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Abstract. Since April 2015, NASA’s Soil Moisture Active
Passive (SMAP) mission has monitored near-surface soil
moisture, mapping the globe (between 85.044◦ N/S) using
an L-band (1.4 GHz) microwave radiometer in 2–3 days de-
pending on location. Of particular interest to SMAP-based
agricultural applications is a monitoring product that assesses
the SMAP near-surface soil moisture in terms of probability
percentiles for dry and wet conditions. However, the short
SMAP record length poses a statistical challenge for mean-
ingful assessment of its indices. This study presents initial in-
sights about using SMAP for monitoring drought and pluvial
regions with a first application over the contiguous United
States (CONUS). SMAP soil moisture data from April 2015
to December 2017 at both near-surface (5 cm) SPL3SMP, or
Level 3, at ∼ 36 km resolution, and root-zone SPL4SMAU,
or Level 4, at ∼ 9 km resolution, were fitted to beta distri-
butions and were used to construct probability distributions
for warm (May–October) and cold (November–April) sea-
sons. To assess the data adequacy and have confidence in
using short-term SMAP for a drought index estimate, we an-
alyzed individual grids by defining two filters and a com-
bination of them, which could separate the 5815 grids cov-
ering CONUS into passed and failed grids. The two filters
were (1) the Kolmogorov–Smirnov (KS) test for beta-fitted
long-term and the short-term variable infiltration capacity
(VIC) land surface model (LSM) with 95 % confidence and
(2) good correlation (≥ 0.4) between beta-fitted VIC and
beta-fitted SPL3SMP. To evaluate which filter is the best, we
defined a mean distance (MD) metric, assuming a VIC index
at 36 km resolution as the ground truth. For both warm and
cold seasons, the union of the filters – which also gives the
best coverage of the grids throughout CONUS – was cho-
sen to be the most reliable filter. We visually compared our

SMAP-based drought index maps with metrics such as the
U.S. Drought Monitor (from D0–D4), 1-month Standard Pre-
cipitation Index (SPI) and near-surface VIC from Princeton
University. The root-zone drought index maps were shown
to be similar to those produced by the root-zone VIC, 3-
month SPI, and the Gravity Recovery and Climate Experi-
ment (GRACE). This study is a step forward towards build-
ing a national and international soil moisture monitoring sys-
tem without which quantitative measures of drought and plu-
vial conditions will remain difficult to judge.

1 Introduction

Drought is an extreme condition when water in one or a com-
bination of water stores (e.g., river, lake, reservoir, snowpack,
soil water or groundwater) or water fluxes (precipitation,
evapotranspiration or runoff) drops below a defined condition
for a prolonged period of time (Wilhite and Glantz, 1985;
Wilhite, 2000; AMS, 2012). Such a water deficit evolves
over weeks to months and can last for months and years.
Drought’s propagation is silent and often without warning
until it impacts human lives and environmental activities
(Tallaksen and Van Lanen, 2004). Drought conditions are re-
lated to water demand, so local water use plays a central role
in defining conditions of scarcity and the resulting impacts.
Wilhite and Glantz (1985) classified drought into meteoro-
logical, agricultural or hydrological, depending on whether
the deficit is measured using precipitation, soil moisture or
river discharge, respectively.

The reduced supply of precipitation (and subsequently soil
moisture) for crops leads to an agricultural drought that im-
pacts crop yield, inflicting enormous economic impacts on
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developed countries and the suffering of millions of peo-
ple in less-developed regions of the world. In the US, since
1996, there has been at least one drought event per year ex-
cept for the years 1997, 2001, 2004 and 2010, and each year
drought cost between USD 1 billion and 14 billion in dam-
ages (in 2015 – adjusted dollars) (NOAA, 2018b). In Califor-
nia alone, the 2015 drought was estimated to cause USD 2–
5 billion in damages to the agricultural sector (Howitt et al.,
2015).

Although the impacts of drought are intimately linked
to the vulnerability of a population to adverse conditions
(UN/ISDR, 2007) and how society responds within the con-
straints of changing economies, the timely determination of
the current level of agricultural drought aids the decision-
making process in order to reduce its impacts. Scientifically
based drought-monitoring tools and warning systems assist
in the mitigation of the losses caused by droughts and the
planing and management of water shortages that will ac-
company future droughts (Martinez-Fernandez et al., 2016).
Such drought-monitoring tools are based on long-term ob-
servations of the hydrological variables such as precipitation,
streamflow, soil moisture and groundwater.

