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Response to Interactive comment on “State Updating and Calibration Period Selection 

to Improve Dynamic Monthly Streamflow Forecasts for a Wetland Management 

Application” by Matthew S. Gibbs et al. 

Anonymous Referee #1 

1) This article investigates 2 scientific issues in the context of rainfall-runoff seasonal forecasting: (a) the advantages of state(s) updating 

and (b) the sensitivity of the choice of the data used for calibration (calibration period length). These 2 scientific issues have been / are 

widely discussed in the hydrological community. Authors choose to put them in the context of complex wetland management application. 

This intention is relevant, since these issues are of crucial importance for operational matters. 

First, it is worth noting that the manuscript is most often very clear (in particular, the introduction is efficient). Some suggestions are 

made below (detailed comments) to make the manuscript clearer (some parts are easier to understand when checked again after a 

further reading). The methodology is quite well detailed (I reckon that it is sufficient for anyone who wishes replicating the study) and 

the results are well presented.  

However, many (too many ?) details concerning the application context are provided (section 2). I am afraid that I missed understanding 

how they infer with the scientific issues: results and discussion section do not make clear to me whether and how this particular context 

has implication on the way these issues are dealt with and on the results of the study. In a similar way, some details are given about the 

data used in an operational context, but it is not clear how they impact the results of this study. For example, this is the case of the 

precipitation forecasts (see detailed comments). Indeed all the results are not discussed in depth, with respect to these options (e.g., 

results obtained with observed rainfall versus results obtained with forecasted rainfall) and with respect to the context and practical 

purposes of the wetland management (whereas this appears in the submitted title): results are presented in only 2 pages and a half and 

the discussion is shorter (1 page). Even if all the tested cases are very useful for the specific case study and application, they are then not 
fundamental for the reader who focuses more on the ’generic’ scientific issues than on the specific context of wetland management. The 

authors should consider removing them in order to make the reading and the analysis easier, rather than providing everything they learnt 

from their case study (again: even if it is quite interesting per se). They may prefer explaining how their findings are related to their 

specific case study and practical application. 

One of the topics of interest for the sub-seasonal to seasonal hydrological forecasting special issue was user needs for seasonal forecasts. 

As such, more detail than typical on the case study application to wetland management was included in the manuscript. However, it is 

agreed that this is a distraction from the more generic scientific issues of interest to most readers. As such, section 2 has been shortened 

and more targeted. See responses to detailed comments below for further changes in this regard. 

It is believed that all the test cases considered remain relevant to the contribution of the manuscript and general scientific issues, i.e. 
with and without state updating, two different calibration period lengths, and observed and forecast rainfall. The least contribution may 

come from the two rainfall sources, but these cases represent two different tests. The observed rainfall allow the effect of the changes 

on model performance to be isolated, without the effects and errors associated with the forecast rainfall propagating through. However, 

the forecast rainfall case is necessary for the practical application, and without this case the results cannot be considered realistic. 

2) As mentioned previously, the 2 scientific issues have been explored by many previous studies. That is why this article has to do 

thorough review of literature in order to emphasize on the novelty of their study or to compare their results to those of other studies: 

- The way how non-stationarity is treated is very satisfying. The explicit distinction between physical catchment non stationarity 

and other model non-stationarity is necessary (while not always made); it is introduced in a very clear manner. I only suggest the authors 

to give a more explicit definition of the model parameters (the discussion is indeed implicitly present behind), since some previous studies 

proposed parameter variations to compensate many different non-stationarities (up to model structural deficiencies), as nicely pointed 
out in the introduction. This issue is particularly relevant in this study because the authors chose to update their model but only selected 

state updating, while many other approaches exist, one of them being parameter updating: this choice, which is very consistent, may be 

better explained. While not being a specialist of the choice of data calibration, I found the quoted references relevant. I only wish that 

these articles (e.g., Luo et al., 2011, which clearly inspired the methodology adopted by Gibbs et al.) would have been quoted not only 

in a generic way but also in sections 4 (Results) and 5 (Discussion) as benchmarks for the results: the results confirm previous studies in 

a large part; is there any interesting difference? 

The description of the model parameters and structure has been expanded in Section 3.1 and Table 1. The rolling approach used to 

calibrate the model parameters (both the hydrological model and error model) could be considered a form of parameter updating, where 

the parameters are updated every year based on the most recent data, this has been clarified in Section 3.3. The introduction has also 
been updated to outline the approach to parameter updating based on analogous periods in the historical record: 

The degradation in model predictive performance due to catchment non-stationarity can impact on the decisions informed by these 

forecasts. To address this concern, a number of studies have calibrated model parameters to subsets of the available data, by attempting 

to find periods in the historical record that are analogous to conditions expected in the prediction time period, and by tailoring the time 

period selection to compensate for deficiencies in the model structure or input data (Brigode et al., 2013; de Vos et al., 2010; Luo et al., 

2012; Vaze et al., 2010; Wu et al., 2013; Zhang et al., 2011). Often there is a trade-off between the benefits of a longer calibration period 

which exposes the model to a more diverse range of conditions and tends to improve parameter identifiability, versus the benefits of a 
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shorter calibration period that exposes the model to the most recent – and hence often the most relevant – dynamics in the catchment. 

Demonstrating and understanding the impact of this trade-off on model predictive performance is a key research gap pursued in this 

study. 

The Discussion has been updated to contrast to previous studies and the interesting differences found in this work. Most notably, this 

difference is the benefit of state updating at a lead time longer than a few days. This is outlined in Section 5.1: 

Most previous studies have used state updating in a short term flood forecasting context, and found limited effect of the initial conditions 

after a number of days (e.g. Berthet et al., 2009; Randrianasolo et al., 2014; Sun et al., 2017). However, forecasting of flood peak and 

timing is a different application to the forecasting of streamflow volumes. A number of data driven modelling studies have demonstrated 

that monthly streamflow lagged by one (or more) months provided some useful information for forecasting at a one month lead time 

(e.g. Bennett et al., 2014; Humphrey et al., 2016; Yang et al., 2017). This study demonstrates that these benefits also hold when CRR 

models, rather than data-driven approaches, are used as the forecasting model. 

3) Concerning the data assimilation and model updating issue, the bibliography is poorer (see detailed comment for page 3). Many 

references could be added. Since the authors chose to use the GR4J model and since the state updating they chose is the same one as 
the approach adopted for the GRP model (’adaptation’ of the GR4J model for forecasting, used by the French flood forecasting centres), 

it is also worth mentioning this work (see detailed comments below). Beyond the references issue, it may (should ?) be noted that this 

study explores the benefits of model updating for seasonal forecasting, whereas many, if not most, studies consider shorter lead-times. 

This aspect has to be mentioned, since it is well known that the effects of model updating most often vanish whe the lead-time increases. 

In my opinion, keeping benefits at large lead-time is one of the (surprising) key result of this study and may be usefully emphasized.  

See the above comment (2) for the changes due to the benefits at longer lead times. Thank you for the very constructive suggestions for 

relevant literature here and in the detailed comments. The literature review has been updated to include these references and points to 

improve the representation of the previous literature in the field of data assimilation. 

In CRR models, catchment conditions are represented by (usually multiple) model storages, referred to as “state variables”. The values of 

these storages at the start of a forecast period are typically determined using a warm-up period, which allows the internal model states 

to reach reasonable values. Given the expected influence of the initial conditions on the simulated streamflow, observed data can be 

assimilated into the model to update the state of the model storages. The most commonly used approaches in hydrological data 

assimilation include direct updating of storages (for example Demirel et al., 2013), Kalman filtering, particle filtering, and variational data 

assimilation (see Liu and Gupta, 2007). Berthet (2010) considered a number of tests for different updating approaches for the GRP model, 

a CRR model commonly used in short term streamflow forecasting applications.  

4) A few methodological choices may deserve a little more discussion or explanation: The calibration algorithm is a rather complex one, 

but used with assumptions which are known to be not met in most cases (page 9, line 7: independent, homoscedastic residuals). 
Moreover, these assumptions are not consistent with the choice of the model error post-processor (a Box-Cox transformation is used in 

order to take into account the heteroscedasticity of these same residuals). Why did the authors pick a complex approach with unverified 

and inconsistent assumptions rather than a simpler one? It let the reader think that the authors used "components" available on the 

shelf or a pre-existing tool, which is quite understandable. But then they have to justify these choices (and why a so complex calibration 

method when much simpler ones are easily available?). 

It was considered that a calibration method capable of estimating a posterior distribution of parameter values was required. This allowed 

the change in the distribution of suitable parameter values to be considered over time (Figure 8). In contrast, a simpler algorithm 

(gradient or evolutionary method) that provides a point estimate of the calibrated parameter values would not show the parameter 

identifiability (spread in values), and in turn the trends over time may not have been able to be separated from the variability in estimates. 
As such, the choice of algorithm is not considered overly complex, and a significantly simpler approach to estimating parameter 

uncertainty is not known to the authors.  

The assumptions of the GR4J model likelihood function and the error model likelihood function are different, as they are applied in 

different situations. The following has been added to the manuscript. 

The assumptions of the post-processor residual error model used to estimate predictive uncertainty for monthly volumes are different to 

the assumptions of the residual error model used in the likelihood function for calibrating the daily GR4J model. As outlined in Section 3.2, 

the GR4J model is calibrated at the daily scale to observed streamflow using the standard least squares likelihood function, because it 

better captures the high daily flows, important for estimating the monthly volumes. The post-processing error model for the monthly 
volumes is designed to capture the predictive uncertainty in these monthly volumes, in particular the heteroscedasticity and skew of the 

residuals (McInerney et al., 2017; Refsgaard, 1997). These choices of residual error models at the daily and monthly time scales contribute 

to the study objectives of reliable forecasts at the monthly time scale, and are common in forecasting applications (for example, Lerat et 

al., 2015). 

5) Furthermore, one point is not discussed but may deserves some attention. Like the hydrological model, the model error post-processor 

is calibrated (not in a joint manner however). Why does the study on the impact of the calibration data period length on the calibration 

only focus on hydrological parameters and not on the post-processor parameters as well (mu, sigma)? This can indeed be treated 

independently (therefore not necessary in this article), but this research issue may be usefully mentioned. Are the post-processor 

parameters concerned by the rolling calibration? 
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The error model parameters are also determined using the rolling calibration approach, and this has been clarified in Section 3.5. This 

way any trends in the error model parameters are captured in the same way as those for the hydrological model. For the sake of brevity, 

a figure similar to Figure 8 has not been included for the error model parameters.  

6) One element may also be better detailed: the results are given at a monthly scale (time step), whereas the GR4J model is a daily one: 

the way the GR4J model is run has to be precised. This is important, since the model is updated and effects of model updating decrease 
when the lead-time increases. However, it often does not only depend on the lead-time ’absolute’ value but also on the number of time 

steps to reach this lead-time.  

Good point. Clarification of the daily scale GR4J model have been added in Sections 3.1 and 3.3. The following has been added at the 

start of Section 3.5 to be clear when the monthly aggregation occurs (prior to the application of the post-processor error model): 

The monthly streamflow forecasts are obtained by aggregating the daily GR4J simulations. In order to quantify predictive uncertainty 

using a residual error model, the monthly-aggregated GR4J simulations, 𝑸𝜃 , are compared to observed monthly streamflow volumes, �̃�. 

The quantification of error is based on residuals errors, defined by the differences between observed and simulated monthly streamflow. 
Separate error models are estimated for the GR4J predictions for each catchment and for each type of forcing data (observed or forecast 

rainfall), as follows: 

7) In a nutshell, this article brings some interesting results, even in a field explored by many previous studies, and deserves publication. 

The suggestions made in order to improve the manuscript lead me to propose a moderate to major revision (however another round of 

submission afterwards does not seem necessary). 

Thank you for the constructive comments that will help to improve the manuscript substantially. 

 

DETAILED COMMENTS 

- Page 2 

8) Line 22 ("As these models are conceptual, they require calibration [...]"): they are not the only models that do so. Even the (so-called) 

physically-based models which could theoretically not need calibration, are most often calibrated, for various practical reasons. 

Agreed, the manuscript has been updated as follows: 

The parameters of these models have a limited relationship to measureable catchment attributes (e.g. soil horizon depth) (e.g. Fenicia et 

al., 2014), and typically require calibration to observed streamflow data (noting that physical models also require some calibration (Mount 

et al., 2016; Pappenberger and Beven, 2006)).  

9) Lines 22 - 23: Brigode et al. (2013) show that this general a priori (longer calibration periods produce more robust parameters 

estimates) is not always verified. Therefore if this article is quoted (and it should be, in my opinion), it would be fair to indicate their 

results.  

Agreed, the manuscript has been updated as follows: 

It is generally considered that longer calibration periods produce more robust parameter estimates, as a longer period exposes the model 

to a more diverse range of catchment conditions and flow events (Wu et al., 2013), however this is not always the case (for example 

Brigode et al., 2013). 

10) Lines 30 - 31: the definition of catchment non-stationarity which is proposed, is very interesting since it ’focuses’ (restrains to) the 

physical object non-stationarity. However, it seems to be a binary state: the catchment is or is not stationary. Have the authors considered 

the notion of a "degree" of non-stationarity? Indeed, all the listed factors of non-stationarity are not expected to have the same 

consequences over the catchment behaviour. Might the rolling calibration approach be a tool to assess the relationship between 

"degrees" of non-stationarity and parameters evolution? (see also detailed comment on Fig. 3) 

This is a good point, indeed natural systems are likely to be in varying degrees of non-stationarity, as nothing in nature is entirely static. 

The manuscript has been updated as follows: 

In this work, the term “non-stationary” is used to refer to situations where physical changes are expected to have occurred in a catchment, 
and where there is evidence to reject the hypothesis of stationarity. In practice, catchments may have different “degrees” of non-

stationarity, depending on the evidence available to reject the hypothesis of stationarity, the degree of change in a catchment, and the 

time scales over which the changes take place. 

- Page 3 

11) Line 1: is groundwater depletion a physical change (of the catchment) or the consequences of some of the listed catchment changes? 

This has been clarified to refer to groundwater abstractions, as opposed to other potential causes of groundwater depletion: 

Examples of non-stationary changes in catchment conditions that could be expected to change the rainfall-runoff relationship include 

changes in land use or land-cover (e.g., deforestation, urbanization), land drainage, interception (e.g. dams or diversions), groundwater 

abstractions or responses to changes in climate (Milly et al., 2015). 

12) Lines 15 - 20: the bibliography review is rather poor: it gives some "extreme approaches" between the (too) simple GLUE and the 

very detailed BATEA (or similar approaches). Furthermore, GLUE is a quite old approach, giving a reference of 2008 is a bit strange 
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(unfair?), as it appears more recent than much more advanced and sophisticated approaches, as those developed by Kavetski, Vrugt and 

others. Since the chosen approach is a model error post-processor, I suggest Krzysztofowicz and Maranzano (2004). 

Thank you for the reference, has been included and the paragraph edited as follows: 

Predictive uncertainty quantification is another major aspect of practical streamflow prediction. Many approaches are available to 

quantify predictive uncertainty, from approaches that identify a range of model parameters that represent the behaviour of the 
catchment using approaches such as generalised likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992), to post-processor 

approaches (e.g. Krzysztofowicz and Maranzano, 2004), to disaggregation approaches that attempt to characterise each individual source 

of error explicitly (e.g. Kavetski et al., 2003; Vrugt et al., 2005). In this work, predictive uncertainty is estimated using an aggregated post-

processor residual error model. The residual error model represents the differences between the hydrological model predictions and 

observed data, without trying to identify the contributing sources (Evin et al., 2014). The post-processor approach is chosen because it 

can lead to more robust estimates of predictive uncertainty compared to joint calibration of all parameters (i.e. estimating CRR model 

and error model parameters concurrently) (Evin et al., 2014). 

13) Line 17: "using a model error post-processor" rather than "using a post-processor error model" ? 

The terminology has been clarified, see response at 12) above. “post-processor error model” is preferred by the authors, as the error 

model is developed and applied after the hydrological model has been calibrated, rather than calibrated in conjunction with the 

hydrological model (i.e. post-processor), and “error model” emphasises that an error model has been used.  

- Page 4 

14) Line 3 ("up to one month"): I understood this paragraph as a bibliography review giving general results (not specific to some 

catchments). However, it gives some values of the "influence duration" of the initial state, which strongly depends on the catchment 

characteristics. I am pretty confident in the fact that it easy to find catchments where the impact of the initial conditions is important 

during several months (even years). 

This paragraph is indeed intended to review general results, and the “up to one month” statement is from the cited references (Li et al., 
2009; Wang et al., 2011). However, it is agreed that this is not a universal rule, and will change depending on the catchment. The sentence 

has been changed to: 

Much of the skill in seasonal streamflow forecasts over periods following rainy seasons is commonly attributed to accurately representing 

initial catchment conditions (Koster et al., 2010; Pagano et al., 2004; Wang et al., 2009). In contrast, forecast skill over periods following 

dry seasons is generally attributed to both initial catchment conditions and meteorological inputs (Maurer and Lettenmaier, 2003; Wood 

and Lettenmaier, 2008). The impact of the initial catchment condition is particularly pronounced when forecasting over short lead times, 

typically up to one month (Li et al., 2009; Wang et al., 2011), although this time frame is generally catchment dependent. 

