whiskers show the minimum and maximum values of the data set. Circles on top of the boxes
show the individual values of each skill measure for all stations. At some weather stations no days with P24 h > 25 or P24 h > 50mm were
observed or simulated during certain seasons, and, thus, no HSS scores could be calculated.

H is an assumed homogenous ridge height of 1500m, char-
acterizing the Southern Alps. Values of F equal to or larger
than unity indicate linear flow, whereas values of F closer to
zero point towards nonlinearity (Smith, 1980).

In order to derive Un and N , two volumes upstream of
the west and east coast were defined, from which the proper-
ties of the flow at an angle of 90± 20◦ to the Southern Alps
were extracted from ERAI daily averages. They are located
200km northwest and southeast of the west and east coast
of the South Island, respectively, to minimize the effect of
the ERAI topography on the flow. Each volume is oriented
parallel to the corresponding coast and is about 200km wide,
500km long and 1500m high, with each containing 22 ERAI
grid points. For northwesterly flow, properties were extracted
from the volume to the northwest of the western coast, and
for southeasterlies properties were extracted from the volume
southeast of the eastern coast.

Following the approach of Reinecke and Durran (2008),
the Brunt–Väisälä frequency and wind speed perpendicular
to the Southern Alps were calculated using the averaging
method for each ERAI grid point in the volumes:

N =
1
H

H∫
0

N(z)dz (5)

Un =
1
H

H∫
0

Un(z)dz, (6)

where N and Un are the averages of the Brunt–Väisälä fre-
quency and the wind speed perpendicular to the Southern
Alps, respectively, weighted by the thickness of the verti-
cal levels. For a relative humidity (RH) below 90% the dry
Brunt–Väisälä frequency was employed in Eq. (5), whereas
for RH values larger than or equal to 90% the moist Brunt–
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Väisälä frequency Nm (Emanuel, 1994) was used:

N2
= g

dlnθ
dz

, (7)

N2
m =

1
1+ qw

{
0m

d

dz

[
(cp+ clqw) lnθe

]
−
[
cl0m lnT + g

]dqw
dz

}
. (8)

Here g is the acceleration due to gravity; T is the tempera-
ture; θ is the potential temperature; θe is the equivalent po-
tential temperature; 0m is the saturated adiabatic lapse rate;
cp and cl are the specific heats at constant pressure of dry
air and liquid water, respectively; qs is the saturation mixing
ratio; ql is the liquid water mixing ratio; and the total water
content is calculated as qw = qs+ ql.
F was then calculated from the weighted averages of N

and Un at all grid points showing stable atmospheric con-
ditions. The imaginary part of the weighted average of the
Brunt–Väisälä frequency, N i, was used as an indicator of
whether the atmosphere at an ERAI grid point was stably
stratified. For N i below a threshold κ the stratification was
considered stable, whereas N i larger or equal to κ was clas-
sified as near-stable. The nomenclature ”near-stable” is cho-
sen over ”unstable” as vertical potential temperature profiles
indicated that the nonzero imaginary part of N i in the large
majority of cases was caused by a thin unstable layer close to
the ocean surface, which was not representative of the con-
ditions above and had a negligible effect on flow linearity.
To investigate the dependence of the results on the thresh-
old choice, the value of κ is varied between 25× 10−5 and
375× 10−5 s−1 in steps of 25× 10−5 s−1. If more than half
of the grid points in an upstream volume showed near-stable
conditions, flow for this day was classified accordingly. Oth-
erwise the day was marked as having stable atmospheric flow
with an average Froude number F . Days when the volume to
the northwest and the volume to the southeast both showed
flow towards the Southern Alps were excluded from the anal-
ysis. This procedure allowed for the remaining days in the
11-year study period to be categorized into days when at-
mospheric conditions upstream of the weather stations were
either (i) near-stable (N i ≥ κ), (ii) stable with flow of low lin-
earity (F < 1) or (iii) stable with highly linear flow (F ≥ 1).
All data from alpine weather stations were then grouped
by these categories and skill scores were calculated to ana-
lyze ICAR performance with regard to the atmospheric back-
ground state.