Pluvial conditions are related to an abundance of precip-
itation and subsequently wet soil conditions that can ad-
versely affect agriculture by waterlogging the fields or ex-
acerbating flooding from additional rainfall. Thus, for mon-
itoring extremes (either agricultural drought or pluvial con-
ditions), realistic estimation of soil moisture at regional to
continental scales is required. Soil moisture is the central
source of information, since it reflects recent precipitation
and antecedent soil conditions (Sheffield and Wood, 2011).
In a sense, soil moisture captures the aggregate balance of all
hydrological processes and represents available water, being
a buffer between incoming precipitation and throughfall and
evapotranspiration and drainage processes (Entekhabi et al.,
1996). Unfortunately, soil moisture (and evapotranspiration)
are among the least-observed components of the hydrolog-
ical cycle, especially over large spatial and temporal scales
(Reichle, 2017; Sheffield and Wood, 2011).

Many statistical measures or indices for extreme condi-
tions have been developed in the US, particularly for drought
conditions. This is due to the slow evolution of drought and
its economic and social impact. Currently, no single drought
index has been able to adequately capture the severity and
intensity of drought and its impact on different groups of
users (Heim, 2002). Heim (2002) gives an overview of the
major 20th US drought indices. The most common ones are
the standardized Precipitation Index (SPI), Palmer Drought
Severity Index (PDSI), Standardized Runoff Index (SRI) and
the U.S. Drought Monitor (DM or USDM).

The SPI is recognized by the World Meteorological Orga-
nization (WMO) as the standard index for quantifying and
reporting meteorological drought. It is used to characterize
drought on a range of timescales from 1 to 36 months. The
raw precipitation is fit to an appropriate distribution function

and is then transformed into a standardized normal distribu-
tion. The SPI index is expressed as the number of standard
deviations by which the anomaly deviates from the long-
term mean. On short timescales, the SPI is closely related
to soil moisture, while at long timescales, it is related to
groundwater. The advantages of the SPI include the follow-
ing: it only relies on precipitation, it can characterize both
drought and pluvial conditions, its computation over differ-
ent timescales can be related to various water resource stores
(such as soil moisture and groundwater), and it is more com-
parable across regions with different climates than the Palmer
Severity Drought Index (PDSI). The key limitation of the SPI
is the following: it is sensitive to the quantity of the data used.
Usually, 30 years of monthly precipitation data are recom-
mended for fitting the data. Additionally, the SPI is a mete-
orological tool that measures water supply but does not ac-
count for evapotranspiration. This limits its ability to capture
the effect of increased temperatures (associated with climate
change) on moisture demand and availability. Finally, the SPI
does not consider the intensity of precipitation and how it im-
pacts on runoff and streamflow. Overall, the SPI can provide
information about anomalies in precipitation, so it needs to
be used in combination with other information in order to be
useful for agricultural drought assessment (NCAR, 2018).

The PDSI uses precipitation and an estimate of evapora-
tion in conjunction with a water balance model to estimate
relative soil dryness and potential evapotranspiration. The
original formulation used only the temperature to estimate
a potential evapotranspiration, but it is now recognized that
an energy-based approach, such as the Penman–Monteith ap-
proach, is preferred (Sheffield et al., 2012; Mo and Chel-
liah, 2006). Since PDSI uses potential evapotranspiration and
precedent (prior month) conditions, it takes into account the
basic effect of global warming and is effective in determining
long-term drought, especially over low and midlatitudes. Key
limitations of the PDSI include that the PDSI is not as com-
parable across regions as the SPI and lacks the ability to han-
dle winter-time conditions that include snowmelt and frozen
precipitation, which makes its long-term monitoring prob-
lematic. Unlike SPI indices, the PDSI lacks multi-timescale
features, making it difficult to correlate with specific water
resources like runoff, snowpack and reservoir storage.

The SRI is based on the SPI and a model runoff. The
strength of the SRI, as a runoff-based index, is that it can be
used to forecast future runoff, and its predictability depends
not only on climate outlooks, for which seasonal skill is gen-
erally low, but also on hydrologic initial conditions (e.g.,
spring snow state in the western US). The disadvantage of
the SRI is similar to the disadvantage of using any modeled
runoff; since modeled runoff cannot be verified everywhere,
the runoff-based indices of the SRI reflect the customary un-
certainties associated with model outputs (Shukla and Wood,
2008).