15) Line 5: "warm-up" rather than "warmup"? 

The change has been included throughout. 

16) Lines 14-16: it may be specified that this impact has been deeply evaluated for shorter lead-times (this emphasizes the character of 

novelty of the study). Furthermore, I disagree with the second sentence as it has been shown that the impact decreases quite fast (for 

many not too slow catchments) and is almost negligible at a seasonal scale (see e.g. Berthet et al. 2009 that the authors quote elsewhere). 

That is one very interesting aspect of the results of the submitted study. 

This was the intent of this paragraph, to highlight that the impact at seasonal scales has not had extensive evaluation. The paragraph has 

been changed to: 

Studies on observed data assimilation and CRR model state updating have focused primarily on flood forecasting with short lead-times. 

The benefits at longer lead-times (e.g. seasonal) to forecast water availability have received less attention in the published literature. 

17) Line 18: I suggest to precise "calibration periods choice" or "calibration periods length" rather than only "calibration periods". 

This is a useful clarification, and “Calibration Period Length (CPL)” is now used throughout. 

18) Line 21: to enhance "seasonal" forecasting skill? 

The objectives have been updated as: 

Evaluate the ability of state updating in a daily CRR model to improve predictive performance when forecasting streamflow volume for 

the upcoming month. 

19) Line 22: Does the article "demonstrate" that calibration period choice can affect forecast skill (that is quite known) or does it assess 

how much it does so? 

The objective has been updated to “assess” rather than “demonstrate” 

Assess the degree to which using a shorter calibration period, that is more representative of the forecast period, can improve predictive 

performance, in particular when there is evidence of catchment non-stationarity. 
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- Page 5 

20) Line 11: is it the gauge "A2390514" rather than "A21390514"? 

Correct, the typo has been corrected. 

21) Lines 26 - 27: an hydrograph may be useful to support this information. 

A boxplot of the monthly flow in Drain M has been included to demonstrate the variability (Figure 2). 

- Page 6 

22) Lines 3-13: is the description of the model developed by eWater Source useful for the reader. If I understood correctly, it is not directly 

related to the model used in this study. If so, this might confuse a bit the reader. E.g., I am not sure that the assumption of a constant 

inflow of salinity (which is not discussed) is needed by the reader to understand how the authors worked to answer to the scientific 

questions (which are the core of the article). The multi-objective nature of the calibration is also of no use for the rest of the study. If the 

fact that this model is used in practice had consequences on the methodological choices for this study, then the authors may consider 

explaining it (and discuss results with respect to it and to the specific context of wetland management). 

As pointed out at 1), we agree that Section 2 includes superfluous detail that will be removed. This section on the separate water balance 

model in eWater Source has been removed altogether.  

23) Line 14 ("To use this model for to inform operations"): it is always tricky for a non native English speaker to ask so to native ones, but 

may the authors check English here? 

Correct, the typo will be corrected. 

24) Line 15: "lead-time" rather than "leadtime"?  

Correct, the typo will be corrected throughout. 

25) Line 15: to fully understand the implication of the choice of the 1-month lead-time, it is necessary to know that the CRR model is a 

daily one (not only because the model is updated). However this information is given at subsection 3.1 (and not very explicitly: the reader 

has to know that GR4J is a daily model)  

Good point, this information will be included as part of the aims and objectives in section 1 (see response 18). 

26) Line 19 ("reasonable forecast skill is expected to be possible compared to longer forecast horizons"): may the authors provide some 

references? How much are the performances expected to decrease for longer lead-times? Furthermore, why did the authors choose to 

focus on a single lead-time? The evolution of the benefits of the model updating, with respect to the lead-time, in a context of seasonal 

forecast, would be a very interesting result.  

We agree that this comparison of longer lead times, and how they influence the state updating performance, would be a very interesting 

study. However, it was considered beyond the scope of this work. The statement is based on the fairly obvious observation that the skill 
of rainfall forecasts is expected to reduce the longer the forecast horizon, and as such the skill of the streamflow forecasts will also 

reduce. This sentence has been removed. 

27) Line 20 ("The mean annual rainfall for the region is in the range 600-675 mm"): page 5, lines 3 and 4 suggest some spatial variability. 

How strong is it? (600 to 675 mm is not very strong difference, compared to some other climates around the globe). 

As pointed out, ~10% range is not very strong, but it is spatially consistent, as opposed to representing annual variability. The manuscript 

has been updated to clarify that there is a rainfall gradient from south to north: 

The mean annual rainfall for the region is in the range of 600 mm in the north to 675 mm in the south 

28) Line 20: is it useful to precise what "FAO56" stands for?  

The acronym has been expanded and a reference included (Allen et al., 1998). It stands for Food and Agriculture Organization of the 
United Nations, and paper 56 relates to guidelines for computing crop water evapotranspiration. 

- Page 7 

29) Lines 3 - 4 ("2 rainfall hindcasts [...] were downscaled to the single rainfall gauge scale"): just to be sure, does it mean to the pixel 

where the gauge is?  

That is correct. The pixel size is ~250 km, which tends to smooth out the rainfall events. The downscaling process, mapping the pixel 

where the rainfall gauge is to the gauge data, is used to restore more representative rainfall events. The manuscript has been modified 

as follows: 

POAMA-2 predictions have a coarse spatial resolution (~250 km), which does not capture the spatial variability in catchment-scale rainfall. 
For the purposes of this application, the POAMA-2 rainfall hindcasts (i.e. forecasts developed by applying the modelling system to the 

historical period) at the relevant pixel were downscaled to each climate station in the study region (Error! Reference source not found.) 

using the statistical downscaling method detailed in Shao and Li (2013). Further details of the downscaling approach are provided in 
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Humphrey et al. (2016).30) Lines 15 - 25: the authors may consider whether this paragraph would not be better written earlier (e.g. among 

the first paragraphs of section 2).  

Agreed, the paragraph on the catchments and where they flow will be moved to Section 2.1: 

Mosquito Creek flows into Bool Lagoon (Catchment C1 in Error! Reference source not found., area 1002 km2). Drain M commences at the 

outlet of Bool Lagoon, and a large catchment flows into Drain M between Bool Lagoon and a diversion point at Callendale (Catchment C3 
with an area of 2200 km2). Finally, the Drain M local catchment contributes flow downstream of the Callendale diversion point, flowing 

into Lake George (Catchment C2, area 383 km2).  

31) Line 20 ("It should also be noted that releases from Bool Lagoon [...]"): why is it important to understand this scientific study? (I worry 

about missing something useful for the interpretation of the results)  

This will be clarified. The point being made was it is rare that the upstream catchment contributes to the downstream catchment, as 

releases from Bool Lagoon are rare. The conflicting water requirements for the case study site have been clarified in Section 2.2 as 

follows: 

Drain M serves multiple competing demands on the water resources available in this catchment system. These demands influence the 
decision to use the regulators along the system: 

a) Bool Lagoon has water requirements that influence releases from the lagoon into Drain M.  

b) Lake George has water requirements to maintain the estuarine ecology of the lake, to support its significance as a biological 

resource, and as a resource for recreational fishing. 

c) The ocean outlet requires some flow to prevent sediment from entering Lake George and to maintain connectivity to the sea 

(which allows fish movement and aids fish recruitment). However, high flows may impact on sea grasses, due to their low salinity 

and high nutrient load. 

d) The wetlands of the Upper South East to the north typically benefit from as much water as possible from the Drain M system. 

32) Lines 30 and following: are the details about the streamflow measurements devices useful?  

These details help establish that any perceived non-stationary trends are unlikely to be due to streamflow instrumental measurements. 

The section has been shortened as follows: 

The identification of high quality data is important because biases and systematic changes in the measurement of hydrological data can 

significantly affect model calibration and lead to non-stationarity in the estimated model parameters (Westra et al., 2014). Analysis of 

the data and monitoring stations suggested that streamflow data uncertainty is expected to be low, given the regular cross sections of 
the weirs used for monitoring stage and upstream drains, and the high number of gaugings (between 78 and 166 flow gaugings at each 

flow station) available to develop stage-discharge relationships.  

- Page 8 

33) Line 3: I agree with the fact that indicating the data are of good quality and too often not done, but if the authors want to demonstrate 

the quality of the rating curves, they may add some information about the number of years during which the 78 and 166 gaugings have 

been achieved and how much often the rating curves have been modified. 

See response to 32) 

33) Lines 9 - 20: since catchment non-stationarity is an important issue for this study, I suggest to make this paragraph a subsection 

dedicated to this topic (here). 

This information has been highlighted earlier in section 2.1 as follows: 

In the region where the case study catchments are located, plantation forestry expanded substantially in the late 1990s. Changes in the 

relationship between rainfall and runoff also occurred during this period, evidenced by the reduced slope in the plot of cumulative runoff 

against cumulative rainfall (double-mass analysis) in Error! Reference source not found. (Searcy et al., 1960; Yihdego and Webb, 2013). 

The runoff ratio in catchment C1 is approximately 0.045 before year 2000, but reduces by 70% to 0.013 after 2000. The runoff ratio in 

catchment C2 is around 0.088 before year 2000, but reduces by 30% to 0.061 after 2000. This comparison provides stronger evidence of 

non-stationarity in catchment C1 than in catchment C2. Other studies have also investigated the link between changes in the hydrology 

and changes in land use in the region (Avey and Harvey, 2014; Brookes et al., 2017). These changes have implications on the choice of 
calibration data period, as data from the 1970s may not be representative of hydrological conditions in the 2000s. 

34) Lines 23 - 24 ("GR4J [...] explicitly accounts for non-conservative (or ’leaky’) catchments"): I agree. However, it should be kept in mind 

that GR4J has not been designed nor is known to achieve good performances for karstified catchments (mentioned page 7, line 13). 

Moreover, I am not convinced it is quite appropriate for ephemeral catchments (as suggested by line 21, page 11). 

It is agreed that GR4J may not be ideal in ephemeral catchments, as the exponential decay relationship used in the storage reservoirs 

cannot completely dry out. However, this is a relatively theoretical consideration, for example, if any simulated flow below that which 

could be adequately measured is considered to be zero, ephemeral behaviour can be represented. As outlined, previous studies have 
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demonstrated good performance for Australian conditions, including ephemeral catchments (Coron et al., 2012; Guo et al., 2017). Westra 

et al. (2014) has also been added to this list, who applied GR4J in a similar location in southern Australia. Considering alternate model 

structures was beyond the scope of the study, however, it is possible (likely?) that more appropriate model structures could be identified 

in future work. 

35) Lines 28 - 31: may the authors explain what motivates their choice of adding a 5th free parameter to calibration? Is it important for 

their particular catchments or for their methodology in this study? 

As noted in the previous comment, GR4J was not designed for this application. The catchments considered have a relatively slow 

response, and it was considered that the pre-specified split to the routing store of 0.9 may be too low for these catchments. As can be 

seen in Figure 8, this turned out to be the case for the calibrated parameter values, where higher values of the split parameter were 

found, in particular for C2. This point will has been clarified in the manuscript as follows: 

Note that the catchments considered have a relatively slow streamflow response. Consequently, the pre-specified split to the routing 

store of 0.9 in the original specification of the GR4J model may be too low for these catchments. To mitigate this potential deficiency, 

we have modified the GR4J model so that the split between the routing store and the direct runoff is included as an explicit calibration 
parameter termed split. 

- Page 9 

36) Lines 10 - 12 ("this function [RMSE] provides a focus on the highest flow in the time series, where the majority of the runoff occurs"): 

it is not necessary. It provides a focus on the largest absolute errors, which indeed most often occur for the largest flows. However, 

consider a hypothetical model whose errors would be only on low flows. 

We agree, the original statement was not strictly correct and has been removed. 

37) Line 26 ("External influences include model structural limitations [...]"): this confused me, after reading the catchment non-

stationarity given on pages 2 & 3. Does it suggest that parameters variation due to structural deficiencies would be considered here? 

We agree this sentence does not add value to the discussion in Section 3.3. It will be removed to avoid confusion. 

- Page 10 

38) Lines 3-5: Would not it be useful to emphasize the trade-off between a longer calibration period to reduce the parameter uncertainty 

and a shorter calibration period to mainly take into account the most recent dynamics in the introduction section? 

This trade-off has been highlighted in two places in the revised manuscript: 

Section 1: 

Often there is a trade-off between the benefits of a longer calibration period which exposes the model to a more diverse range of 

conditions and tends to improve parameter identifiability, versus the benefits of a shorter calibration period that exposes the model to 

the most recent – and hence often the most relevant – dynamics in the catchment. Demonstrating and understanding the impact of this 
trade-off on model predictive performance is a key research gap pursued in this study. 

Section 3.3 

Calibration period lengths of CPL = 10 years and CPL = 20 years length are considered, to assess the trade-off between using a longer 

calibration period to expose the model to more diverse catchment conditions and improve parameter identifiability, versus using a shorter 

calibration period length to expose the model to more recent hydrological dynamics.  

39) Line 13-14: the literature review is also poor about data assimilation and model updating. Generic references may be Refsgaard 

(1997) and Liu and Gupta (2007). Since the chosen updating approach is the same as the one used for the GRP model (which is a mere 

adaptation of GR4J for forecasting purposes), I suggest to refer to the work of the team which developed these models. The authors may 

pick Tangara (2005) and Berthet (2010), both in French, which described the numerous tests of different updating approaches made by 
the GR4J research team (some of them discussed in section 5! See comment below) and detailed the resulting GRP model. They may 

prefer Berthet et al. (2010), which provides a much shorter description of the model and the updating techniques but also discusses the 

impact of the largest errors on the RMSE-based criteria values (see discussion page 9). For a detailed description of the GRP model, the 

authors may also consult: https://webgr.irstea.fr/en/modeles/modelede-prevision-grp/fonctionnement-grp/. Moreover, since 

sequential approaches such as ensemble Kalman filter and particle filters are mentioned, I suggest also to add references to Moradkhani 

et al. (2005, 5005b) and Weerts and El Serafy (2006). 

Thank you for the very constructive suggestions. The literature review has been updated to include these references, in particular Lui and 

Gupta (2007) as a review of data assimilation approaches: 

In CRR models, catchment conditions are represented by (usually multiple) model storages, referred to as “state variables”. The values of 

these storages at the start of a forecast period are typically determined using a warm-up period, which allows the internal model states 

to reach reasonable values. Given the expected influence of the initial conditions on the simulated streamflow, observed data can be 

assimilated into the model to update the state of the model storages. The most commonly used approaches in hydrological data 

assimilation include direct updating of storages (for example Demirel et al., 2013), Kalman filtering, particle filtering, and variational data 

assimilation (see Liu and Gupta, 2007). Berthet (2010) considered a number of tests for different updating approaches for the GRP model, 

a CRR model commonly used in short term streamflow forecasting applications.  
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40) Lines 17 - 27: a flowchart would greatly help the reader. 

It is considered that the equations provided are the clearest approach to explain the exactly methodology used to update the routing 

store to simulate the observed flow. Further details on this approach are provided in the original work, Demirel et al. (2013). This link to 

the earlier work has been made clearer in the revised manuscript.  

41) Line 27: "where X3 is the estimated runoff model parameter" rather than "where X3 is an estimated runoff model parameter"? 

This change has been made. 

- Page 11 

42) Lines 3 - 4 ("particularly when used to update both model state variables and model parameters"): I agree with the authors, but is it 

relevant here? (since parameters are not updated here). 

It is agreed that this is out of place and has been removed. 

43) Line 12 ("Depending on the case"): this is not clear, until the reader reaches section 3.7. 

 

“Case” and “model configuration” has been clarified and made consistent throughout the manuscript, and any forward referencing 
removed. The clarification is as follows: 

 

Two options for state updating (with versus without) and two options for calibration period length (CPL = 10 years versus CPL = 20 

years) are considered. The combination of these options leads to four model configurations. Four different cases are considered for each 

model configuration, given by the combinations of two catchments (C1 and C2) and two sources of climate data (observed and 

forecast). This results in a total of 16 scenarios considered. 

 

- Page 12 

44) Line 5: why do the authors prefer to sample the (normalized) residuals rather than picking a number of calculated quantiles (from 

the Gaussian distribution)? 

A direct selection of quantiles would provide an analytical approach to represent the distribution. However, this can be difficult, as the 

calculated quantiles in normalised space do not correspond to the same quantiles in un-normalised space, due to the combination of the 

transformation, the truncation of very low flows and the parameter uncertainty. The Monte Carlo Simulation approach used is more 

computationally intensive, but the most robust. This approach is also more generalised, and would be required is more complex error 

models were used. For these reasons the approach used has been retained.   

45) Line 18: may the authors explain the choice of the 0.05 and 0.95 as normalized extrema values? 