Of the 4018 d in the 11-year study period, 1847 fulfill the
criteria stated above. A detailed overview of the distribu-
tion of these days among the three categories as a function
of κ is given in Table 3. The results from Table 3, which
are also summarized in Fig. 7, show that stable atmospheric
conditions and Froude numbers larger than or equal to unity
lead to an increase in median scores for sites in complex to-
pography. This behavior is observed for SSMSE, where the

score median increases from 0.33 to 0.58, and for P24 h > 25
and P24 h > 50mm in the case of HSS. For P24 h > 1mm the
maximum median score is found for stable conditions and
F < 1, with the F ≥ 1 regime even yielding a negative me-
dian score. Notably the analysis shows that ICARCP not only
provides added value over ERAI during stable days with high
flow linearity, but also during near-stable days and stable
days with low flow linearity.

4.7 Weather-pattern-based evaluation of ICAR

Kidson (1994a) developed a daily weather pattern classifi-
cation scheme for New Zealand based on 24h mean sea-
level pressure fields. For the underlying cluster analysis, Kid-
son (1994a) employed the NCEP/NCAR 40-year reanalysis
data set (Kalnay et al., 1996) between January 1958 and
June 1997. This analysis yielded 12 synoptic weather pat-
terns (Kidson, 2000) associated with three regimes: “trough”,
“zonal” and “blocking”. The trough regime is characterized
by troughs crossing New Zealand and above average pre-
cipitation countrywide; the zonal regime is characterized by
strong zonal flow to the south and highs to the north with
milder conditions in the south; and the blocking regime dis-
plays highs in the south leading to a dryer southwest but
wetter northeast. On average about 38% of days are clas-
sified as belonging to the trough regime, 25% to the zonal
regime and 37% to the blocking regime. Figure S2 gives an
overview of the 12 synoptic weather patterns defined for New
Zealand and the associated regime. An operational pattern-
classification of each day since 1948 is available from the Na-
tional Institute of Water and Atmospheric Research of New
Zealand (NIWA).

Furthermore, these weather patterns have been linked to
deviations of quantities, such as precipitation, from the cli-
matological mean (Kidson, 1994b, 2000). For instance, dur-
ing the HW pattern precipitation is below average at all
weather stations, whereas during the TNW, T, HE and W pat-
terns, when westerlies and northwesterlies dominate and oro-
graphic lifting in the Southern Alps is favored, precipitation
at all alpine weather stations is above average (see, for exam-
ple, Sect. 4.8). This allows for the investigation of whether a
downscaling model is able to represent these departures cor-
rectly, offering a link between the synoptic situation and local
weather anomalies.

Figure 8 shows a distinct dependence of SSMSE on the
synoptic weather pattern. Highest median scores with values
above 0.29 in terms of SSMSE are achieved for the TNW, T,
H and W weather patterns. Three of these patterns (TNW, T
and W) are associated with distinct westerly and northwest-
erly flow, facilitating orographic lifting along the Southern
Alps. However, the HE pattern, for which similar conditions
may be expected, only yields a median SSMSE of 0.15. This
comparatively low median value is due to very low scores
found for the Potts, Rakaia and Mahanga weather stations.
Rakaia and Potts are farthest downwind of the main alpine

Hydrol. Earth Syst. Sci., 23, 2715–2734, 2019 www.hydrol-earth-syst-sci.net/23/2715/2019/



J. Horak et al.: Assessing the added value of ICAR 2727

Table 3. Skill measures calculated for the three categories of atmospheric flow (near-stable, stable with F < 1 and stable with F ≥ 1), and
the number of days pertaining to each category in percent as a function of κ . An asterisk preceding a score indicates that it was found to be
nonsignificant by applying the criteria defined in Sect. 4.2.