The USDM integrates several drought indices and pro-
fessional input from all levels into a weekly operational
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drought-monitoring map product (Svoboda, 2000). The limi-
tation of the USDM lies in its attempt to show drought at sev-
eral temporal scales (from short-term drought to long-term
drought) on one map product. Hence, the application of the
DM is not for replacing any local or state information or sub-
sequently declared drought emergencies or warnings but is
rather for providing a general assessment of the current state
of drought around the United States, its Pacific possessions,
and Puerto Rico (Svoboda, 2000). Since the USDM relies
on professional inputs from the field, it is difficult to have
historical consistency (since the professionals change) or to
provide forecasts.

Long-term and large-scale observations of soil moisture
are scarce in the United States and elsewhere, so datasets
produced by the North American Land Data Assimilation
System (NLDAS) are valuable alternatives. Currently Na-
tional Centers for Environmental Prediction (NCEP) offer
an NLDAS drought monitor (NOAA, 2018a) based on four
land surface models (LSMs): variable infiltration capacity
(VIC), Noah, Mosaic and Sacramento. Sheffield et al. (2004)
used simulations from the NLDAS VIC model forced with
observed precipitation and near-surface meteorology to de-
velop a drought index based on soil moisture. The approach
Sheffield et al. (2004) took was to fit the VIC-simulated soil
moisture to probability distributions, usually beta distribu-
tions, where the percentiles are translated to the index values
that range from 0 to 1. Recent drought applications such as
the VIC-based Princeton University drought and flood moni-
toring systems for Africa and Latin America (Sheffield et al.,
2014) use the simulated soil moisture, which is mostly based
on satellite precipitation (Princeton University Hydrology,
2013).

A major limitation of the indices discussed earlier, as well
as of the LSM-based approaches, is a reliance on quality
meteorological data. While precipitation is one of the best-
observed variables, gauge observations are limited in many
regions, especially in much of the developing world. Even
when they are available, they are often not in near real time,
preventing the computation of indices. This reveals one of
the weaknesses of the above indices; their estimates rest on
the availability and accuracy of the forcings, specifically pre-
cipitation (Reichle, 2017). In places such as the US, where
the quality of the precipitation data is quite high, VIC quality
is also relatively high (Pan et al., 2016). However, in regions
with sparse networks or low accessibility, such as Africa, the
VIC quality can be relatively low (Reichle, 2017). Addition-
ally, intercomparison of the four NLDAS models showed that
soil moisture differs considerably among models (Robock
et al., 2000).

Heim (2002) summarizes four characteristics of a useful
operational drought-monitoring system. These include the
following: (1) the indices need to be available on a near-real-
time basis, (2) the indices need to be monitored on a national
scale, which will require the establishment of national net-
works for some variables, (3) complete and reliable historical

data are needed over a common reference period to allow the
conversion of the observations into a meaningful form (such
as a percentile ranking), and (4) the data need to be adjusted
to remove non-climatic influences (such as those arising from
water management practices; Friedman, 1957; Heim, 2002).

An alternative approach to using model-derived soil mois-
ture for drought detection and prediction is satellite-derived
soil moisture. There are currently four major satellite-based
systems that provide soil moisture products at various spa-
tial and temporal resolutions: MetOp with the advanced scat-
terometer (ASCAT; Brocca et al., 2010; Wagner et al., 2013),
the Advanced Microwave Scanning Radiometer AMSR2 of
the Japan Aerospace Exploration Agency (JAXA; Parinussa
et al., 2015; Wu et al., 2015) with the C- and X-band passive
radiometers on the GCOM-W1 satellite that is a follow-on to
the AMSR-E sensor, which failed on 4 October 2011 and was
part of NASA’s Earth Observing System, ESA’s Soil Mois-
ture Ocean Salinity (SMOS) L-band radiometer (Pan et al.,
2010; Kerr et al., 2012, 2016), and NASA’s Soil Moisture
Active Passive (SMAP) L-band radiometer (Entekhabi et al.,
2010). The radar on SMAP failed after 3 months, but soil
moisture estimates based on the radiometer continue to be
produced.