This range was adopted for data visualisation purposes only so that the worst-performing case for each metric had some area shown in 

the plot. However, it is agreed that this was confusing, and a 0-1 normalisation is now used in Figure 4.  

- Page 13 

46) Lines 17 - 21: as pointed out by the authors, the reference distribution has an ’unfair’ advantage. Then may the authors explain this 

choice? Why have they not chosen a simple naive forecast model? 

The reference distribution of the monthly streamflow is considered a simple naïve forecast model. Other approaches could be used, 
autocorrelation with last month’s streamflow, for example. The reference to an unfair advantage has been removed, as it is expected 

that the forecast models tested should be able to perform better than an uninformed climatology, and as such is considered a useful 

baseline for the calculation of forecast skill. The paragraph has been changed to: 

The reference distribution for each month is calculated as the empirical distribution of all observed data in that month, using the entire 

set of observed data (including data from the prediction period). This approach provides a stringent baseline for the CRPS normalization 

in Eq. (13). 

47) Line 23: check the formula. There is missing sum for the denominator. 

This typo has been corrected. 

- Page 14 

48) Line 6: is the rainfall forecast used here the ensemble forecasts described in subsection 2.1? I don’t think it obvious. If not, why were 

the ensemble described? 

Yes, the ensemble forecasts were used in all cases. This has been clarified in Section 3.5: 

When forecast rainfall is used as input to GR4J, an ensemble of daily streamflow forecasts is produced (with a single GR4J streamflow 
time series per rainfall forecast time series). Each such “individual” daily GR4J time series is then aggregated to a monthly time step. The 

time series 𝑸𝜃  is constructed from the time series of medians of the individual monthly streamflow time series. This use of the median 
streamflow forecasts from the multiple ensembles of the meteorological ensemble forecasts may result in some information loss, but 
aggregation approach of streamflow forecast ensembles is commonly used in operational applications (e.g. Lerat et al., 2015; Matte et 
al., 2017; Schepen et al., 2017; Wani et al., 2017). Further work is needed to more fully utilise the information from ensemble forecasts 
when developing post processing models.  
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49) Line 6: I found only 2ˆ4 = 16 cases (model with or without updating; 2 calibration period lengths; 2 catchments and 2 rainfall forcings). 

What do I miss? 

Well-spotted - this is an error and will be corrected to 16 (see response 42). 

- Page 15 

50) Line 6 ("Any detrimental impacts"): check English. 

The sentence has been removed. 

51) Line 8 (and followings): I suggest to precise "calibration period length" rather than only "calibration period" 

This is a useful clarification, and “Calibration Period Length (CPL)” is now used throughout. 

52) Line 16: the differences are not much smaller for catchment C1. How much are they significant?  

This section has been largely rewritten in the revised manuscript.  Significance tests have not been calculated due to the lack of replicates.  

53) Line 19 ("the differences were more pronounced for the most practically relevant cases with forecast rainfall [...]"): this is of particular 

interest for operational purposes (e.g., forecasts) and is worth being emphasized.  

On review of this conclusion, it was found that this was in part due to the different time periods used for the observed and forecast 

rainfall cases (as outlined in Section 3.7 previously). The observed rainfall results have been recalculated over only the period used for 

the forecast rainfall case, and now the results are consistent between the two rainfall cases.  

54) Line 20: I don’t understand how the model error post-processor compensates the introduced errors. I thought that it only assesses 

them. 

The normalised residual can have a non-zero mean, which can compensate for biases in the hydrological model predictions. But the main 

purpose of the error model is to quantify the uncertainty in forecasts, not to compensate for errors. For clarity, this point has been 

removed. 

55) Lines 23-24 ("catchment C1 had been identified to have a substantial reduction in the rainfall-runoff relationship over time"). As 
discussed below (comments on Fig. 3), the catchment appears as rather stationary up to 1990 (approximately) and then also more or 

less stationary from 1990 to 2010. If it is so, how can the difference in calibrated parameters obtained with the 2 different calibration 

period lengths for years 2009 2010 be explained by this change around 1990? 

The 20-year calibration period was 1989-2008. The 10-year calibration period was 1999-2008. As such, the early 1990s are part of the 20 

year calibration period, but not of the 10 year calibration period. The results indicate that the 20 year calibration period resulted in model 

parameters that produce more flow the 2009 (and 2010) validation year than the 10 year calibration period. This suggests that streamflow 

data from the 1990s are substantially different from streamflow data from the 2000s. The manuscript will be changed as follows: 

The differences between the streamflow predictions obtained in the two catchments C1 and C2 (for the case of GR4J forced with observed 
rainfall) are illustrated in Figure 7 for the most recent period 2009-2011. In catchment C1, using a longer calibration period length tends 

to yield wider prediction limits and an overestimation of the observed flow in 2009 and 2010, whereas using the shorter calibration length 

provides a better capture of the catchment response in these two years. In contrast, in catchment C2, which has less evidence of non-

stationarity (Section Error! Reference source not found.), the calibration period length makes very little difference on the resulting 

streamflow predictions. 

- Page 16 

56) Line 16 ("A model fitting anomaly resulting from a shorter calibration period"): did the author investigate this "anomaly"? How can it 

be explained? 

This was not investigated further. It is assumed to be due to reduced parameter identifiability. A different combination of parameters 

(e.g. higher X4 and lower X2 and split compared to the periods before and after) resulted in similar values for the objective function for 

this particular period. The manuscript has been changed as follows: 

An exception to the pattern of the median parameter values being insensitive to calibration period lengths can be seen in 1999, where the 

use of the 10 year calibration period length produces higher values of X4 and lower values of X2 and the split introduced in this study 

(Section 3.1). This exception could represent a model fitting anomaly resulting from a shorter calibration period length. 

57) Line 26: this is interesting at a seasonal scale, since it has been shown that hydrological models are "stable", i.e. the updating effect 
vanishes after a number of time steps (e.g. Berthet et al. 2009 at a hourly time step: then after a few days at most for a large majority of 

the tested watersheds). 

Thank you. This point has been added to section 5.1 (see response 2) 

58) Line 29 ("As the range in model predictions should be reduced by forcing the model to simulate the observed streamflow at the start 

of the forecast period"). Is there any confusion between precision and sharpness? Model updating increase sharpness and precision (at 

least for the shortest lead-times). 
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The term “precision” was used in this work as a synonym for “sharpness”, as outlined on Page 12 line 24. However, as “sharpness” is a 

term more generally used in the foreasting community, “precision” has been changed to “sharpness” throughout. 

59) Line 30 ("the trade-off for an increase in precision would typically be a reduction in the reliability of the predictive uncertainty"): 

again I assumed that the authors meant "sharpness". I suggest to write that this trade-off for an increase in sharpness ** may ** result 

in the reduction of the reliability, if the authors do not provide a general (theoretical) explanation. As much as I know, this is a common 

feature, but exceptions should exist, and the last sentence of the paragraph (page 17, lines 1 - 2) says so. 

See above, “precision” will be changed to “sharpness” throughout. Nonetheless, this is a good point, as the result cannot be proven to 

be generic. The qualification “may” has been added to this sentence. 

- Page 17 

60) Line 4 ("update the GR4J production store along with the routing store"): this has been tested by the GR4J team (Berthet, 2010), with 

no significant improvement in a forecasting context at a hourly time step. 

This point has been removed, as on review it was considered not directly relevant to the main results presented. 

61) Lines 4 - 5 ("This could be expected"): may the authors give some explanation to found this idea? 

See response to 60) 

62) Lines 3 - 9: this paragraph is very interesting, but how is it related to the scientific issues developed in this article? 

See response to 60) 

63) Lines 16 - 19: in my opinion, this is the (or one of the) key findings. How may the authors emphasize it, rather than putting it at the 

very end of the article? 

See response to 53) 

64) Line 30 ("in most cases"): the study was driven only on 2 catchments... It should be pointed out that a work over a (much) larger 

number of catchments is needed to ensure the generality of these interesting results. 

See response to 60) 

- Page 19 

65) Tab. 1: the authors may usefully add the parameters meanings and their units (and a GR4J flowchart aside). 

Parameter meanings and units have been included. A GR4J flow chart was not included for brevity, with the reference to Perrin et al. 

(2003) use for this purpose. 

- Page 20 

66) Fig. 1: the drain M is not given in the legend and has the same color as catchment boundaries, which makes it difficult to identify. 

Good point - the map has been adjusted accordingly. 

67) Fig. 2: what are the upper and lower bounds? Minimum and maximum of the ensemble? Some predictive quantiles such as 0.05 and 

0.95? If the latter, is there any information about the reliability? 

This figure has now been removed as it did not directly contribute to the results presented. 

- Page 21 (Fig. 3) 

68) I wonder if there is not a "sudden" change around 1990: catchments C1 and C2 look quite stationary up to 1990, and also after 1990. 

If it is so, can it really be explained by plantation forestry expansion (which is more a "continuous" factor of non-stationarity). 

Furthermore, can this question the relevancy of the rolling calibration which might be better adapted for smooth non-stationarity? 

A step change is arguably more likely to have taken place over the mid-late 1990s. The early 1990s are also quite wet, which may result 
in steeper slopes for these years. A cause for a sudden change in the streamflow response around 1990 is not known to the authors. 

Reductions in groundwater levels due to the forestry expansion has been attributed in other studies (Avey and Harvey, 2014; Brookes et 

al., 2017). 

In any case, identifying such a distinct step change, or even a continuous change, is very difficult to do with certainty. The difficulty in 

identifying such step changes, and the idea of using the rolling calibration approach as a means to overcome this, this has been added to 

Section 3.3: 

This methodology allows the identification of changes in parameter distributions over time, without the need to identify specific periods 

when changes in the rainfall-runoff response may have occurred. 

- Page 22 (Fig. 4) 

69) It is very important to insist on the fact that the plot gives relative values of the metrics (higher is better) which are then not consistent 

with the formulas and details given in subsection 3.6. I was first confused becaused I did not notice (at first) the mention in the y-label 

(even if I admit that it is written in (sufficiently) large characters). I suggest to change the criteria described in section 3.6 to give only 

their relative values. 

The following has been added to Section 3.7: 
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To ensure a consistent comparison of multiple model scenarios, the metrics are computed as follows: 

 the same period is used to calculate the metrics in all cases. This period was determined by the availability of the forecast 

rainfall, from May 2001 to April 2011.  

 the performance metrics are normalized by linearly scaling the worst value to a value of 0 and the best value to 1, 

 𝑀𝑟 =
𝑀−𝑀𝑤

𝑀𝑏−𝑀𝑤
 (1) 

where the worst and best values for each metric, Mw and Mb, respectively, are listed in Error! Reference source not found.. The 

remainder of the presentation, in particular Error! Reference source not found., reports the normalized metrics computed using Eq. 

(15). 

- Page 23 (Fig. 5) 

70) Why are the results plotted only up to 2005? 

This was done for illustrative purposes only. Some of the desirable detail in the hydrographs is difficult to see when the whole time series 

is plotted (~20 years). As such, a subset of the data was shown, to provide a trade-off between showing all of the results, and making a 

clear point. The full plot has been provided as supplementary material to show this information. 

Page 25 (Fig. 7) 

71) Why are the results plotted only from 2008 to 2010? 

See response to 70).  
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Response to Interactive comment on “State Updating and 

Calibration Period Selection to Improve Dynamic 

Monthly Streamflow Forecasts for a Wetland Management Application” by Matthew 

S. Gibbs et al. 

Anonymous Referee #2  

General: 

The manuscript of Gibbs et al. evaluates the effect of calibration setup on the GR4J model performance within 2 Australian basins on 1-
month lead-time hydrologic forecast. Authors draw mainly following conclusions based on 2-basin analysis using 5 indicators: (I) the 

length of calibration period does not necessarily should be as long as possible, in particular when changes in flow regimes are observed. 

Additionally, (II) the authors state that a simple model state updating improves hydrological forecast at 1-month lead time. 

Based on my review, I consider the overall topic to be relevant for HESS, however, some parts of the manuscript need to improved and 

clarified, as further suggested below. 

Thank you for the constructive comments that have improved the clarity and contribution of the manuscript.  

Major comments: 

1. In general, it is not surprising that updating model initial conditions has benefits on hydrologic forecast. Additionally, it is not 

surprising that changes of physiographic conditions may change the catchment’s response, indicating different information 

content/validity of observed discharge data on model parameters. This only confirms observations of previous studies, which some 

of them are cited. Would be nice to more clearly demonstrate benefits over existing/operational approaches (in terms of costs etc). 

In particular, when the title includes words like “Management Application”. 

Commentary on the benefits over the existing approach has been added in Section 5.3: 

The forecasting approaches developed in this work can support improved water management in the drainage system considered. The 

approach currently used by the management authority is very conservative: streamflow forecasts are not attempted, and changes in 

water management are made only once downstream requirements have been met. With the forecasting models and methods developed 

in this work, it becomes possible to produce streamflow forecasts with a high reliability, improved sharpness and reduced bias. Thus it 

becomes possible to provide useful probabilistic estimates of how likely it is that the downstream flow requirements will be met in the 

next month. With this information, managers can more confidently consider increasing the frequency and duration of inundation for many 
of the wetlands in the region, and can make decisions on management changes much earlier in the season.  

The Discussion section has also been expanded to include Section 5.1 to highlight the key findings over previous approaches: 

Most previous studies have used state updating in a short term flood forecasting context, and found limited effect of the initial conditions 

after a number of days (e.g. Berthet et al., 2009; Randrianasolo et al., 2014; Sun et al., 2017). However, forecasting of flood peak and 

timing is a different application to the forecasting of streamflow volumes. A number of data driven modelling studies have demonstrated 

that monthly streamflow lagged by one (or more) months provided some useful information for forecasting at a one month lead time 

(e.g. Bennett et al., 2014; Humphrey et al., 2016; Yang et al., 2017). This study demonstrates that these benefits also hold when CRR 

models, rather than data-driven approaches, are used as the forecasting model. 

2. Unfortunately, the analysis is limited to two basins, which really can’t be used to draw any conclusions (as authors also recognise 
in the end). I would strongly encourage authors to enlarge the number of basins and events. Another two basins may yield 

completely different results; therefore, generality should be avoided. 

It is agreed that general results cannot be drawn from the results based on two basins. The drainage system considered was based on a 

user need for seasonal forecasts, which resulted in the limited application to two basins. The Section 5.4 has been included to outline 
this important limitation:  

The enhancements to predictive performance of streamflow forecasts from state updating and a shorter calibration period have been 

demonstrated on two catchments. These catchment were selected based on an established user need for seasonal forecasts to improve 

the water management of a channel drainage system with multiple competing demands. Importantly, the case study catchments in this 

work are ephemeral and dry, with low runoff ratios. These types of catchments are known to be challenging to model (McInerney et al., 

2017; Ye et al., 1997). Future work will evaluate the proposed seasonal streamflow forecasting techniques over a wider range of 

catchments and environmental conditions. 

3. Would be nice to relate your results with another study, which details CRR state updating for 1-month forecast. However, I wonder, 

whether it is really the effect of state updating here. It is well recognized that the effect of initial conditions (based on discharge 

observations), in such small basins, diminishes after a couple of days. Please, comment on this. 
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The result that model updating still improved forecast performance at the lead-time of one month is considered one of the key results 

of this work. The controlled study for testing the model with and without state updating for all the cases considered (observed and 

forecast rainfall, two lengths for the calibration period and two basins), demonstrates that for the scenarios considered the effect can 

be attributed to state updating. The point at Response 2, on the potentially limited generality of this result, is relevant and has been 

included. 

It is agreed that the majority of the literature focused on short term flood forecasting has found limited effect of initial conditions after 

a few days (e.g. Berthet et al., 2009). However, forecasting of flood peak and timing is a different application to that considered here, 

forecasting water volume available for environmental use. See response 1. for the inclusion of this point in the manuscript.  

4. The description of basin and data is way too long and detailed (3 pages), in particular when the discussion and conclusion do 

not come to those details at all. 

Reviewer 1 raised a similar issue, and as such Section 2 has been shortened to be more targeted and remove surplus detail One of the 

topics of interest for the sub-seasonal to seasonal hydrological forecasting special issue was user needs for seasonal forecasts. As such, 

more detail than typical on the case study application to wetland management was included in the manuscript. However, it is agreed 
that this is a distraction from the more generic scientific issues of interest to most readers. As outlined at Comment 1, commentary on 

the benefits over the existing approach has been added at Section 5.3. 

5. Please, place error bars into figure 4, in the same way as the uncertainty is presented in following figures and provide discussion. 

The uncertainty in the streamflow time series had been produced and assessed (e.g Figures 5 & 6) because it is a direct of the output of 

the modelling setup. However, all of the streamflow replicates are used in the calculation of the performance metrics (reliability, 

precision and CRPS in particular), and as such the uncertainty in the values of the metrics is not easily derived. To the authors’ knowledge, 

it is no common to provide the uncertainty in performance metrics related to streamflow forecast uncertainty (e.g. Alfieri et al., 2014; 

McInerney et al., 2017; Pappenberger et al., 2015; Renard et al., 2010). 