κ (10−5 s−1) 25 50 75 100 125 150 175 200 275 300 375

Days in each category (%)

Days near-stable 75.4 63 48.9 33.1 19.6 13.1 6.7 3.7 1.4 1.2 0.7
Days stable, F < 1 21.6 32.3 44.3 58 70.3 76.3 81.8 84.5 86.2 86.4 86.9
Days stable, F ≥ 1 2.9 4.7 6.8 8.9 10 10.5 11.5 11.8 12.4 12.4 12.4

Scores for near-stable days

SSMSE 0.33 0.34 0.29 0.22 ∗0.27 0.32 0.43 0.5 0.34 0.35 −0.2
HSS P24 h > 1mm ∗0.01 ∗0.03 ∗0.04 ∗0.02 ∗0.01 −0.02 −0.05 −0.03 −0.08 −0.11 –
HSS P24 h > 25mm 0.17 0.13 ∗0.04 ∗0.01 −0.02 −0.08 ∗0.1 ∗0.11 ∗0.1 ∗0.12 –
HSS P24 h > 50mm 0.17 0.12 ∗0.11 ∗0.07 ∗0.12 ∗0.21 0.33 – – – –

Scores for stable days with F < 1

SSMSE 0.49 0.47 0.47 0.47 0.47 0.46 0.46 0.46 0.47 0.47 0.46
HSS P24 h > 1mm −0.02 ∗0.03 ∗0.02 ∗0.03 ∗0.02 ∗0.03 ∗0.03 ∗0.03 ∗0.03 ∗0.03 ∗0.03
HSS P24 h > 25mm 0.41 0.38 0.38 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36
HSS P24 h > 50mm 0.33 0.32 0.32 0.31 0.31 0.3 0.3 0.3 0.31 0.31 0.31

Scores for stable days with F ≥ 1

SSMSE 0.62 0.6 0.59 0.59 0.57 0.57 0.57 0.57 0.58 0.58 0.58
HSS P24 h > 1mm −0.4 −0.25 −0.08 −0.07 −0.07 −0.07 −0.09 −0.09 −0.09 −0.09 −0.09
HSS P24 h > 25mm 0.62 0.57 0.49 0.51 0.5 0.5 0.49 0.49 0.49 0.49 0.49
HSS P24 h > 50mm 0.5 0.51 0.47 0.45 0.44 0.45 0.44 0.44 0.45 0.45 0.45

Near-stable days used for HSS score calculation (%)

With P24 h > 1mm 29.4 21.9 17 12.7 8.3 6.3 3.6 2.3 1 0.9 –
With P24 h > 25mm 9.1 6.3 4.8 3.5 2.5 2 1.3 1.1 0.7 0.6 –
With P24 h > 50mm 4.2 2.9 1.9 1.3 0.9 0.7 0.5 – – – –

Stable days with F < 1 used for HSS score calculation (%)

With P24 h > 1mm 16.5 23.8 30.3 38.2 44 46.3 49.3 50.6 51.5 51.7 52.2
With P24 h > 25mm 9 12 14.8 18.2 20.5 21.3 22.6 23.1 23.5 23.5 23.8
With P24 h > 50mm 5.4 6.9 8.3 10.1 11.4 11.7 12.4 12.7 12.9 12.9 13.2

Stable days with F ≥ 1 used for HSS score calculation (%)

With P24 h > 1mm 2.8 4.5 6.3 8.2 9.3 9.6 10.4 10.7 11.2 11.2 11.2
With P24 h > 25mm 2.4 3.6 4.8 6.2 7.1 7.3 7.8 8 8.5 8.6 8.5
With P24 h > 50mm 1.9 3 3.8 4.8 5.5 5.7 6.1 6.2 6.6 6.7 6.6

ridge and Mahanga is the weather station farthest down-
wind of the coast with approximately 80km of mountain-
ous terrain in between, where downwind is as defined in
Sect. 3.2. Particularly low median scores are found for the
HW and NE patterns, where flow parallel to the Southern
Alps dominates. Consistent with the results from Sect. 3, no
added value of ICARCP over ERAI was found in terms of
HSS for P24 h > 1mm, even though there is a small variation
with weather pattern (not shown). For the higher thresholds,
not enough data were available to calculate HSS for every
weather pattern.