Of particular interest, especially for applications in parts of
the globe with sparse in situ data, is to have an SMAP-based
monitoring product that expresses soil moisture in terms of
probability percentiles for dry (drought) or wet (pluvial) con-
ditions (Entekhabi et al., 2010). This study presents insights
and the potential of using SMAP for monitoring drought
and pluvial regions with a first application over the contigu-
ous United States (CONUS). We fit the soil moisture data
from SMAP at both the level 3 5 cm passive radiometer re-
trievals (SPL3SMP) and the level 4 root-zone product that
assimilates the surface SPL3SMP into the Catchment LSM
(SPL4SMAU) to beta distributions, construct probability dis-
tributions for warm and cold seasons, and measure the re-
liability of our estimates. Producing soil moisture drought
indices at two different soil depths allow for the monitor-
ing of agricultural drought in different stages of development
(NDMC, 2018a). This is important, firstly because grid anal-
ysis showed that values of a full column soil moisture in-
dex can be less, similar, or more than near-surface soil mois-
ture index values. Secondly, depending on the plant develop-
ment stage, the surface soil moisture or root-zone soil mois-
ture drought index can be more useful in agricultural man-
agement. For example, surface soil moisture is important in
the germination stage but is less important for managing ir-
rigation or in estimating yields. Deficient topsoil moisture at
planting may hinder germination, leading to low plant pop-
ulations per hectare and a reduction of final yield (NDMC,
2018a). At the same time root-zone moisture at this early
stage may not affect final yield, but as the growing season
progresses, it becomes more important for plant water needs.

The rest of this paper as follows: the SMAP data are dis-
cussed in Sect. 2.1, including a determination of whether
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1006 days are sufficient for estimating a drought index. Sec-
tion 2.2 develops the indices by fitting beta distributions, with
upper and lower bounds, to the time series and using the per-
centiles as the index. Section 2.3 develops a numerical anal-
ysis of the adequacy of the SMAP data. In Sect. 3, results
of adequacy tests are discussed, and comparisons are made
to the currently available drought indices. To help relate the
percentiles to the U.S. Drought Monitor, which uses lev-
els D0–D4 to indicate severity, the percentiles are mapped.
We also extended our indices to pluvial conditions similar to
the maps from the Gravity Recovery and Climate Experiment
(GRACE) and Princeton University. Conclusions are brought
forth in Sect. 4.

2 Data and methods

2.1 SMAP data

Since April 2015, NASA’s SMAP mission has been monitor-
ing near-surface soil moisture, mapping the globe (between
85.044◦ N and S) using an L-band (1.4 GHz) microwave ra-
diometer in 2–3 days depending on location. The SMAP mis-
sion provides a set of operational global data products that
include the following:

– Level 3 (SPL3SMP) is a composite based on daily
passive radiometer estimates of global land surface
soil moisture (nominally 5 cm) that are resampled to
a global, cylindrical 36 km Equal-Area Scalable Earth
Grid, Version 2.0 (EASE-Grid 2.0; O’Neill et al., 2016).
For this study, Version 4 of SPL3SMP is used, which
is the release version from the very beginning of the
launch of SMAP. The release number changes over
time. The R16 version is the latest version released in
June 2018. However, in all release versions of SMAP,
including Version 4, regions with permanent snow and
ice, frozen ground, excessive static or transient open
water in the cell, excessive radio-frequency interference
(RFI) in the sensor data, and heavy vegetation (vegeta-
tion water content > 4.5 kg m−2) are masked out using
a passive freeze–thaw retrieval based on the normalized
polarization ratio (NPR). Given the 1000 km swath and
98.5 min orbit, the SPL3SMP retrievals are spatially and
temporally discontinuous, with 2–3 day gaps depending
on location.

– Level 4 (SPL4SMAU) provides estimates of global sur-
face and root-zone soil moisture by assimilating the
SMAP L-band brightness temperature data (for which
SPL3SMP is the gridded version) from descending and
ascending half-orbit satellite passes, every 3 h from ap-
proximately 06:00 to 18:00 LST (Local Solar Time),
into NASA’s Catchment LSM (Reichle, 2017; Reichle
et al., 2015). The SPL4SMAU data product is gridded
using an Earth-fixed, global, cylindrical 9 km EASE-

Grid 2.0 projection. The LSM component of the assim-
ilation system is driven by a forcing data stream from
the global atmospheric analysis system at the NASA
Global Modeling and Assimilation Office (Rienecker
et al., 2008). Additional corrections are applied using
gauge- and satellite-based estimates of precipitation that
are downscaled to the temporal and 9 km scale of the
model forcing using the disaggregation methods de-
scribed in Liu et al. (2011) and Reichle et al. (2011).
The SPL4SMAU product provides global soil estimates
for the surface (0–5 cm) and root zone (0–100 cm) and
is an effort to provide continuous, daily information
without discontinuous data restrictions due to gaps in
the SPL3SMP soil moisture retrievals. Nonetheless, the
only product that does not use ancillary meteorological
data is the SPL3SMP soil moisture retrievals.