We do acknowledge that there is uncertainty in the values for the metrics, due to finite number of replicates and the finite length of the 

observed data (McInerney et al., 2017) and that in the presence of strong autocorrelation in the streamflow error time series this 

uncertainty may be significant. However, to develop an approach to quantify the metric uncertainties is beyond the scope of this study. 

Instead, we follow the guidance provided by McInerney et al. (2017) who suggested that these uncertainties are quite small and are 

unlikely to impact on the conclusions of the study. We do acknowledge that further work is needed in this area. 

6. Discussion about alternative types of observations (besides Q) may be provided in the manuscript. 

The literature review has been expanded as follows to refer to previous studies that have used other types of observations that could be 

used for state updating (e.g. either remotely sensed or ground based soil moisture), and why streamflow was focused on in this study. 

Updating the states of conceptual rainfall-runoff models is not straightforward, as any environmental model is at best an approximate 
representations of the real catchment (Berthet et al., 2009). A number of observed data sources can be used to update model storages, 

including observed streamflow and in-situ or remotely sensed soil moisture. From these options, Li et al. (2015b) suggests that gauged 

discharge data assimilation is a more effective way to improve short-term forecasts and is still preferred for operational streamflow 

forecasting purposes. 

7. What is the main applicability of your findings? Are they going to be used operational, if yes, what are the benefits over existing 

forecast method? Please, clarify. 

See response to Comment 1. 

Minor: 

• Third sentence from the Introduction regarding Drain M catchment should be moved somewhere towards the end of Introduction. 

This change has been made. 

• P 6, L.5: evapoconcentration => evapotranspiration? 

This typo has been corrected 

• Section name 2.2 “Streamflow and streamflow data”: sounds a bit repetitive 

The section has been changed to “Streamflow data” 

• P 9, L.21 “burn-in” into quotes 

This change has been made. 

• Eq. 12 is wrong, sum in the denominator is missing 

Correct, the equation has been updated. 

• Caption of figure 2: “POAMA” => “POAMA-2” 

This change has been made.  
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Interactive comment on “State Updating and 

Calibration Period Selection to Improve Dynamic 

Monthly Streamflow Forecasts for a Wetland Management Application” by Matthew 

S. Gibbs et al. 

Anonymous Referee #3 

This manuscript presents an original study focused on two important aspect of monthly streamflow forecasting: state updating and the 

selection of an appropriate calibration period. The watershed on which the methods are implemented and tested is a very interesting 

case study. This semi-arid watershed is extensively impacted by human intervention, as it includes diversions and "Drain M", so runoff 

water can be directed either toward the north to benefit wetlands or toward the south to maintain fish ecosystems and comply with 

other constraints. Adequate management of this watershed appears very difficult and it is evident from the authors’ description of the 

situation that monthly hydrological forecasts are essential. The authors show that selecting a calibration period during which the 

conditions are close to the expected forecast conditions can improve forecasts performance substantially. 

In my opinion, this is a well-written paper (very clear!) that brings interesting novel knowledge in the field of ensemble monthly 

streamflow forecasting. I also find it completely appropriate for publication in HESS, especially since the case study raises issues regarding 

water management and tradeoffs between ecosystem services and human activities. 

I appreciate that the authors included a short discussion about the uncertainty related to the gauging measurements (page 8 first 

paragraph). I also like the idea of adding the "split" parameter to GR4J in the calibration process. 

The conclusions drawn by the authors regarding the tradeoff between the length of the calibration database versus its 
"representativeness" is interesting. I appreciate that they recognize that said conclusions might be limited to their specific case study 

and that further investigation for a wider range of hydro-climatic regimes would be needed. I only have very few minor comments and 

suggestions that I think could improve the paper. I strongly recommend that it be published in HESS. 

Thank you for the constructive comments that have improved the manuscript.  

Minor comments: 

1. Why did you consider only the median of the hydrological model predictions rather than the whole ensemble? 

This question kept bugging me all along while I was reading. You have access to meteorological ensemble forecasts (page 6 line 30 to 

page 7 line 5). They are expected to account for the uncertainty related to the meteorological conditions (or at least a part of this 

uncertainty). Why then did you not keep all the scenarios after passing everything through the hydrological model? Is it to make it more 

comparable to the case where the hydrological model is forced by (deterministic) observations? If so, I personally don’t see why this 
would be necessary. And then after, you use a statistical method to dress the median back to an ensemble. Is it because you found out 

that hydrological ensemble forecasts built only from meteorological ensembles were underdispersed and would have needed post-

processing? 

In my opinion, those choices (i.e. using the median, thus ignoring the other ensemble members, and then dressing the median into an 

ensemble) really need further explanations/justifications. 

 
The focus of this work was to investigate the impact of the state updating and calibration periods on streamflow predictive uncertainty, 

and a current best practice post-processing approach was adopted to estimate this predictive uncertainty. It is common practice to use 

deterministic inputs, often based on summarising an ensemble of forecasts using summary metrics (e.g. mean or median) as the input 

to post-processing methods (e.g. Lerat et al., 2015; Matte et al., 2017; Schepen et al., 2017; Wani et al., 2017). As such, it was considered 

beyond the scope of this work to also consider improving methods for applying post-processing models. 

However, it is acknowledged that that by only considering the median streamflow simulated across the forecast rainfall ensemble that 

some information is lost. The paper has been modified as follows: 

When forecast rainfall is used as input to GR4J, an ensemble of daily streamflow forecasts is produced (with a single GR4J streamflow 
time series per rainfall forecast time series). Each such “individual” daily GR4J time series is then aggregated to a monthly time step. The 

time series 𝑸𝜃  is constructed from the time series of medians of the individual monthly streamflow time series. This use of the median 
streamflow forecasts from the multiple ensembles of the meteorological ensemble forecasts may result in some information loss, but 
aggregation approach of streamflow forecast ensembles is commonly used in operational applications (e.g. Lerat et al., 2015; Matte et 
al., 2017; Schepen et al., 2017; Wani et al., 2017). Further work is needed to more fully utilise the information from ensemble forecasts 
when developing post processing models.  

2. There are a couple of (very minor) elements that could be clearer 

- Page 5 line 30: please add a reference for the Ramsar list. I didn’t know this list before reading the manuscript so I looked it up 

on the web. I think that a reference would be helpful to be sure that other readers like me know what you are talking about. 

The reference Matthews (1993) has been added. 
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- Page 9 line 21: What is a "burn-in" period? At first I thought it was a synonym of "warm-up period" in the context of the DREAM 

algorithm, but I am really not sure. 

 “burn-in” is the term commonly used in Markov Chain Monte Carlo modelling and is preferred to be maintained. Both “warm-up” and 

“burn-in” refer to the period at the start of the analysis that is discarded and not considered further, but the applications are different 

and as such the different terminology considered necessary. 

3. There are a few typos in the manuscript and I am unsure of the spelling for 1-2 words: 

- Page 3 line 27-28: parenthesis typo, replace "(McInerney et al, 2017)" by "McInerney et al. (2017)" 

The typo has been corrected. 

- Page 11 equation (5): Something seems wrong with the curly brace 

The curly brace is commonly used notation for conditional expressions, in this case to avoid dividing by 0 when λ=0.  

- Page 11 line 1: I think that the sentence "(...) are available, for example, the ensemble Kalman filter (...)" should be split, as in: "(...) are 

available. For example, the ensemble Kalman filter (...)" 

The sentence has been largely reworded. 

- Page 11 line 12: day "n" and month "t" should be in italics. 

The change has been made. 

- Page 12 line 17: I think that "straightforward" should be written in one word. 

The change has been made.  

- Page 13 equation 12: A summation seems to be missing at the denominator. Also, I don’t think there should be a "t" index for the 
average streamflow, since by definition it is independent from time (it is the average of the time series). 

The summation typo has been corrected. It is agreed that the index t for the average is also incorrect. Thank you for picking these up.  

- Page 14 line 6 (and several other places in the manuscript): Why do you write "observed rainfall" but not "forecasted rainfall" I am not 

a native English speaker so perhaps I am completely wrong, but I could not help but finding this strange. 

This is a strange nuance of the English language. Both “forecast” and “forecasted” can be used as past tense for the verb forecast. It was 

considered that “forecast” is more commonly used in the literature and is proposed to be maintained throughout. 

- Page 14 line 16: Is there a "to" missing in "The changes due adopting (...)"? 

The typo has been corrected. 
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Abstract. Sub-seasonalSeasonal streamflow forecasts provide useful information for a range of water resource management 10 

and planning applications. This work has focusedfocuses on improving forecasts for one such application:forecasts by 

considering the management of water available in an open channel drainage network to maximise environmental and social 

outcomes in a region in southern Australia. Conceptual rainfall-runoff models with a postprocessor error model for uncertainty 

analysis were applied to provide forecasts of monthly streamflow. Twofollowing two aspects were considered to improve the 

accuracy of the forecasts: 1) state updating to force the models to match observations from the start of the forecast period, and 15 

2) selection of a shorter calibration period that is more representative of the forecast period. Five metrics were, compared a 

longer calibration period traditionally used. The analysis is undertaken in the context of using streamflow forecasts for 

environmental flow water management of an open channel drainage network in southern Australia. Forecasts of monthly 

streamflow were obtained using a conceptual rainfall-runoff model combined with a post-processor error model for uncertainty 

analysis. This model setup is applied to two catchments, one with stronger evidence of non-stationarity than the other. A range 20 

of metrics are used to assess forecast different aspects of predictive performance, representing the  including reliability, 

precisionsharpness, bias and skill of the forecasts produced, using both observed and forecast climate data.accuracy. The results 

indicate that assimilating observed streamflow data into the model, by, for most scenarios and metrics, state updating the 

storage level at the start of a forecast period, improved theimproves predictive performance of the forecasts across the metrics 

when compared to an approach that “warmed up” the storage levels using historical climate data. The for both observed rainfall 25 

and forecast rainfall sources. Using the shorter calibration period improved thealso improves predictive performance of the 

forecasts, particularly for athe catchment that was expected to have experienced a change in the rainfall-runoff relationship in 

the past.with stronger evidence of non-stationarity. The results highlight the importance that a traditional approach of 

identifying ausing long calibration record representativeperiod can degrade predictive performance when there is evidence of 

the expected forecast conditions,non-stationarity. The techniques presented can form the basis for operational seasonal 30 
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streamflow forecasting systems and if this step is ignored degradation of predictive performance can result. provide support 

for environmental decision-making. 
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1 Introduction 

Predictions of streamflow a month or a season ahead are essential information required by water resource managers for 

subsequent planning (Wang et al., 2011). This is particularly true in unregulated catchments with no capacity for storage and 

a highly variable flow regime that can be difficult to predict from historical data. This is the case for the Drain M catchment 5 

in southern Australia, where streamflow can be diverted to support a range of environmental and social outcomes, and 

improved information on future water availability can assist in maximising the benefits realised from the water available. A 

number of approaches have been developed to provide streamflow predictions with lead times from a month to a season ahead. 

These include “dynamic” hydrological modelling approaches (Demargne et al., 2014; Wood and Schaake, 2008), statistical 

approaches (Bennett et al., 2014; Robertson and Wang, 2013), or a combination of the two (Robertson et al., 2013).  10 

In this work, a dynamic hydrological modelling based approach has beenis adopted to provide streamflow forecasts for an 

environmental management application, as this. The dynamic approach can often provide a better capture of catchment 

dynamics that the simple indices used inthan statistical models cannotbased on simple climatic indices (Robertson et al., 2013). 

In forecast mode, a hydrologichydrological model that has been calibrated withusing historical data is run forward in time, 

with input data representing forecastprovided by forecasted climate forcings, to predict the streamflow in an upcoming period. 15 

The following three major factors control forecasting performance (Luo et al., 2012): (1) the ability of the 

hydrologichydrological model to predict streamflow with actual forcings; (2) the accuracy of the assumed initial conditions 

adopted (e.g., soil moisture stores); and (3) the accuracy of the forecasts of the climate inputs. The focus of this paper is on the 

first two factors related to the practical application of climate forecasts, in the context of a user need for seasonal streamflow 

forecasts to assist with answeringsupport environmental management questions. The accuracy of the climate forecast is an 20 

important component of streamflow forecasts, and the effect of climate forecasts on streamflow forecasts is also considered in 

this work, but not approaches to improve climate forecasts.  

Ability of the hydrologic model to predict streamflowdecision-making.  

Conceptual rainfall-runoff (CRR) models are widely used to simulate streamflow, due to their simplicity and accuracy (Tuteja 

et al., 2011). As these models are conceptual, they require calibration to observed streamflow (if available). It is generally 25 

considered that longer calibration periods produce more robust parameter estimates (Brigode et al., 2013). However, the use 

of long calibration periods assumes time-invariant catchment characteristics and processes, and that the parameter values 

derived from the calibration period are representative for the prediction period (Vaze et al., 2010). (Li et al., 2015a; Tuteja et 

al., 2011). The parameters of these models have a limited relationship to measureable catchment attributes (e.g. soil horizon 

depth) (e.g. Fenicia et al., 2014), and typically require calibration to observed streamflow data (noting that physical models 30 

also require some calibration (Mount et al., 2016; Pappenberger and Beven, 2006)). The use of long calibration periods assumes 
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time-invariant catchment characteristics and processes, and that the parameter values derived from the calibration period are 

representative of the prediction period (Vaze et al., 2010). It is generally considered that longer calibration periods produce 

more robust parameter estimates, as a longer period exposes the model to a more diverse range of catchment conditions and 

flow events (Wu et al., 2013), however this is not always the case (for example Brigode et al., 2013). 

The fitting of constant parameter values based on a given set of observed data can result in decreased model performance over 5 

time if the conditions that the model is exposed to in the forecast period are different from those used during model calibration 

(Coron et al., 2012). For the purposes of this work, catchments where physical changes are expected to have occurred, and 

there is evidence to reject the hypothesis of stationarity of the physical system, have been termed “non-stationary”. Examples 

of non-stationary changes in catchment conditions that couldThe assumption that parameters are constant in time can result in 

decreased model performance if the conditions encountered in the forecast period are different from those in the calibration 10 

period (Bowden et al., 2012; Coron et al., 2012). In this work, the term “non-stationary” is used to refer to situations where 

physical changes are expected to have occurred in a catchment, and where there is evidence to reject the hypothesis of 

stationarity. In practice, catchments may have different “degrees” of non-stationarity, depending on the evidence available to 

reject the hypothesis of stationarity, the degree of change in a catchment, and the time scales over which the changes take 

place. Examples of catchment non-stationarity that can be expected to change the rainfall-runoff relationship include changes 15 

in land use or land-cover (e.g., deforestation, urbanization), land drainage, interception (e.g. dams or diversions), groundwater 

depletionabstractions or responses to changes in climate (Milly et al., 2015). This definition of non-stationarity, or catchment 

non-stationarity, is used in this work, in contrast can be contrasted to a broader definition of “hydrological model non-

stationarity””, which is used when refers to temporal changes in hydrological model parameters vary in time for any reason 

(e.g. systematic data errors, poor calibration procedures, model structural deficiencies), and are therefore dependent on the 20 

period of record used for their estimation (for example, Westra et al., 2014). , etc.) (for example Westra et al., 2014). 

DegradationThe degradation in model predictive performance due to catchment non-stationarity can have a significant 

influence on the streamflow simulated by the model, and hence impact on the decisions informed by subsequentthese forecasts. 

In order toTo address this concern, a number of studies have proposed calibratingcalibrated model parameters to subsets of the 

available data, by finding analogous attempting to find periods in the historical record that are analogous to conditions expected 25 

in the prediction time period, and by tailoring the time period selection to compensate for deficiencies in the model structure 

or input data (Brigode et al., 2013; de Vos et al., 2010; Luo et al., 2012; Vaze et al., 2010; Wu et al., 2013; Zhang et al., 2011). 

The impact Often there is a trade-off between the benefits of a longer calibration period on which exposes the model results, 

including predictive uncertainty, is one aspect consideredto a more diverse range of conditions and tends to improve parameter 

identifiability, versus the benefits of a shorter calibration period that exposes the model to the most recent – and hence often 30 

the most relevant – dynamics in the catchment. Demonstrating and understanding the impact of this trade-off on model 

predictive performance is a key research gap pursued in this study. 
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For the purposes of predicting streamflow, it is desirable for the hydrological model to not only be able to suitably predict 

streamflow with actual forcings, but also quantify the uncertainty associated with the prediction.Predictive uncertainty 

quantification is another major aspect of practical streamflow prediction. Many approaches are available to quantify 

thepredictive uncertainty in model predictions, from identifyingapproaches that identify a range of model parameters that 

represent the behaviour of the catchment using approaches such as generalised likelihood uncertainty estimation (GLUE) 5 

(Beven et al., 2008)(Beven and Binley, 1992), to post-processor approaches (e.g. Krzysztofowicz and Maranzano, 2004), to 

disaggregation approaches that attempt to characterise each individual source of error explicitly (e.g. Kavetski et al., 2003; 

Vrugt et al., 2005). In this work, predictive uncertainty has beenis estimated using a postprocessoran aggregated post-processor 

residual error model. ThisThe residual error model provides a statistical description ofrepresents the differences between the 

hydrological model predictions and observed data, without trying to identify the contributing sources (Evin et al., 2014). This 10 

approach is generally less data intensive and less complex than disaggregation approaches, which attempt to characterise each 

individual source of error. AThe post-processor approach to error modellingis chosen because it can also lead to more robust 

estimates of the modelpredictive uncertainty compared to jointly assessing joint calibration of all parameters (i.e. estimating 

CRR model and error model parameters concurrently) (Evin et al., 2014). 

