Articles | Volume 22, issue 12
https://doi.org/10.5194/hess-22-6611-2018
https://doi.org/10.5194/hess-22-6611-2018
Research article
 | 
21 Dec 2018
Research article |  | 21 Dec 2018

Developing a drought-monitoring index for the contiguous US using SMAP

Sara Sadri, Eric F. Wood, and Ming Pan

Related authors

FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Nonstationarity of low flows and their timing in the eastern United States
S. Sadri, J. Kam, and J. Sheffield
Hydrol. Earth Syst. Sci., 20, 633–649, https://doi.org/10.5194/hess-20-633-2016,https://doi.org/10.5194/hess-20-633-2016, 2016
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Uncertainty analysis
A comprehensive uncertainty framework for historical flood frequency analysis: a 500-year-long case study
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024,https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Bayesian calibration of a flood simulator using binary flood extent observations
Mariano Balbi and David Charles Bonaventure Lallemant
Hydrol. Earth Syst. Sci., 27, 1089–1108, https://doi.org/10.5194/hess-27-1089-2023,https://doi.org/10.5194/hess-27-1089-2023, 2023
Short summary
Intercomparison of global reanalysis precipitation for flood risk modelling
Fergus McClean, Richard Dawson, and Chris Kilsby
Hydrol. Earth Syst. Sci., 27, 331–347, https://doi.org/10.5194/hess-27-331-2023,https://doi.org/10.5194/hess-27-331-2023, 2023
Short summary
Seamless streamflow forecasting at daily to monthly scales: MuTHRE lets you have your cake and eat it too
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022,https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
An uncertainty partition approach for inferring interactive hydrologic risks
Yurui Fan, Kai Huang, Guohe Huang, Yongping Li, and Feng Wang
Hydrol. Earth Syst. Sci., 24, 4601–4624, https://doi.org/10.5194/hess-24-4601-2020,https://doi.org/10.5194/hess-24-4601-2020, 2020

Cited articles

AMS: Drought, available at: http://glossary.ametsoc.org/wiki/Drought (last access: 30 April 2018), 2012. a
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M.: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sens. Environ., 115, 3390–3408, https://doi.org/10.1016/j.rse.2011.08.003, 2010. a
Cai, X., Pan, M., Chaney, N. W., Colliander, A., Misra, S., Cosh, M. H., Crow, W. T., Jackson, T. J., and Wood, E. F.: Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model, Water Resour. Res., 53, 3013–3028, 2017. a
California Dept. of Water Resources: Wells, available at: https://water.ca.gov/Programs/Groundwater-Management/Wells, last access: 25 April 2018. a
Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F.: Mutual interaction of soil moisture state and atmospheric processes, J. Hydrol., 184, 3–17, 1996. a
Download
Short summary
Of particular interest to NASA's SMAP-based agricultural applications is a monitoring product that assesses near-surface soil moisture in terms of probability percentiles for dry and wet conditions. However, the short SMAP record length poses a statistical challenge for the meaningful assessment of its indices. This study presents initial insights about using SMAP Level 3 and Level 4 for monitoring drought and pluvial regions with a first application over the contiguous United States (CONUS).