4.8 Weather-pattern-based variations of precipitation

Kidson (1994b) noted that the local climate in New Zealand
shows variability as a function of the synoptic weather pat-
terns. In this section, the capability of ICAR to capture
the average 24h accumulated precipitation amount at each
weather station (ws) calculated for each of the weather pat-
terns (wp) is investigated. To this end, averages of P24 h
simulated by ICAR and ERAI are calculated individually
for each weather pattern and each of the weather stations
P24 h(ws,wp) and compared to the observations. Figure 9
shows measured and modeled values of P24 h(ws,wp) for
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Figure 7. Dependence of SSMSE and HSS at alpine stations on atmospheric stability and the Froude number regime, calculated for all
available data for each value of κ (see Table 3). SSMSE is shown in (a) in addition to HSS for the (b) P24 h > 1mm, (c) P24 h > 25mm and
(d) P24 h > 50mm thresholds. The x axis indicates atmospheric stability and the Froude number regime. The lower boundary of each boxplot
indicates the 25th percentile, the upper boundary denotes the 75th percentile and the black line is the median. Whiskers show the minimum
and maximum values of the data set.

Figure 8. Box and whisker plot of SSMSE calculated for all alpine
weather stations as a function of the synoptic weather pattern
(x axis; Kidson, 2000). The regime associated with each weather
pattern is indicated by the colored shading in the lower part of the
plot. The lower bound of each box marks the 25th percentile of the
data, the upper bound marks the 75th and the black horizontal line
is the median. The whiskers indicate the minimum and maximum
values in the data set, except for the HW pattern where two data
points outside the plot limit are indicated by an arrow and their cor-
responding values are noted above.

the Ivory weather station. It is located at an elevation of
1390mm.s.l. and lies approximately 2km upstream of the
main alpine ridge with respect to westerly and northwesterly
flow (see Sect. 3.2). Ivory is strongly affected by precipita-
tion caused by orographic lifting, leading to local precipita-
tion maxima during the T, TNW, W and HE patterns. Fur-

thermore, at Ivory, the behavior found in the measurements
is correctly reproduced by ICARCP and ERAI. The absolute
amounts of precipitation are, although underestimated, bet-
ter modeled by ICARCP. To analyze how well the simulated
values of P24 h(ws,wp) correlate with measurements, the co-
efficient of determination weighted by weather pattern fre-
quency, r2, (Wilks, 2011b, chap. 5) between the observed
and modeled values of P24 h(ws,wp) are calculated for all
weather stations and are shown in Fig. S3a. To investigate
the added value of ICARCP over ERAI in modeling mea-
sured amounts of P24 h(ws,wp), SSMSE is calculated and the
results are summarized in Fig. S3b.

With the exception of the Potts weather station, ICARCP
is able to represent the fluctuation of P24 h(ws,wp) as a func-
tion of weather pattern, with an r2 value higher than 0.9 (see
Fig. S3a). ICARCP shows clear improvement over ERAI at 5
of the 11 weather stations, a similar performance to ERAI at
4 of the stations and a worse performance at 2 stations. Par-
ticularly noteworthy is the underperformance compared with
ERAI at the Potts alpine weather station and, far less pro-
nounced, at the Larkins weather station. Both stations are lo-
cated downstream of the main alpine ridge, but only at Potts
does ICARCP not correctly anticipate decreased precipitation
during the HW and TSW patterns, as well as an increase in
precipitation during the W pattern (Fig. S6j).

Generally ICARCP is able to model measured amounts of
P24 h(ws,wp) well at all other alpine weather stations (see
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Figure 9. P24 h(ws,wp) as a function of weather pattern (wp)
and weather station (ws) at the Ivory weather station for measure-
ments (black pentagons), ICAR simulations (orange disks) and the
ERAI reanalysis (blue squares). Ivory is situated at an elevation of
1390mm.s.l. and, on average, approximately 2km upstream of the
main alpine ridge with regard to northwesterlies and westerlies. The
connecting lines serve as guides for the eye.