Adequate representations of errors is necessary to obtain reliable and precise hydrological predictions. The term “reliable” 15 

 is used to define predictions that are statistically consistent with the distribution of the observations, and “precise” defined as 

predictions with a tight range of uncertainty. If poor assumptions are made about the properties of errors, unreliable or highly 

uncertain predictions can be obtained (Thyer et al., 2009). For example, errors in hydrological applications are generally 

heteroscedastic (i.e. the variance in the model errors is not constant, and increases with the magnitude of the flow). (McInerney 

et al., 2017) provided guidance on approaches most suitable for accounting for heteroscedasticity for different catchment types. 20 

1.2 Accuracy of the initial conditions  

Much of the skill in seasonal streamflow forecasts over periods following rainy seasons is commonly attributed to accurately 

representing initial catchment conditions (Koster et al., 2010; Pagano et al., 2004; Wang et al., 2009), whereas. In contrast, 

forecast skill over periods following dry seasons is generally attributed to both initial catchment conditions and meteorological 

inputs (Maurer and Lettenmaier, 2003; Wood and Lettenmaier, 2008). The impact of the initial catchment condition is 25 

particularly pronounced when forecasting over short lead times, typically up to one month (Li et al., 2009; Wang et al., 2011)., 

although this time frame is generally catchment dependent. 

In CRR models, catchment conditions are represented by (usually multiple) model storages, which are referred to as state 

variables. The values of these storages at the start of forecast period are typically determined using a “warmup” period, which 

allows the internal model states to reach reasonable values (e.g. Wang et al., 2011). Given the expected influence of the initial 30 

conditions on the simulated streamflow, model storage updating using observed data can be adopted to determine the initial 

state of the model storages (Wöhling et al., 2006). However, updating model storages of conceptual rainfall-runoff models is 
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not straightforward, as the model states are at best approximate representations of the real world as seen by the model (Berthet 

et al., 2009). A number of potential observed data sources could be used to update model storages. Li et al. (2015) suggested 

that although advanced remote sensing techniques provide an opportunity to improve hydrologic simulation, gauged discharge 

data assimilation is a more effective way to improve short-term forecasts and is still preferred for operational streamflow 

forecasting purposes.  5 

The impact of assimilating observed data into CRR model state variables at the start of a forecast on probabilistic seasonal 

forecasts has had limited evaluation. It could be expected that by assimilating this extra information into the model state 

variable(s) the precision of the forecast, and potentially its reliability, could be increased. 

In CRR models, catchment conditions are represented by (usually multiple) model storages, referred to as “state variables”. 

The values of these storages at the start of a forecast period are typically determined using a warm-up period, which allows 10 

the internal model states to reach reasonable values. Given the expected influence of the initial conditions on the simulated 

streamflow, observed data can be assimilated into the model to update the state of the model storages. The most commonly 

used approaches in hydrological data assimilation include direct updating of storages (for example Demirel et al., 2013), 

Kalman filtering, particle filtering, and variational data assimilation (see Liu and Gupta, 2007). Berthet (2010) considered a 

number of tests for different updating approaches for the GRP model, a CRR model commonly used in short term streamflow 15 

forecasting applications.  

Updating the states of conceptual rainfall-runoff models is not straightforward, as any environmental model is at best an 

approximate representations of the real catchment (Berthet et al., 2009). A number of observed data sources can be used to 

update model storages, including observed streamflow and in-situ or remotely sensed soil moisture. From these options, Li et 

al. (2015b) suggests that gauged discharge data assimilation is a more effective way to improve short-term forecasts and is still 20 

preferred for operational streamflow forecasting purposes. 

Studies on observed data assimilation and CRR model state updating have focused primarily on flood forecasting with short 

lead-times. The benefits at longer lead-times (e.g. seasonal) to forecast water availability have received less attention in the 

published literature. 

1.31.1 Study Aims and Objective 25 

The objective of thisThis work is to determinefocuses on determining the degree to which post-processingstate updating and 

the selection of calibration periodsperiod length can enhance monthly streamflow forecasting skill for predictions in the 

management of water availability forcontext of an environmental flow management application.  The specificMore 

specifically, the aims to achieveof this objectivestudy are: 

0.1. Evaluate a data assimilation approach for CRR model the ability of state updating in a daily CRR model to 30 

enhanceimprove predictive performance when forecasting skill,streamflow volume for the upcoming month. 
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1.2. Demonstrate that Assess the degree to which using a shorter calibration period can affect, that is more 

representative of the forecast skill, and can be considered as a mechanism to account forperiod, can improve 

predictive performance, in particular when there is evidence of catchment non-stationarity in a catchment. 

 Demonstrate a postprocessor error model for uncertainty analysis and quantify forecasting skill (reliability, 

precision, bias). 5 

In the following section, aThe paper is organized as follows. Section 2 outlines the user need for seasonal forecasts to manage 

a drainage network for environmental and social outcomes in Southernsouthern Australia is outlined, including, describes the 

case study catchments of interest and data available. This is followed bySection 3 describes the model setup and forecasting 

framework, as well as the methodology adopteddesigned to demonstrateachieve the aims outlined above. Sections 4 and 5 

present and discuss the case study results, and Section 6 summarizes the key conclusions. 10 

2 Environmental Flow Management Case Study for Streamflow Forecasts 

2.1 Catchment location and characteristics 

The location considered in this study is a component of an extensive drainage network (exceeding 2500 km of open channels) 

in the South East of Southsouthern Australia. A large proportion of the region's runoff is generated in the higher rainfall areas 

of the Lower South East. (Figure 1). Historically, this runoff flowed in a northerly direction, along the watercourses adjacent 15 

to ranges, parallel to the coastline. Over the past 150 years, these flow paths werehave been diverted through a series of cross-

country drains, constructed to provide flood relief and improve the agricultural productivity of the region by draining water in 

a south-westerly direction, creating outlets to the ocean.  The largest of these cross-country drains is Drain M, (Figure 1) which 

conveys water from Bool Lagoon to the ocean near Beachport (from station A2390541 to A2390512, Figure 1), is the largest 

of the cross-country drains.  This drain collects flow from several drainage systems located to the east and south of the drain, 20 

as outlined in Figure 1.   

Recently, the ability to divert flow from this drain to the Upper South East and toward Ramsar listed wetlands (the Coorong) 

has been established. This diversion point is the Callendale regulator, located just upstream of gauge A21390514 which can 

divert flow to the north and restore a more natural flow path (as indicated by the drainage line in Figure 1). However, the 

termination of the Drain M system also contains Lake George, a water body of high importance. Lake George has a high social 25 

value, including a fishery and public access, and can suffer from reduced water quality (hyper-salinity) without sufficient 

volumes from the drainage network. 

Decisions must be made throughout the year (mainly in the high flow season from late winter and throughout spring) regarding 

diversions from Drain M; if water should continue to flow to Lake George and the ocean, or if it can be diverted to the north, 

and be used to support inundation at numerous wetlands.  Such decisions aim to meet the following competing objectives: 30 
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 Ensure the water requirements of Lake George are met. Freshwater is necessary to maintain the estuarine ecology of 

the lake, to support its significance as a biological resource, and as a resource for recreational fishing. 

 Maintain some flow to the ocean to restrict sediment from entering the lake and to maintain connectivity to the sea to 

allow for fish movement and aide fish recruitment. 

 Minimise possible impacts on sea grasses, caused by fresh water flows, often with high nutrients, out to sea. 5 

 Maximise water diverted to the north, to benefit the wetlands in the Upper South East, subject to the downstream 

objectives at Lake George. 

Runoff. Monthly runoff volumes from Drain M are highly variable, ranging from close to zero to more than is required to 

support Lake George, with the historical volumes varying over 3-4 orders of magnitude for a given month. (Figure 2). This 

variability makes it difficult to maximise the use of water, as the seasonal pattern described by the historical record alone 10 

provides little guidance. Bool and Hacks Lagoons (between stations A2390519 and A2390541 in Figure 1), act as water 

storages in this region as well as being significant Ramsar listed wetlands. With reduced inflows and the need to meet the 

water requirements of Bool and Hacks Lagoons, only minor releases from the lagoons at station A2390541 have occurred in 

the past 15 years.  With the many competing demands on the water resources available in this system, it is desirable to forecast 

future flows at key locations along Drain M to maximise the environmental and social outcomes achieved from the water 15 

available.  

The streamflow in the case study region is seasonal to ephemeral, with very low flow over the summer and autumn months 

(Figure 2). Runoff coefficients are low, with annual runoff in the range of 0.01-0.1 of annual rainfall (Gibbs et al., 2012). The 

predominant land use in the region is dry land pasture with some flood irrigation as well as plantation forestry; there is no 

major urbanization in the catchments. The topography of the region is very flat, with mainstream slopes in the order of 0.005. 20 

The hydrogeology of the catchment includes shallow aquifers with major karstification of limestone, which may be suggestive 

of non-conservative catchments with appreciable groundwater exchanges across their boundaries. 

Mosquito Creek flows into Bool Lagoon (Catchment C1 in Figure 1, area 1002 km2). Drain M commences at the outlet of 

Bool Lagoon, and a large catchment flows into Drain M between Bool Lagoon and a diversion point at Callendale (Catchment 

C3 with an area of 2200 km2). Finally, the Drain M local catchment contributes flow downstream of the Callendale diversion 25 

point, flowing into Lake George (Catchment C2, area 383 km2).  

In the region where the case study catchments are located, plantation forestry expanded substantially in the late 1990s. To 

assess potential benefits and impacts of different diversion scenarios on the wetlands in the Drain M system, a water balance 

model has been developed in eWater Source (Welsh et al., 2013). The model also simulates salinity in Lake George based on 

a constant inflow of salinity from Drain M, and modelling the subsequent flushing and evapoconcentration of the lake. This 30 

model provides the functionality to take forecast streamflow volumes in the drainage network and allow different management 

scenarios to be considered for the main operational locations in the system: Bool Lagoon and Callendale regulator. Given a 
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probabilistic streamflow forecast, the impact of different diversions and releases on the forecast range of water level in Bool 

Lagoon, water level and salinity in Lake George and volume diverted along the drain can be estimated. This capability is 

intended to provide greater information to assist the decision-making process, extending the probability of a certain volume of 

water occurring in the network to enable the influence of operational decisions on the key variables (volume diverted, water 

levels and Lake George salinity) in the system to be considered. The model has been calibrated to provide a suitable 5 

representation of historical water levels, flows and salinities.  

To use this model for to inform operations, forecast climate and streamflow are required model inputs. The focus of this work 

is to derive suitable streamflowChanges in the relationship between rainfall and runoff also occurred during this period, 

evidenced by the reduced slope in the plot of cumulative runoff against cumulative rainfall (double-mass analysis) in Figure 3 

(Searcy et al., 1960; Yihdego and Webb, 2013). The runoff ratio in catchment C1 is approximately 0.045 before year 2000, 10 

but reduces by 70% to 0.013 after 2000. The runoff ratio in catchment C2 is around 0.088 before year 2000, but reduces by 

30% to 0.061 after 2000. This comparison provides stronger evidence of non-stationarity in catchment C1 than in catchment 

C2. Other studies have also investigated the link between changes in the hydrology and changes in land use in the region (Avey 

and Harvey, 2014; Brookes et al., 2017). These changes have implications on the choice of calibration data period, as data 

from the 1970s may not be representative of hydrological conditions in the 2000s. 15 

It is evident from Figure 3 that catchment C3, despite having the largest catchment area (2200 km2) of the three catchments, 

generates very little runoff. This behaviour is due to a number of factors, including the very flat terrain and depression storage, 

substantial vegetation cover (both plantation and natural) and irrigation extractions from the shallow underlying aquifer. Given 

its limited streamflow volume, catchment C3 is excluded from further analysis in this study. From a practical perspective, it is 

assumed that in the years where there is substantial yield from this catchment there will already be surplus flow from the 20 

upstream catchments. 

2.2 Management Issues 

Drain M serves multiple competing demands on the water resources available in this catchment system. These demands 

influence the decision to use the regulators along the system: 

a) Bool Lagoon has water requirements that influence releases from the lagoon into Drain M.  25 

b) Lake George has water requirements to maintain the estuarine ecology of the lake, to support its significance as a 

biological resource, and as a resource for recreational fishing. 

c) The ocean outlet requires some flow to prevent sediment from entering Lake George and to maintain connectivity to 

the sea (which allows fish movement and aids fish recruitment). However, high flows may impact on sea grasses, due 

to their low salinity and high nutrient load. 30 
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d) The wetlands of the Upper South East to the north typically benefit from as much water as possible from the Drain 

M system. 

 Decisions to undertake diversions from Drain M must be made throughout the year (mainly in the high flow season from late 

winter and throughout spring). It is expected that forecasts for this application. A forecast periodof future flows at key locations 

will assist in maximising the environmental and social outcomes achieved from the available water. Forecasts of monthly 5 

volume with a leadtimelead time of one month has beenahead are considered as most appropriate for this application, 

asbecause: 1) the main quantities of interest in this application are volume and the overall water balance, rather than the size 

or timing of daily peak flows, and 2) one month lead time provides sufficient time to undertake any changes in management, 

and 3) reasonable forecast skill is expected to be possible compared to longer forecast horizons.diversions to satisfy the 

competing demands on the system.  10 

2.12.3 Climate and Climate Data 

The mean annual rainfall for the region is in the rangevaries from 600 -mm in the north to 675 mm andin the south. The mean 

annual FAO56 potential evapotranspiration (PET) (Allen et al., 1998) is approximately 1000 mm. The highest rainfalls are 

experienced in the winter months, with rainfall exceeding evapotranspiration in the months May – -September. The SILO 

Patched Point Dataset (Jeffrey et al., 2001) was used for the observed rainfall and the FAO56 evapotranspiration data was 15 

adopted, with the climate stations used shown in Figure 1. A Thiessen polygon approach was used to combine stations and 

produce one timeTime series each of rainfall and evapotranspiration forin each catchment. were obtained using a Thiessen 

polygon approach. This weighting approach has beenis considered appropriate for the region, due to the flat terrain being 

unlikely to lead to significant topographic effects on the spatial distribution of rainfall. 

Rainfall forecasts from the Australian Bureau of Meteorology’s (BoM) seasonal forecast system, POAMA-2, were used to 20 

represent the effect of climate during the forecast period.  POAMAseasonal forecast system, POAMA-2 (Hudson et al., 2011), 

were used.  POAMA-2 is a dynamical climate forecasting system designed to produce multi-week to seasonal forecasts of 

climate for Australia based on a coupled ocean/atmosphere model and ocean/atmosphere/land observation assimilation 

systems. POAMA-2 consists of both a seasonal and a In this paper, we use a 30-member ensemble of monthly/multi-week 

forecast system using forecasts from version 2.4 of the model.  Both systems are multi-model ensembles consisting of three 25 

different model configurations. Furthermore, each configuration is used to generate an ensemble of 10 forecasts by perturbing 

initial conditions, resulting in a 30-member ensemble. POAMA-2. POAMA-2 produces large (~250 km) spatial scale 

predictions over Australia,have a coarse spatial resolution (~250 km), which dodoes not capture the large degree of spatial 

variability in catchment-scale rainfall.  For the purposes of this application in this study, the large scale POAMA-2 rainfall 

hindcasts (i.e. forecasts developed usingby applying the modelling system forto the historical period) at the relevant pixel were 30 

downscaled to the single rainfall gauge scale. Theeach climate station in the study region (Figure 1) using the statistical 

downscaling method detailed in Shao and Li (2013) was used, resulting in rainfall hindcasts at each of the rain gauges shown 

in Figure 1. As an example Figure 2 shows that the mean rainfall hindcasts at station 26000 provide a reasonable estimate of 



 

11 

 

the observed rainfalls at this station, while the upper and lower hindcast bounds capture the majority of observed rainfalls.. 

Further details of the downscaling approach are provided in Humphrey et al. (2016). 

2.22.4 Streamflow and Streamflow Data 

The streamflow in the region is seasonal to ephemeral, with flow ceasing over the summer and autumn months and runoff 

coefficients are low, with annual runoff in the range of 2-10% of annual rainfall (Gibbs et al., 2012). The predominant land 5 

use in the region is dry land pasture with some flood irrigation as well as plantation forestry; there is no major urbanization in 

the catchments. The topology of the region is very flat, with mainstream slopes in the order of 0.005. The hydrogeology of the 

catchment includes shallow aquifers with major karstification of limestone, which may be suggestive of groundwater exchange 

across the boundaries of the catchments. 

The details of the three catchments contributing to Drain M are as follows. Mosquito creek flows into Bool Lagoon (catchment 10 

area of 1002 km2), with the inflows gauged at station A2390519 (referred to as C1, as shown in Figure 1). The Southern Bakers 

Range catchment flows into Drain M between Bool Lagoon and the diversion point at Callendale (2200 km2 – C3). The flow 

from this catchment has been determined from that gauged at Callendale (A2390514) minus that released from Bool Lagoon 

(A2390541). Travel times along this section of drain are less than one day, and for the purposes of this study the daily flows 

have been subtracted to determine the flow from the Southern Bakers Range catchment. It should also be noted that releases 15 

from Bool Lagoon have occurred infrequently in the recent past, with only four short release events since 1997 (Gibbs et al., 

2014). Finally, the Drain M local catchment contributes flow downstream of the Callendale diversion point, flowing into Lake 

George (383 km2). This is gauged at station A2390512 (C2). As with the Southern Bakers Range catchment, the flow 

contributing to the drain from this local catchment has been derived as the difference between the flow at stations A2390514 

and A2390512, as travel times are again less than one day. 20 

Daily streamflow data are available from the South Australian Department of Environment, Water and Natural Resources 

Surface Water Archive (https://www.waterconnect.sa.gov.au/Systems/swd), with the flow stations used shown in Figure 1. 

Three of the flow stations have data available from the early 1970s, with the exception being the station at the outlet of Bool 

Lagoon (site A2390541), where data were available from 1985.  Travel times along Drain M between flow stations are typically 

less than one day. To determine the flow generated within catchment C2, the daily flows recorded at upstream flow station 25 

A2390514 where subtracted from the downstream flow station A2390512.  

Streamflow measurements in the three catchments were obtained from fixed concrete weirs. The stations at A2390512 and 

A2390519 have v-notch cross-sections to improve sensitivity at low flows, whereas stations A2390514 and A2390541 have 

flat cross sections and therefore could be expected to be less sensitive at low flows. All stations are free flowing downstream 

and are constructed drains upstream with a constant slope and cross section, which would be expected to provide a reliable 30 

relationship between stage and discharge. Gauging records for the four stations are extensive, with between 78 and 166 flow 

https://www.waterconnect.sa.gov.au/Systems/swd
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gaugings at each station, with a 90th percentile deviation of 10.5% for stations A2390512 and A2390519, and 16.3% at station 

A2390514. Given the regular cross sections and high number of gaugings available to develop stage-discharge relationships, 

output data uncertainty is expected to be low for the stations considered. This identification of high quality data was considered 

an important process, as biases and systematic changes in the measurement of hydrological data can significantly affect model 

calibration and can lead to non-stationarity in the estimated model parameters (Westra et al., 2014). 5 

The identification of high quality data is important because biases and systematic changes in the measurement of hydrological 

data can significantly affect model calibration and lead to non-stationarity in the estimated model parameters (Westra et al., 

2014). Analysis of the data and monitoring stations suggested that streamflow data uncertainty is expected to be low, given 

the regular cross sections of the weirs used for monitoring stage and upstream drains, and the high number of gaugings 

(between 78 and 166 flow gaugings at each flow station) available to develop stage-discharge relationships.  10 

In the region where the case study catchments are located, plantation forestry expanded substantially in the late 1990s. Changes 

in the relationship between rainfall and runoff also occurred during this period, as seen as the reduced slope in the double-

mass analysis (Searcy et al., 1960; Yihdego and Webb, 2013), i.e. the plot of cumulative runoff against cumulative rainfall in 

Figure 3. These changes have implications for the period most relevant for forecasting future flows in the catchments, as data 

from the 1970s may not be representative of what could be expected in future years. It is also evident from Figure 3 that, 15 

despite the contributing area, very little runoff is generated from C3 due to a number of factors, including the very flat terrain 

and substantial depression storage, substantial vegetation cover (both plantation and natural) and irrigation use from the 

shallow underlying aquifer. Given the limited volumes generated within this catchment, it has been excluded from further 

analysis. From a practical perspective, in years where there is substantial yield from this catchment, it is assumed that there 

will already be surplus flow from the upstream catchments. Based on the case study outlined, the two main challenges 20 

considered in this paper are: (i) estimation of predictive uncertainty to inform management, and (ii) determination of 

approaches to adequately represent the non-stationarity in the catchments. 

3 Methodology 

3.1 CRR Model and Parameter Calibration 

The GR4J model (Perrin et al., 2003) wasis a parsimonious daily CRR model, selected as the CRR model for this study, as it 25 

is a parsimonious model that because it explicitly accounts for non-conservative (or ‘leaky’) catchments, (relevant for the study 

area, see Section 2.1) and has demonstrated good performance for Australian conditions (Coron et al., 2012; Guo et al., 2017; 

Westra et al., 2014). The ability to represent non-conservative catchments is important in the study area (see section 2.2).. The 

standard form of the GR4J model has four calibration parameters,: the maximum capacity of a production (soil) store, X1, a 

catchment water exchange coefficient, X2, the maximum capacity of a routing store, X3, and a time base for a unit hydrograph, 30 

X4. Further details of the model structure and parameters can be found in Perrin et al. (2003). In addition to the four standard 
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parameters, the split between the routing store and the direct runoff has also been considered a calibration parameter in this 

study. The resulting additional parameter is termed split; the standard GR4J formulation adopts a default value of split=0.9. 

Note that the catchments considered have a relatively slow streamflow response. Consequently, the pre-specified split to the 

routing store of 0.9 in the original specification of the GR4J model may be too low for these catchments. To mitigate this 

potential deficiency, we have modified the GR4J model so that the split between the routing store and the direct runoff is 5 

included as an explicit calibration parameter termed split. 

3.2 Parameter estimation 

The GR4J parameters wereare inferred using Bayes equation. The posterior probability density of the parameters given daily 

observed streamflow data �̃� and climate data X, 𝑝(𝜽|�̃�, 𝑿), is given by: 

  𝑝(𝜽|�̃�, 𝑿) ∝ 𝑝(�̃�|𝜽, 𝑿) 𝑝(𝜽)  (1) 10 

where 𝑝(𝜽) is the prior distribution and 𝑝(�̃�|𝜽, 𝑿) is the likelihood function. 

A standard least squares likelihood function wasis adopted (see, for example, Thyer et al., 2009). The function was calculated 

using the daily time series, and, which is derived from ana residual error model assumingthat assumes independent, 

homoscedastic residuals. While the assumptions required by this function (i.e. constant variance, independent) are somewhat 

unrealistic for This likelihood function is adopted for the calibration of the daily hydrological applications, statistics based on 15 

sum of squared errors (Nash Sutcliffe Efficiency, RMSE) are often used for model calibration and assessment, and hence this 

function has been selected. This function has also been adopted given that the focus of this study is on the estimation of monthly 

runoff volumes, as this functionbecause it provides a focus onbetter fit to the highesthigh daily flows in the time series, where 

the majority of the runoff volume occurs (Wright et al., 2015). 

, which make a big contribution to monthly volumes of interest in our study. Uniform prior distributions were adoptedare 20 

used for all parameters, with the assumed bounds given in Table 1. A number of trial runs were used to ensure the bounds of 

the prior distribution were suitable and well-removed from the high-density areas of the posterior distribution. 

. 

The posterior distribution in equationEq. (1) wasis sampled using the DiffeRential Evolution Adaptive Metropolis (DREAM) 

algorithm (Vrugt et al., 2009). DREAM provides a sample of The sampled parameter sets that representsare then used to 25 

approximate the posterior parameter distribution, and the trends in these distributions for different time periods are considered 

in the results. For the purposes of residual error modelling, only the parameter set resulting in the maximum posterior was 

used. The a given calibration period. Computations were carried out using the Hydromad R package implementation of the 

DREAM algorithm and the GR4J model (Andrews et al., 2011) implementation. A total of 25,000 iterations of the DREAM 

algorithm and GR4J model have been adopted. A maximum of 25,000 evaluations were usedcarried out, including a “burn-30 
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in” period where the initial samples were discarded beforeof 6250 iterations to allow the Markov Chain was assumed to have 

stabilisedstabilise. The number of parallel chains was set equal to the number of parameters, i.e. five parallel chains were 

adopted (Vrugt et al., 2009)., which, for the modified GR4J model used in this work (Section 3.1), led to five parallel chains 

being used.  

The posterior distributions obtained for different calibration time periods are investigated for evidence of trends and changes 5 

over time. For the purposes of developing streamflow predictions using the post-processing approach (Section 3.5), only the 

single parameter set resulting in the maximum posterior probability is used. 

3.3 Calibration Periods to account for Non-stationarityApproach  

A rolling calibration approach has beenis used to minimizeaccount for the impact of external influencesnon-stationarity on the 

inferred CRR model parameters,. This rolling calibration approach is similar to that ofthe approach used by Luo et al. (2012) 10 

and Wagener et al. (2003). External influences include model structural limitations, physical changes in the catchments 

influencing the rainfall-runoff relationships (land use change, change in groundwater level), or over-representationIt consists 

of particular hydroclimatic conditions. In the rollingchoosing a calibration approach,length and then moving it forward year 

by year, while recalibrating the model parameters were recalibrated to each year based on the data from the preceding period. 

The such calibration “window”. The calibrated parameter values identified wereare used to simulate the following one year of 15 

data (following that used in the calibration process),, before recalibrating the model to include these “new” data, while 

discarding the earliest year of data, to maintain the same period length for calibration. The recalibrationand repeating the 

process. This methodology adopted allows for the changeidentification of changes in parameter distributions over time to be 

included. , without the need to identify specific periods when changes in the rainfall-runoff response may have occurred. 

Calibration period lengths of CPL = 10-year years and CPL = 20-year calibration periods have been years length are 20 

considered, to assess the trade-off between using a longer calibration period to reduce theexpose the model to more diverse 

catchment conditions and improve parameter uncertainty, and identifiability, versus using a shorter calibration period 

representinglength to expose the mostmodel to more recent hydrological dynamics observed in the catchment. .  

As an example, consider a 10 year calibration period was from 1/5/1995-30/4/2005, after a one year warmup period. The 

warm-up period. Predictions are computed for the following one year “prediction period was then considered to be the monthly 25 

forecasts over the following year (”, i.e. 1/5/2005-30/4/2006).. The process wasis then repeated each year, where in this 

examplei.e., the next calibration period becomesis 1/5/1996-30/4/2006, and the prediction calibrated model is used to predict 

the period 1/5/2006-30/4/2007. The startstarting month of May corresponds to the start of the flow season in autumn. Through 

this rolling approach, the model predictions assessed were independent of the data used for calibration in all the results 

presented. For the case of using forecast rainfall, the model was run with observed rainfall up to the forecast month, before 30 

using forecast rainfall only for the forecast month. This was repeated for each month in the prediction period.(Figure 2).  
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3.4 State Updating in GR4J 

AnThe approach to directly correctused for the statesstate updating of a rainfall-runoff model with observed data has been 

adopted in this work,GR4J is similar to thatthe approach of Demirel et al. (2013). The model was run for a one year warmup 

period, and the simulated level in the production store at the end of this period was maintained. As model states generally do 

not reflect reality directly (Berthet et al., 2009), the production store level has been maintained “as seen” by the model.  5 

In order to force the model to simulate the flow observed at the start of the month, the necessary routing store level to produce 

the observed flow after accounting for the modelled direct flow was calculatedState updating is set to take place at the start of 

each month within the one year prediction period, using the observed streamflow at the start of each month. GR4J has two 

stores, namely the production store and the routing store. Following the procedure of Demirel et al. (2013), the routing store 

level is updated such that the GR4J simulation of streamflow matches the observed flow. This procedure is undertaken after 10 

accounting for the modelled direct flow from the production store (Demirel et al., 2013). In GR4J, total simulated streamflow 

on a given day 𝑞𝑡
𝜃 is calculated as the sum of the flow direct from the production store (after applying a unit hydrograph), 𝑞𝑡,𝑑

𝜃 , 

.and the flow from the routing store, 𝑞𝑡,𝑟
𝜃 , i.e.: 

More specifically, the following procedure is used. In GR4J, the total simulated streamflow on a given day 𝑞𝑡
𝜃 is defined by 

the sum of the direct flow from the production store (after applying a unit hydrograph), 𝑞𝑡,𝑑
𝜃 , and the flow from the routing 15 

store, 𝑞𝑡,𝑟
𝜃 , 

 𝑞𝑡
𝜃 = 𝑞𝑡,𝑑

𝜃 + 𝑞𝑡,𝑟
𝜃  (2) 

The necessary Let 𝑞𝑡,𝑟
𝑆𝑈 denote the flow from the routing store forthat yields 𝑞𝑡

𝜃to equal to the observed flow, 𝑞�̃�, defined as 

𝑞𝑡,𝑟
𝑆𝑈,. This quantity is then calculated as: 

 𝑞𝑡,𝑟
𝑆𝑈 =  min (𝑞�̃� −  𝑞𝑡,𝑑

𝜃 =  max (𝑞�̃� −  𝑞𝑡,𝑑
𝜃 , 0)  (3) 20 

The routing store level, R, can then be obtained by setting 𝑞𝑡,𝑟
𝜃 = 𝑞𝑡,𝑟

𝑆𝑈 and inverting, and solving (using the bisection method) 

the equation used by the GR4J model to calculate the outflow from this storage: 

 𝑞𝑡,𝑟
𝜃 = R (1 − (1 + (

R

𝑋3
)

4

)
−1/4

) 𝑅 (1 − (1 + (
𝑅

𝑋3
)

4

)
−1/4

) (4) 

Equs. (2) – (4) can be where X3 is an estimated runoff model parameter.  

More complex approaches for data assimilation and state updating are available, for example, the ensemble Kalman filter and 25 

particle filter approaches are commonly used (He et al., 2012; Lei et al., 2014; Li et al., 2013; Plaza Guingla et al., 2013; 

Spaaks and Bouten, 2013; Xie and Zhang, 2013). However, particularly when used to update both model state variables and 

model parameters, these approaches impose a substantial computational burden for obtaining accurate results, and accuracy 
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can decrease if incorrect correlations between states and parameters are identified, due to biased model error quantification 

and a large degree of freedom for high-dimensional vectors of the augmented state (Xie and Zhang, 2013). 

used to update R given the observed streamflow flow 𝑞�̃�. 

3.5 Estimation of Predictive Uncertainty 

A post-processor error model was used to estimate predictive uncertainty in forecasts. After the hydrological model has been 5 

calibrated, a statistical model was fitted to the residuals given by the difference between monthly observations (�̃�) and 

predictions from the hydrological model (𝑸𝜃 ) using the maximum posterior parameter estimates. In this case, the streamflow 

at the monthly time scale was considered, i.e., the sum of the streamflow at the daily time scale each month, 𝑄�̃� = ∑ 𝑞�̃�
𝑛
𝑖=1 , for 

the n days in month t. Depending on the case, the hydrological model predictions were either those forced by observed rainfall, 

or for the case when the model was forced by the ensemble of forecast rainfall, the hydrological model predictions were the 10 

median across the ensemble of the hydrological model predictions each day, and then aggregated to the monthly time step. 

Henceforth, the resulting hydrological model prediction monthly time series is referred to as 𝑸𝜃 . 

HeteroscedasticityThe monthly streamflow forecasts are obtained by aggregating the daily GR4J simulations. In order to 

quantify predictive uncertainty using a residual error model, the monthly-aggregated GR4J simulations, 𝑸𝜃 , are compared to 

observed monthly streamflow volumes, �̃�. The quantification of error is based on residuals errors, defined by the differences 15 

between observed and simulated monthly streamflow. Separate error models are estimated for the GR4J predictions for each 

catchment and for each type of forcing data (observed or forecast rainfall), as follows: 

 When observed rainfall is used as input to GR4J, the daily streamflow time series simulated using G4J are aggregated 

to produce monthly time series of hydrological model predictions, 𝑸𝜃 .  

 When forecast rainfall is used as input to GR4J, an ensemble of daily streamflow forecasts is produced (with a single 20 

GR4J streamflow time series per rainfall forecast time series). Each such “individual” daily GR4J time series is then 

aggregated to a monthly time step. The time series 𝑸𝜃  is constructed from the time series of medians of the individual 

monthly streamflow time series. This use of the median streamflow forecasts from the multiple ensembles of the 

meteorological ensemble forecasts may result in some information loss, but aggregation approach of streamflow 

forecast ensembles is commonly used in operational applications (e.g. Lerat et al., 2015; Matte et al., 2017; Schepen 25 

et al., 2017; Wani et al., 2017). Further work is needed to more fully utilise the information from ensemble forecasts 

when developing post processing models.  

The heteroscedasticity (i.e. larger residuals for larger flows) and skewness in these residuals are captured by of forecast errors 

is accounted for using the Box Cox transformation:, by defining normalized residuals as 
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where   is wherea transformation parameter, and A  is an offset parameter (often important when transforming low flows). 