Fig. S3b) with a median SSMSE of 0.74, except for Albert
Burn and Potts. At Albert Burn it underestimates measured
and ERAI modeled values of P24 h(ws,wp) during all pat-
terns (Fig. S6a). Albert Burn is located approximately 11km
downwind of the main alpine ridge with respect to westerlies
and northwesterlies. The lowest score is found at the Potts
alpine weather station.

5 Discussion

The model top leading to the smallest average MSE of
ICARCP over all alpine weather stations was determined with
a sensitivity study at 4km above topography. At alpine sites
in complex topography ICARCP was then able to reduce
mean squared errors in comparison to its ERAI forcing data
set by up to 53% and 30% on median. While ICARCP mod-
eled the occurrence of days with a maximum accumulated
precipitation of 1mm as well as ERAI, significant improve-
ments were found for P24 h > 25 and P24 h > 50mm. Over-
all the mean daily precipitation pattern produced by ICARCP
was found to be in agreement with the pattern derived from
the VCSR observation-based gridded data set, with the sea-
sonal variation being mostly captured by ICARCP. The re-
sults indicate that ICARCP performs best during stable atmo-
spheric conditions with highly linear flow; however, added
value over ERAI is also found for stable days with low flow
linearity and near-stable days. A clear dependence of skill on
the synoptic situation was found, with weather patterns as-
sociated with cross-alpine flow leading to higher scores than
weather patterns with flow parallel to the alpine range.

ICAR was found to perform better for upstream flows
with Froude numbers larger than unity. This result is not un-
expected, as linear theory is the theoretical foundation for
ICAR. Therefore, flows of higher linearity lead to increased
SSMSE and HSS for thresholds of 25 and 50mm. These re-

sults hold even if the method for classifying near-stable or
stable days is changed. For instance, using N2 ≤ 0 as the
classification criterion for near-stable days and N2 > 0 for
stable days leads to similar results (see Fig. S4). For SSMSE
(see Fig. 7a) the spread of scores derived from varying κ for
near-stable days is large enough to include the median score
of the stable days with F < 1. Nonetheless, this is only true
for κ = 200×10−5 s, in all other cases stable days with F < 1
always score higher than near stable days. Stable days with
F ≥ 1, in comparison, always achieve a higher score than the
other two categories. A potential issue with the methodology
is the small number of cases in the stable regime with F ≥ 1
compared with the two other classes (see Table 3). However,
P24 h on stable days with F ≥ 1 is 3–7 times as high as P24 h
during the other two classes (see Fig. S5). Therefore, while
comparably small in number, stable days with F ≥ 1 con-
tribute above-average amounts of precipitation to the clima-
tology, highlighting the importance of the improvement in
skill for this category.

Negative values of SSMSE were found for the Albert Burn,
Mahanga and Potts alpine weather stations, whereas non-
significant positive scores were found at Rakaia and Larkins.
The time series of Potts and Larkins are the shortest of all
weather stations, spanning 0.9 and 0.8 years, respectively,
which potentially contributed to the negative or nonsignifi-
cant positive scores, respectively. Furthermore, Potts is the
weather station with the largest difference between weather
station elevation and ICAR grid cell elevation, with the ICAR
grid cell located 741m lower. While the aforementioned is-
sues may deteriorate scores at individual stations, it is also
possible that the downwind distribution of moisture by ICAR
differs from expectations. This is indicated by a slight nega-
tive correlation of the score value with the average distance
downwind from the main alpine crest (as defined in Sect. 3.2)
which is found for SSMSE and HSS at the 25 and 50mm
thresholds. The correlation is strongest for SSMSE with a
value of −0.65 and weakest for the HSS with P24 h > 50mm
with a value of −0.50. Mahanga and Larkins are the weather
stations farthest downwind from the coast, with mountain-
ous topography located in between. Albert Burn, Rakaia and
Potts are the weather stations farthest downwind of the main
alpine crest. A potential cause for the observed negative cor-
relation is the fact that the reflection of mountain waves at
the interfaces between atmospheric layers can impact the dis-
tribution of orographic precipitation (Barstad and Schüller,
2011). Siler and Durran (2015) found, for instance, that wave
reflection at the tropopause may either strengthen or weaken
low-level windward ascent, which in turn affects the amount
and distribution of orographic precipitation. The outcome
was found to depend on the ratio of the tropopause height
to the vertical wavelength of the mountain waves. As ICAR
currently does not account for wave reflection, its implemen-
tation could therefore lead to improvements in this regard.
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The mean SSMSE of ICARCP at alpine weather stations
is 0.3. While ICARCP provides added value over ERAI it
also systematically underestimates precipitation at all alpine
weather stations except for Rakaia (see Tables 1 and 2). This
underestimation increases with higher model top settings and
is independent of the average distance of the site upwind or
downwind from the main alpine ridge (with respect to north-
westerlies and westerlies). Different issues may contribute to
this underestimation.