Based on the findings of McInerney et al. (2017), 0.5  was selected, which was shown to produce good predictive 

performance in ephemeral catchments, especially in terms of improving precision and reducing bias. A value of 
51 10A  5 

mm/month was selected.  

The Box Cox transformation is applied to observed and predicted flows, and 
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with a transformation parameter  and an offset parameter A (often important when transforming low flows). 

0.5   was used, as this setting was shown to produce good predictive performance (especially in terms of sharpness and 10 

bias) in ephemeral catchments by McInerney et al. (2017). The offset is set as
51 10A   mm/month. 

The normalized residuals are calculated as: 

t in Eq. (7)  𝜂𝑡 = Z(𝑄�̃�) − Z(𝑄𝑡
𝜃) (6) 

These normalized residuals t  are assumed to be Gaussian with mean   and variance
2

  
2

 , i.e.
2~ ( , )t N     . 

., 15 

2~ ( , )t N       (7) 

The parameters   and    are then estimated using the method of moments, i.e. as the sample mean and sample 

standard deviation of   computed with the maximum posterior parameter setthe time series of  . The same rolling calibration 

approach outlined in Section 3.3 for the GR4J model is also applied for the calibration of the post-processor error models. 
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Once the residual error model has beenis calibrated, replicates from the predictive distribution, 
( )r

Q ( )r
Q  for 1.. rr N , are

1.. rr N , can be generated for the independent evaluationany time period of interest, as follows: 

1. Sample the normalized residual at time step t, 
( ) 2( , )r

t N     .
( ) 2( , )r

t N       (78) 

2. Rearrange Equation Eq. (6) to yield: 

 𝑄𝑡
(𝑟)

= 𝑍−1(𝑍(𝑄𝑡
𝜃) + 𝜂𝑡

(𝑟)
)  (89) 5 

3. Truncate negative values to zero.  

The Equs. (5) – (8) are used to generate replicates representfrom the predictive distribution (PD) of the forecasts.  

The assumptions of the post-processor residual error model used to estimate predictive uncertainty for monthly volumes are 

different to the assumptions of the residual error model used in the likelihood function for calibrating the daily GR4J model. 

As outlined in Section 3.2, the GR4J model is calibrated at the daily scale to observed streamflow using the standard least 10 

squares likelihood function, because it better captures the high daily flows, important for estimating the monthly volumes. The 

post-processing error model for the monthly volumes is designed to capture the predictive uncertainty in these monthly 

volumes, in particular the heteroscedasticity and skew of the residuals (McInerney et al., 2017; Refsgaard, 1997). These choices 

of residual error models at the daily and monthly time scales contribute to the study objectives of reliable forecasts at the 

monthly time scale, and are common in forecasting applications (for example, Lerat et al., 2015). 15 

3.6 Model Configurations and Implementation 

Two options for state updating (with versus without) and two options for calibration period length (CPL = 10 years versus 

CPL = 20 years) are considered. The combination of these options leads to four model configurations. Four different cases 

are considered for each model configuration, given by the combinations of two catchments (C1 and C2) and two sources of 

climate data (observed and forecast). This results in a total of 16 scenarios considered. 20 

Twelve sets of one month ahead predictions are generated during the one year prediction period. For all scenarios observed 

rainfall is used as input to the hydrological model prior to the start of each set of one month ahead predictions. When state 

updating is used, the GR4J state is updated at the start of this month using the procedure outlined in Section 3.4. During the 

one month ahead predictions, either observed or forecast rainfall are used, depending on the scenario considered.  
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3.63.7 Performance Metrics 

Five metrics wereare used to evaluate differentdistinct aspects of predictive performance.  These include metrics for reliability, 

precisionsharpness, volumetric bias, the cumulative ranked probability score (CRPS) and the Nash Sutcliffe Efficiency (NSE). 

Depending on the data available, the metrics are calculated over different periods. When observed climate data was used to 

drive the CRR models, the periods commences 21 years after the start of the streamflow record (after a 1 year warmup and 20 5 

year calibration period), that is 1/5/1992 for C1 and 1/5/1994 for C2. In all cases, the period ends on 30/4/2010. The same 

period is used within each case considered, e.g. different calibration lengths, with/without state updating, and as such are 

comparable within these cases for a given catchment. For display purposes enabling a straight forward comparison across all 

the cases considered, the value for each metric has been normalised by linearly scaling the worst value to a value of 0.05 and 

the best value to 0.95.  10 

Reliability refers to whether the degree to which the observations (of streamflow) over a series of time steps can be considered 

to be statistically consistent with being samples from the predictive distribution. Reliability has beenIn this work, reliability is 

assessed using predictive quantile-quantile (PQQ) plots, and the plot has been summarizedquantified using the reliability 

metric of Renard et al. (2010) which is based on the area between the PQQ plot and the 1:1 line. A value of 0 represents perfect 

reliability, while a value of 1 represents the worst case ofreliability, i.e., all observations lying either outside (above or below) 15 

the PD. 

Precision refers to the width of the predictive distribution, and is otherwise known as resolution or sharpness. We quantify 

precision using the following metric from McInerney, et al (2017):  

 

1 1

1 1
Precision sdev

t tN N

t t

t ttt

Q
NN  

  Q   (Sharpness refers to the width of the predictive distribution, and is 

otherwise known as “resolution” or “precision”. We quantify sharpness using the following metric from McInerney et al. 20 

(2017):  

 Sharpness =  ∑ sdev(𝑸𝑡 )𝑁
𝑡=1 ∑ 𝑄�̃�

𝑁
𝑡=1⁄   (910)  

where N is the number of months and sdev() is the sample standard deviation.   

Volumetric bias measures the overall water balance error of the predictions relative to the observations. It is calculated as:   

 VolBias = | 
∑ mean𝑸𝑡

𝜃𝑁
𝑡=1 −∑ 𝑄𝑡

̃𝑁
𝑡=1

∑ 𝑄𝑡
̃𝑁

𝑡=1

| | 
∑ mean(𝑸𝑡

𝑁
𝑡=1 )−∑ 𝑄𝑡

̃𝑁
𝑡=1

∑ 𝑄𝑡
̃𝑁

𝑡=1

|  (1011) 25 

where mean() is the sample mean. 
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CRPS is a widely used probabilistic performance metric that summarises and evaluatescombines in a single measure multiple 

aspects of predictive performance (, including reliability, uncertainty and sharpness) in a single measure and bias (Hersbach, 

2000). The CRPS is calculated by comparing the cumulative distribution of the forecastpredictions with the cumulative 

distribution of the observation at each time step. For eachAt a single time step, the CRPS is calculateddefined as: 

 CRPS =  ∫ [𝐹𝑓(𝑄𝑡) − 𝐹𝑜(𝑄𝑡)]
2

𝑑𝑄
∞

−∞
∫ [𝐹𝑝,𝑡(𝑄) − 𝐹𝑜,𝑡(𝑄)]

2
𝑑𝑄

∞

−∞
  (1112) 5 

where FfFp,t  and Fo,t  are the cumulative distributions of the streamflow forecastpredictions (𝑸𝑡 ) and observation, 

respectively, (𝑄�̃�), at time step t. The average value of the CRPS is then calculated over all time steps t. Note that the 

cumulative distribution of the observations is a step function. A CRPS of 0 corresponds to athe perfect forecastprediction, 

while larger CRPS values correspond to worse performance. 

To normalize CRPS metric values across catchments, the CRPS metric for the forecast (CRPSFpredictions (CRPSP) is 10 

expressed as a skill score with respect to the CRPS metric of a “reference” distribution for that catchment (CRPSR) 

 CRPSSS =  
CRPSR−CRPSF

CRPSR

CRPSR−CRPSP

CRPSR
   (13) 

A CRPSSS of values below zero indicate forecasts with worse performance than the reference distribution, a CRPSSS of 0 

corresponds to the forecastpredictions having similarthe same performance as the reference distribution, whileand a CRPSSS 

of 1 corresponds to a perfect forecast. prediction. 15 

The reference distribution for each month is calculated as the empirical distribution of all observed data in that month. Note 

that since all of the observed data is used to estimate the reference distribution (including data in the forecast verification 

period), this distribution has an unfair advantage over the models which use only previously observed data. This means that 

there may be cases where the CRPSSS is less than zero, corresponding to the reference distribution having better performance 

than the forecast., using the entire set of observed data (including data from the prediction period). This approach provides a 20 

stringent baseline for the CRPS normalization in Eq. (13). 

NSE is a commonly used metric for the assessment of the accuracy hydrological modelsmodel predictions, and is calculated 

as: 

 NSE = 1 − 
∑ (𝑄𝑡

𝜃−𝑄�̃�)
2

𝑇
𝑡=1

(𝑄�̃�−𝑄�̃�)
2   (

 NSE = 1 − 
∑ (𝑄𝑡

𝜃−𝑄�̃�)
2

𝑇
𝑡=1

∑ (𝑄�̃�−�̃�)
2

𝑇
𝑇=1

  (1214) 25 

NSE can range from −∞ to 1, with NSE = 1 corresponding to perfect predictions of the observed data, and NSE < 0 indicates 

the observed mean is a better predictor than the model. While limitations in the NSE have been identified (see, for example, 
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Gupta et al., 2009), the metric has been included as it provides a measure of performance for the hydrological model, and has 

interpretation of given the broad application of the metric in the literature. 

3.7 Model Configurations under Consideration 

Based on the methodology outlined, a number of model configurations have been compared: CRR models with and without 

state updating, and each calibrated to a rolling 10 year or 20 year window. Each configuration has been applied to the C1 and 5 

C2 catchments, and driven by both observed and forecast rainfall. Hence, there were 64 different cases considered in this 

work.  

Two different influences of the calibration period on the models were analysed. The first was changes in the predictive 

distribution with changes in the length of data record used to calibrate the model parameters. The second was the rolling 

approach used to calibrate the model parameters, where the model was recalibrated at the start of the water year to the most 10 

recent data, which allowed model parameters to change over time. Each influence is considered further in the following section. 

NSE can range from −∞ to 1, with NSE = 1 corresponding to perfectly accurate predictions of the observed data, and 

NSE < 0 indicating the observed mean is a better predictor than the model.  

To ensure a consistent comparison of multiple model scenarios, the metrics are computed as follows: 

 the same period is used to calculate the metrics in all cases. This period was determined by the availability of the 15 

forecast rainfall, from May 2001 to April 2011.  

 the performance metrics are normalized by linearly scaling the worst value to a value of 0 and the best value to 1, 

 𝑀𝑟 =
𝑀−𝑀𝑤

𝑀𝑏−𝑀𝑤
 (15) 

where the worst and best values for each metric, Mw and Mb, respectively, are listed in Table 2. The remainder of the 

presentation, in particular Figure 4, reports the normalized metrics computed using Eq. (15). 20 

4 Results 

The results for each of the cases considered for each of the performance metrics outlined abovefor all model configurations 

are summarised in Figure 4. The original values for each metric that correspond to the minimum and maximum bounds in 

Figure 4 can be seen in Table 2. From Figure 4, in general, the model that included state updating and was calibrated to the 

shorter period produced the best results across the metrics considered. TheThese changes due adopting the state updating 25 

approach, for the different calibration periods, are considered in more detail below. We begin by comparing the predictive 

performance of model configurations with and without state updating (Objective 1), and then investigate the influence of 
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calibration period length in the context of catchment non-stationarity (Objective 2), considering changes in both the predictive 

performance and changes in CRR parameter values over time.  

4.1 Impact of State Updating 

The two options for initialising the model’s routing store, a continuous ‘warm up’ period, or updating the routing store level 

based impact of state updating on the observed flow at the start of the forecast month, are shown as the predictive performance 5 

can be seen in Figure 4, by comparing the red and greenblue bars in Figure 4 (darker coloursshading indicating results for the 

10 year calibration period length, and lighter coloursshading indicating results for the 20 year calibration period).  length). It 

is clear that state updating improves the sharpness, bias, CRPSSS and NSE metrics. 

The models with state updating improved the precision and bias in all cases considered (Figure 4). This can be seen in Figure 

5, where the 90th percentile predictive limits for the models with and without state updating, and a 10 year calibration period 10 

and observed rainfall data, are presented for a subset of the record considered. From Figure 5 it can be seen that the predictive 

limits were generally more precise when state updating was adopted compared to without state updating, particularly during 

the periods when there was some flow occurring in the winter-spring months. However, in dry months, state updating can be 

seen to slightly widen the predictive limits (for example at the start of 2001 for C2), potentially capturing the low flows that 

occurred at this time more accurately.  15 

State updating also improved the reliability metric in 7 of the 8 comparative cases, with the only exception being for C2 and 

the 20 year calibration period with forecast rainfall. As an example of the improved reliability from state updating, PQQ plots 

with and without state updating, for the 10 year calibration period observed rainfall cases, can be seen in Figure 6. A line for 

a given predictive distribution closer to the 1:1 line represents a more reliable distribution, and it can be seen this is the case 

for the models that include state updating for both catchments. Any detrimental impacts on the predictive distribution from 20 

state updating tended to occur when the model storage was updated to represent a zero flow, and then a low flow that did occur 

in the following month was underestimated, e.g. in January 2002 for C2 in Figure 5.  

The improvement in predictive performance achieved by state updating to the observed flow data is tentatively attributed to 

being able to correct the model for any systematic overestimation of simulated streamflow. Consider Figures 5 and 6, which 

show the 90th percentile predictive limits for each model configuration, for catchments C1 and C2, respectively. The longer 20 25 

year calibration period length without state updating is considered the “typical approach”, and is shown in grey on each panel.  

A representative time period is shown, with the full time series for each case provided as Supplementary Material. Figures 5 

and 6 show that state updating sharpens the predictive limits, especially during low flow months. For example, this behaviour 

can be seen for the 20 year CPL by comparing the predictions in panels (a) to (b) for the case of forecast rainfall and the 

predictions in panels (e) to (f) for the case of observed rainfall.  30 
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In terms of reliability, Figure 4 shows that state updating provides improved predictions for catchment C1. However, for 

catchment C2, Figure 4 shows that the reliability of all model configurations is relatively high compared to the reliability 

achieved in catchment C1, and state updating can lead to a slight loss of reliability. 

4.2 Impact of Calibration Period Length 

4.2.1 Differences in predictive distributionPredictive Distribution 5 

The changes in the predictive distribution due to changes in the different calibration period lengthslength can be seen in Figure 

4, by comparing the darker to the lighter shadesshade of each colour (darker colour for 10 year calibration period length, lighter 

colour for 20 year calibration period) in Figure 4.  length). The following findings can be seen: 

 MostWhen state updating is not used (comparing dark blue versus light blue in Figure 4), all metrics improved 

forwhen the shorter 10 year calibration periods length was used.  10 

 When state updating is used (comparing the dark red versus light red in Figure 4), the impact of the shorter 10 year 

calibration period length depends on the catchment. In catchment C1, which provided stronger evidence of non-

stationary than catchment C2 (Section 2.1), the use of the 10 year calibration period where state updating was not 

used. The reduction in performance for the longer length improves all metrics compared to the use of the 20 year 

calibration period could be due to the model being calibrated to data that represent higher yielding conditions from 15 

the past, where the catchment displayed a higher runoff coefficient (i.e. the start of the 1990s in Figure 3) than in the 

forecastlength. In contrast, in catchment C2, the length of the calibration period.  had little impact on the NSE and 

CRPSSS values; and only small improvements in the reliability, sharpness and bias metrics are obtained when the 10 

year period is used. 

However, where state updating was used, it was able to compensate for some of the changes, with smallerThe differences 20 

between the dark and light green bars compared to the dark and light red bars in Figure 4. This improvement is potentially due 

to the observed flow data being able to correct the model for any systematic overestimation in the simulated streamflow. The 

differences were more pronounced for the more practically relevant case with forecast rainfall, which introduced further errors 

to be compensated for by the state updating approach, and the postprocessor error model.  

One aspect of the impact of different calibration periods that was not obvious from the changes in values for the metrics was 25 

trends in the model outputs when compared to the observed streamflow over time. These trendsstreamflow predictions obtained 

in the two catchments C1 and C2 (for the case of GR4J forced with observed rainfall) are illustrated by the time series at the 

end of the period considered, presented in Figure 7.  As noted in Section 2.2, catchment C1 had been identified to have a 

substantial reduction in the rainfall-runoff relationship over time (Figure 3). From Figure 7, it can be seen that the model 

calibrated to the longer period overestimatedin Figure 7 for the most recent period 2009-2011. In catchment C1, using a longer 30 

calibration period length tends to yield wider prediction limits and an overestimation of the observed flow in 2009 and 2010 
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in catchment C1, whereas the model calibrated tousing the shorter period providedcalibration length provides a better 

reflectioncapture of the catchment response. in these two years. In contrast, in catchment C2, which had a much more consistent 

relationship between rainfall and runoff over time inhas less evidence of non-stationarity (Section Figure 3, the differences in 

the 90th percentile predictive limits due to2.1), the calibration period in Figure 7 were minimallength makes very little 

difference on the resulting streamflow predictions. 5 

4.2.2 Differences in trendsTrends in parameter valuesParameter Values 

The rolling calibration approach of recalibrating the CRR model parameters each year to the preceding data relevant for the 

calibration period considered (i.e. the previous 10 or 20 year period) allows for any(see Section 3.3) enables temporal trends 

in the parameter distributions to be investigated (see Section 3.2).. Figure 8 presents the median, and 90th percentile prediction 

limits of these distributions for each parameter for each catchment, forwith the 10 year and 20 year calibration periods, asperiod 10 

lengths shown in different colours.  