i. ERAI is potentially too dry in the study region and
therefore not enough moisture is advected across the
boundary of the nested ICAR domain.

ii. As the coupling between surface and atmosphere is ne-
glected in the ICAR setup employed for this study, parts
of the ocean within the ICAR domain cannot contribute
moisture to the airflow upwind of the South Island of
New Zealand.

iii. Nonlinear amplification of waves could amplify up-
drafts in comparison to updrafts predicted by linear
theory, increasing orographic precipitation correspond-
ingly.

iv. The low model top setting at 4km above topography, de-
termined as optimal by a sensitivity study, may largely
eliminate the potential seeder–feeder interaction be-
tween synoptic clouds and orographically lifted moist
air. This effect is expected to play a crucial role for the
formation of heavy rainfall on the South Island of New
Zealand (Purdy and Austin, 2003). While increasing the
model top is an apparent solution to this issue, the sen-
sitivity study in Sect. 4.3 showed that this does not lead
to a decrease in the MSE of ICAR or ICARCP (Fig. 2a),
nor does it increase model skill at alpine weather sta-
tions (Fig. 2b).

v. Convergences and divergences in the ERAI data set in-
fluence updrafts and downdrafts in the ICAR wind field,
leading, for instance, to synoptic precipitation in ICAR;
however, these divergences may also dampen the up-
drafts calculated with linear theory, thereby reducing the
precipitation computed by ICAR.

vi. The reflection of mountain waves is neglected by the
version of ICAR used in this study. However, Siler and
Durran (2015) showed that the reflection of mountain
waves has a significant impact on the amount and distri-
bution of precipitation.

Further studies are needed to quantify the influence of is-
sues (i)–(vi) and identify their relevance for the observed
underestimation. A possible ad hoc solution to the under-
estimation is the application of a bias-correction field esti-
mated from a regional climate model to the ICAR precipita-
tion fields (e.g., Engelhardt et al., 2017).

While the relative variability of average daily precipitation
amounts related to synoptic weather patterns, P24 h(wp,ws),
showed a comparable reproduction quality by both ICARCP
and ERAI (see Fig. S3a), absolute amounts of P24 h(wp,ws)
are largely underestimated by ERAI (up to on average
17mm). This underestimation is far less pronounced in
ICAR_CP, resulting in a median SSMSE of 0.74 when mod-
eling P24 h(wp,ws) (see Fig. S3b).

Precipitation measurements, particularly those in complex
topography, are associated with uncertainties. Different fac-
tors such as wetting, wind, freezing or equipment failure in
harsh conditions (Henderson and Thompson, 1999) may in-
troduce errors, such as undercatch, into the results. Wind has
been recognized as the main cause of undercatch (e.g., Gro-
isman and Legates, 1995; Yang et al., 1999; Yang and Ohata,
2001), and particularly affects alpine weather stations. The
effect is most pronounced for large, solid precipitation and
increases with latitude and elevation (Goodison et al., 1989;
Groisman and Legates, 1995). Cullen and Conway (2015),
for instance, estimated the undercatch at Mount Brewster
during summer to be 25%, whereas Kerr et al. (2011) listed
annual undercatch at alpine sites in the Southern Alps as up
to 20%. However, the impact of undercatch on the results
presented here is expected to be small, as these errors have
an adverse effect not only on the performance of ICARCP but
also on the ERAI reference model.