In catchment C1, for the first 10-12 years of the record, the median value for each parameter was similar for both calibration 

periods, with slightly wider bounds for the shorter calibration period, likely due to the reduced data available to infer 

representative parameter values. After this period, but particularly in the last 5 years, the shorter calibration period can be seen 

to identify values that result in reduced runoff, in particular more negative values for X2, the groundwater exchange coefficient. 15 

Reducing values for X4, the time base of unit hydrograph, may appear a strange result because it corresponds to a modification 

of the travel time within the catchment. However, the reduced value of X4 may represent a reduced contributing catchment 

area through interception in the upper reaches of the catchment. Cross-correlation analysis of the rainfall-runoff data supports 

this reduction in travel time based on the lag between rainfall and runoff producing the maximum correlation value, when 

comparing between the start and end of the dataset (Gibbs et al., 2017). 20 

In catchment C2, the parameter values resulting from the different calibration periods were similar to each other. The distinct 

change in parameter values for the 10 year calibration period in 1999 appears to be a model fitting anomaly resulting from a 

shorter calibration period. This finding highlights that longer calibration periods would generally help identify more robust 

parameter values. There were no substantial differences in parameter values for the calibration periods considered, which may 

be expected given the more consistent rainfall-runoff relationship In catchment C1, up until year 2005 (representing models 25 

calibrated from 1995 – 2004 for the 10 year calibration period length) the calibration period length has little impact on the 

median value for each parameter. Slightly wider parameter bounds are obtained when the shorter calibration period length is 

used, likely due to the reduced data available to infer representative parameter values. Post 2005, the parameter values obtained 

using the shorter calibration period length respond to the distinct non-stationarity of the catchment discussed in Section 2.1. 

The more pronounced negative values of the groundwater exchange coefficient X2 estimated in the 1994-2005 calibration 30 

period are consistent with the reduced runoff ratio in the period post 2000. In contrast, parameter values estimated from the 
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longer calibration period length, which includes data from the 1980s even when predicting the 2000s, do not exhibit this 

distinct change. 

In catchment C2, the median values of parameter estimated from each calibration period length were similar over time (Figure 

3).the record. This result agrees with the lack of strong evidence of non-stationarity in this catchment.  However, there wereis 

some evidence of a reduction in streamflow in this catchment, with the post 2000 period being characterized by a reduction in 5 

the runoff ratio from 0.088 to 0.061 (Section 2.1). This reduction is weaker in catchment C2 than in catchment C1, yet appears 

to be supported by the trends in the median parameter values over time for both calibration periods. Considering the. Analysis 

of results from the 20 year calibration period, the length suggests statistically significant trends (p<0.05) in the median values 

of the model parameters were, namely ΔX1 = 3.96 mm/year and ΔX3 = -5.17  mm/year. Both trends are inAn exception to the 

directionpattern of parameters values that reduce runoff for a given amountthe median parameter values being insensitive to 10 

calibration period lengths can be seen in 1999, where the use of rainfall, through increased evaporation (increasethe 10 year 

calibration period length produces higher values of X4 and lower values of X2 and the split introduced in X1, maximum 

capacity of the production store) and increased loss to inter-basin transfers (reduction in X3, maximum capacity of the routing 

store). this study (Section 3.1). This exception could represent a model fitting anomaly resulting from a shorter calibration 

period length. 15 

5 Discussion 

5.1 The Beneficial Impact of State-Updating on Forecast Performance 

Most previous studies have used state updating in a short term flood forecasting context, and found limited effect of the initial 

conditions after a number of days (e.g. Berthet et al., 2009; Randrianasolo et al., 2014; Sun et al., 2017). However, forecasting 

of flood peak and timing is a different application to the forecasting of streamflow volumes. A number of data driven modelling 20 

studies have demonstrated that monthly streamflow lagged by one (or more) months provided some useful information for 

forecasting at a one month lead time (e.g. Bennett et al., 2014; Humphrey et al., 2016; Yang et al., 2017). This study 

demonstrates that these benefits also hold when CRR models were, rather than data-driven approaches, are used as the 

forecasting model. 

State updating is found to improve the predictive distributions produced, across the performance metrics for thein both 25 

catchments considered., for the majority of the multiple performance metrics considered. State updating would beis expected 

to reduce the simulatedpredictive bias, as errors in the simulated streamflow during the warm up period are corrected at the 

start of the forecast period. State updating would beis also expected to increase the precisionsharpness of the predictive 

distribution, as the range inof model predictions should be reducedis generally tightened by forcing the model to simulate the 

observed streamflow at the start of the forecast period. However, the trade-off for  30 
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The only metric where state updating did not show an increase in precision would typically be a reduction in improvement is 

for the reliability of the predictive distribution (e.g. McInerney et al., 2017). This was not the case in this work, where in all 

but one of the cases considered, reliability also improved.predictions for catchment C2. However, the reliability of all model 

configurations in this catchment is already relatively high without state updating. All other metrics (sharpness, bias, CRPS and 

NSE) show improvements from state updating in catchment C2, suggesting potential trade-offs in performance, similar to that 5 

reported by McInerney et al. (2017). This slight reduction in reliability is not considered to have a significant detrimental 

impact of the PD produced for this practical application.  

The state updating approach adopted could be modified to potentially further improve the reliability of the forecasts produced. 

For example, the approach could be extended to also update the GR4J production store along with the routing store. This could 

be expected to improve the results in the periods where detrimental changes were found, in months with very low flow and 10 

limited storage in the routing store to update. Given the main detrimental impacts of state updating occurred in the no/low flow 

period, the approach could also be adopted only in periods where there was some recorded flow. However, forcing the model 

to correctly represent an observed no flow may also be beneficial (for example, in late 2002 and into 2003 in Figure 5), as an 

approach such as this requires further investigation.  

5.2 Out of context, the calibration period results could be seen to suggest that the shorter calibration period provided 15 

better (or at least not detrimental) parameter estimates. However, this interpretation would not be expected to 

be a general result, nor would it indicate that evenImportance of Choosing a Calibration Period that is 

Representative of Current Catchment Conditions.  

Traditionally, long calibration periods are used to maximise the use of available data and increase parameter identifiability. 

The empirical results in this study suggest that the shorter calibration period can provide better (or at least not worse) predictive 20 

performance. The reduction in performance seen when the longer calibration period is used is likely due to the calibration data 

representing catchment conditions that are substantially different to those in the prediction period. For example, when the 

prediction period is 2009 (as shown for catchment C1 in Figure 7), a 20 year calibration period length corresponds to the period 

of 1989-2008, which includes a large portion of the pre-2000 period when catchment C1 displayed a much higher runoff 

coefficient (section 2.1). In contrast, a 10 year calibration period length corresponds to a calibration period of 1999-2008, 25 

which is likely to be more representative of the lower runoff hydrological regime seen in the post 2000 period. 

The reported improvement in model performance with the 10 year calibration period length does not imply that shorter 

calibration periods would further improve predictions. Ultimately, ourresult in further improvements. Shorter calibration 

period lengths will eventually reduce parameter identifiability (e.g., as manifested by greater parameter uncertainty in Figure 

8), and may produce poor parameters estimates due to fitting only a small number of events and hence being unable to represent 30 

the full range of flow conditions.  
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The empirical findings highlight the benefits of identifying the longesta calibration period of data that is representative of 

conditions of interest for a given model application, which is a task often overlooked in practical application. The expected 

result that longer calibration periods improve parameter identifiability can be seen in Figure 8, however for some catchments, 

there may be a trade-off with calibrating a model to data that are no longerapplications. Suitable representative of the current 

or future rainfall-runoff regime. As such, data suitable for model calibration should be periods can be identified through 5 

techniques such as trend analysis and other, using knowledge of changes in a catchment (e.g. land use data, abstraction 

volumes). The), and testing predictive performance for different calibration period lengths (as done in this work). The empirical 

results presented indicate that, if this step the selection of calibration data is ignoredpoorly implemented, and/or if the modeller 

naively assumes that longer calibration periods are inherently better for model development, detrimental impacts to all aspects 

of the predictive distributionperformance can occurdegrade appreciably.  10 

5.3 Value of Forecasts for Improving Water Management  

The forecasting approaches developed in this work can support improved water management in the drainage system 

considered. The approach currently used by the management authority is very conservative: streamflow forecasts are not 

attempted, and changes in water management are made only once downstream requirements have been met. With the 

forecasting models and methods developed in this work, it becomes possible to produce streamflow forecasts with a high 15 

reliability, improved sharpness and reduced bias. Thus it becomes possible to provide useful probabilistic estimates of how 

likely it is that the downstream flow requirements will be met in the next month. With this information, managers can more 

confidently consider increasing the frequency and duration of inundation for many of the wetlands in the region, and can make 

decisions on management changes much earlier in the season.  

5.4 Future Research Work 20 

The enhancements to predictive performance of streamflow forecasts from state updating and a shorter calibration period have 

been demonstrated on two catchments. These catchment were selected based on an established user need for seasonal forecasts 

to improve the water management of a channel drainage system with multiple competing demands. Importantly, the case study 

catchments in this work are ephemeral and dry, with low runoff ratios. These types of catchments are known to be challenging 

to model (McInerney et al., 2017; Ye et al., 1997). Future work will evaluate the proposed seasonal streamflow forecasting 25 

techniques over a wider range of catchments and environmental conditions. 

6 Conclusions 

This work investigated the ability to produce streamflow forecasts for an application in southern Australia, where streamflow 

can be diverted to support a range of environmental and social outcomes, and where improved information on future water 
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availability can assist in decision support and management. As part of meeting this objective, several methods related to 

improving the predictive ability of streamflow forecasts were investigated. 

The first main contribution of this study was the implementation of the state updating approach to assimilate recently observed 

streamflow into the conceptual rainfall-runoff model GR4J, and to assess the implications of this approach on the forecast 

predictions. The results indicate that this simple state updating approach could improve all aspects of the predictive distribution, 5 

including the precision and reliability of the forecasts. 

This work has focused on improving monthly streamflow forecasts by considering two aspects: 1) state updating to force the 

GR4J hydrological model to match observations from the start of the forecast period, and 2) investigating the trade-offs 

between using shorter versus longer calibration periods. The analysis was applied to two ephemeral catchments in southern 

Australia, which are part of a drainage network with competing environmental management demands. 10 

The major findings from the empirical analysis are as follows: 

1. State updating improves predictive performance in the case study catchments, for the majority of the multiple 

performance metrics considered. Previous studies focusing on the forecasting of flood peak and timing have typically 

found limited effect of initial conditions on predictive performance after a number of days. This study demonstrates 

that, when forecasting streamflow volumes, using state updating to more accurately represent initial conditions can 15 

have a benefit even at a one month lead time. 

1.2. The second main major contribution of this study was to establish the impact of the length of the calibration period 

on the forecast accuracy.has a major impact on predictive performance of a hydrological model. In the case study 

catchments, the shorter calibration period typically improves predictive performance, especially in the case study 

catchment with stronger evidence of non-stationarity. The results indicated that thebenefits of a shorter calibration 20 

period improved model performance in most cases,length appears contrary to the standard approach of using as much 

data as possible for model calibration. The reduction in performance for the longer calibration period is likely due to 

the model being calibrated to data that represent higher yielding conditions from the past, where the catchment 

displayed a higher runoff coefficient thanwhich no longer hold true in the forecast period. This resultfinding highlights 

that identifying a data set that is representative of the forecast period, through trend analysis and other knowledge of 25 

a catchment, is an important step in model development. The results presented indicate that ifIf this step is ignored, 

and it is naively assumed that the morelonger calibration data theis inherently better for model development, 

detrimental impacts to all aspects of the predictive distribution can resultperformance may suffer. 

The conclusions drawn inof this empirical study are limited by the one case study region considered. While the results are 

intuitive, further work shouldsmall number of catchments and single hydrological model used. Further work will consider a 30 

larger sample of catchments, encompassing and a wider range of flow regimes. Similarly, only one CRR model structure has 

been considered, and the state updating approach, and benefits thereof, may change for differenthydrological model structures. 
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Further work should also consider the merits of updating other aspects of the models considered, for example similar or 

improved performance may be achieved through updating the error estimated by the postprocessor error model instead of, or 

as well as, the CRR model storage level. Nonetheless, this study has demonstrated a number of relatively simple In general, 

we expect the techniques for pre-processingof state updating, post-processing uncertainty estimation, and usage of shorter 

calibration approachesperiod length representative of future forecast conditions to enhance monthly streamflow forecasting 5 

skill. be of value to hydrologists and environmental modellers seeking to improve the predictive performance of their modelling 

systems. 
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Table 1 Bounds adopted for the uniform prior distribution on the GR4J parameters 

Parameter Name Lower Bound Upper Bound 

X1 production store maximal capacity (mm) 100 600 

X2 catchment water exchange coefficient (mm) -15 5 

X3 one-day maximal capacity of the routing reservoir (mm) 1 300 

X4 unit hydrograph time base (days) 0.5 6 

split proportion of flow directed to the routing store 0.6 0.99 

 

Table 2 MinimumBest and maximumworst values for each predictive performance metric across all models and catchments 

considered.  Higher values are better formodel configurations. For CRPSSS and NSE, lowerhigher values aredenote better 

performance; for the other metrics lower values denote better performance. The values in this table should be interpreted 5 
alongside Figure 4, where the worst and best values reported here correspondingcorrespond to the 0.05 and 0.95 relativemetric 

values in Figure 4.of 0 and 1, respectively. 

 Reliability PrecisionSharpness Bias CRPSSS NSE 

MinimumWorst 0.0841 0.452.21 0.041.49 -0.6465 -1.01 

MaximumBest 0.3907 2.180.45 1.480.11 0.6557 0.9188 
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Figure 1 Map of the forecasting applicationcase study region, in the south east of Southsouthern Australia 
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Figure 2 Example of downscaled POAMA rainfall forecastsVariability in monthly runoff in Drain M at station 26000 in 

comparison to observed rainfallslocation at Flow Station A2390512. 
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Figure 3 Double mass plot of the rainfall-runoff data in the three main catchments contributing to Drain M. It can be seen that 1) 

the volume of runoff for the same volume of rainfall has reduced in the latter decade, and 2) very little runoff is generated from the 

C3 catchment C3. 

 5 
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Figure 4 Comparison ofPredictive performance metrics acrossfor the two case study catchments (C1 and C2) and sourcethe two 

sources of rainfall forcing data. The  (observed and forecast). Relative metric values are presented (Section 3.7 and Table 2); 

higher values represent better performance. The impact of models with and without state updating can be seen between the red 

and green bars (by comparing the darker shades and lighter shades).red vs blue bars. The change in performance due to different 5 
calibration periods (CPperiod lengths (CPL) can be compared betweenseen by comparing the bars with darker andvs lighter 

shading (darker colour representing the 10 year period, and lighter colour 20 year period).. 
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Figure 5 Representative streamflow time series of the in catchment C1 obtained using forecast rainfall (left) and observed rainfall 

(right). The shaded area represents the 90th percentile prediction limits, with observed values as  and the black dots, for the 

10observed values. The “traditional approach” of the 20 year calibration period observed rainfall models. State updating can be 

seen to increase precision compared tolength (CPL) without state updating is showing in grey on each panel. 5 
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Figure 6 Predictive Quantile – Quantile plots for models with the 10 year calibration period and forced by observed rainfall, 

comparing reliability with and without state updating. State updating can be seen to increase the reliability of the predictions.  
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Figure 7 Representative streamflow time series ofin catchment C2 obtained using forecast rainfall (left) and observed rainfall (right). 

The shaded area represents the 90th percentile prediction limits, with observed values as  and the black dots, for the models with 

state updating and observed rainfall.  For the catchment with non-stationary changes (C1), the use of the longer calibration period 

results in overestimated flow at the end of the period, due to the influence of data earlier in the calibration periodvalues. The 5 
“traditional approach” of the 20 year calibration period length (CPL) without state updating is showing in grey on each panel. 
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Figure 7 Streamflow predictions for catchment C1 (top) and C2 (bottom) for period 2009-2011 using observed rainfall.  The shaded 

area represents the 90th percentile prediction limits and the black dots the observed values. For catchment C1, using shorter 

calibration periods (red) can be seen to produce lower streamflow predictions than using longer calibration periods (blue).  

 5 
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Figure 8 Temporal trends in posterior parameter distributions, for catchments C1 (top) and C2 (bottom). The median values are 

shown as the solid lines and the shaded area represent the 90th percentile prediction limits.  
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