In this study, the chosen reference period (2014–2015)
overlaps with the study period (2007–2017). While ICAR is
computationally more efficient than dynamic downscaling,
performing, for instance, leave-p-out cross-validation would
require extensive computational resources. However, the re-
sults suggest that the reference period is representative of the
full study period with regards to the presented calibration
method: for simulations with the model top set at 4km, the
mean MSE over all alpine weather stations of ICAR shows
only little variation depending on whether the MSE is calcu-
lated for the reference period, the study period or the study
period excluding the reference period (see Fig. 2c). Further-
more, the variation between the mean MSEs for simulations
with different model top settings (Fig. 2b) is larger than the
variation between different evaluation periods (Fig. 2c).

The sensitivity studies leading to the choice of the model
top at 4km have shown that the model top elevation greatly
influences precipitation amounts and, in turn, the mean
squared errors obtained, see Fig. 2. It is not immediately
obvious though why precipitation amounts decrease (not
shown) and the MSEs deteriorates for higher model tops. Po-
tential reasons are the influences of divergences in the forcing
wind field on the ICAR wind field or numerical artifacts aris-
ing from the treatment of the model top in ICAR. However,
further research is necessary to develop a better understand-
ing of this issue and its causes. Subsequently, future studies
could focus on finding a method that allows for the estima-
tion of the model top elevation best suited for a domain with-
out relying on measurements, as well as on investigating the
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influence of the choice of the forcing data type (i.e., global
or regional reanalyzes, GCMs and weather forecast models)
and the spatial grid resolution thereof on ICAR dynamics and
skill.

In the analysis presented, standard verification scores
based on point matches between model and observation
were employed (see Sect. 4.2). Nonetheless, these verifi-
cation scores are susceptible to small spatial shifts in the
ICARCP precipitation field that cannot be produced by the
coarse-scale reference model. Therefore, this effect may po-
tentially over-penalize ICARCP in comparison to the much
coarser ERAI field (Theis et al., 2005; Ebert, 2008). An over-
penalization of ICAR compared with ERAI is suggested by
the precipitation pattern comparisons shown in Fig. 5. Here
the VCSR observation-based gridded data set and ICARCP
are generally in good agreement, with ICARCP reproducing
most seasonal variations. As noted in Sect. 4.5, for instance,
a precipitation maximum in the VCSR pattern (Fig. 5a) that
is located within the Southern Alps is shifted westward in
the ICARCP pattern (Fig. 5k) and is, due the coarser grid-
spacing, not present in ERAI at all (Fig. 5p). A variety
of methods have been proposed to overcome this problem,
and future evaluations of ICAR generated atmospheric fields
could incorporate these methods in their evaluation proce-
dures (e.g., Ebert, 2009).

6 Conclusions

In this study, simulations with ICAR were found to provide
added value over ERA-Interim for 24h accumulated precipi-
tation on the South Island of New Zealand for alpine weather
stations. In contrast to the almost consistently positive re-
sults found for the alpine weather stations, ICAR provides
no added value over ERA-Interim for coastal weather sta-
tions. A comparison of average and seasonal precipitation
patterns of an operational gridded rainfall data set with ICAR
showed good agreement. Grouping the available data accord-
ing to Froude number revealed that stable atmospheric con-
ditions with a higher degree of flow linearity lead to higher
skill scores, and that ICAR provides added value over ERA-
Interim even for days with near-stable conditions and stable
days with lower flow linearity. A grouping according to the
synoptic situation showed that values of SSMSE are generally
high for weather patterns associated with flow approximately
perpendicular to the alpine range and lowest for weather pat-
terns exhibiting flow parallel to the Southern Alps. While
ICAR in principle does not require observations to be cal-
ibrated, the model top for this study was determined with
a sensitivity analysis. All other settings could be adopted
from default. With the adjusted model top, however, con-
sistent added value for stations in complex topography was
found, with a reduction of the median error by 30%. Clear
improvement may be expected on further site-specific cal-
ibration to observations as routinely performed in regional

climate-model-based downscaling. Further research on how
ICAR fields are influenced by the forcing data set will be
necessary.
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