In this study, SPL3SMP products from the 06:00 LST re-
trievals and SPL4SMAU products from 06:00 LST retrievals
are used in the analysis of the soil moisture drought index.
Our SMAP data records are from 1 April 2015 to 31 Decem-
ber 2017, which is equivalent to 1006 days.

The approach selected here is somewhat similar to that of
Sheffield et al. (2004), where the soil moisture time series are
fit to a beta distribution (with upper and lower bounds), and
the distribution percentiles are the index values. There are,
however, differences in our approach to that of Sheffield et al.
(2004). Firstly, the basis of the data used in Sheffield et al.
(2004) was simulated soil moisture from VIC, while ours
is remotely sensed data. Secondly, to calculate the bounds
of beta distribution [a,b], Sheffield et al. (2004) used the
first (last) 10 % of the sorted soil moisture values linearly
related to the empirical cumulative distribution function. In
our study, this approach did not yield useful results with the
estimated limits for a (b) for SMAP and often did not cover
the full range of observed values, preventing interpretation
of the historical data. Our methodology for obtaining beta
distribution parameters a and b are discussed in this section.

As mentioned in the introduction by Heim (2002), one
of the conditions for an index approach is complete and re-
liable historical data needed over a common reference pe-
riod to allow the conversion of the observations into a mean-
ingful form. The short SMAP record length of 1006 days,
from 1 April 2015 to 31 December 2017, provides a sta-
tistical challenge in estimating the drought and pluvial in-
dices, and thus the reliability assessments related to these ex-
treme conditions are necessary. Therefore, to assess the data
adequacy, we used a 1979–2017 VIC LSM simulation over
CONUS. The VIC runs were carried out at a 4 km spatial res-
olution, and for the SPL3SMP comparisons, averaged up to
36 km. Here we refer to it as VIC near surface (VIC-ns). The
SPL4SMAU is at 9 km spatial resolution, so VIC data were
aggregated from 4 km computing grids and averaged over
three soil layers with varying total soil thickness. We refer to
it as VIC root zone (or VIC-rz). A statistical comparison is
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made between fitting a beta distribution to the VIC soil mois-
ture values using only days when SPL3SMP soil moisture re-
trievals are available and fitting it to the complete 1979–2017
VIC data record. The Kolmogorov–Smirnov (KS) statistical
test was used to evaluate the consistency of the beta fitted
data. We made the assumption that if grids passed the con-
sistency test using VIC data – i.e., the distributions from the
SMAP-period record and the complete record were deemed
the same statistically – then the SMAP time series over that
grid was sufficient for providing an index. More discussion
of these results is given in Sect. 3.

Furthermore, we looked at the frequency distribution of
soil moisture data at each grid. The data seemed to be dom-
inated by low soil moisture in the summertime and high soil
moisture in the wintertime. Therefore, to capture this inter-
seasonal behavior in soil moisture, we divided the record
into a warm season (April–September) and a cold season
(October–March). Dividing the year into warm and cold sea-
sons enabled us to track the soil moisture dynamics, and thus
the probability distribution and index, seasonally. Ideally, we
would have divided it into monthly data but there are insuffi-
cient observations.

For our study period, each grid has between 144 and
329 SPL3SMP soil moisture retrievals during the warm sea-
son and from 16 to 272 retrievals during the cold season. Fig-
ure 1 shows that the number of overpasses per grid is related
to the latitude, with higher latitudes having a higher number
of overpasses, and to the season, with fewer values retrieved
during winter, especially in the western US, due to snow
cover and frozen ground. For the LSPL4SMAU root zone,
there are 457 records for the cold season and 549 records for
the warm season for each grid.

2.2 Fitting the beta distribution to the SMAP time
series

The beta distribution is a family of continuous distributions
with two shape parameters (p and q). It generalizes to a
bounded distribution on the interval of [a,b], where a and
b usually take on the values of 0 and 1. The beta distribu-
tion is flexible enough to model a wide variety of shapes. In
our study, we compared the beta distribution to several para-
metric distributions (including normal and Gumbel), but the
beta distribution showed the best goodness of fit. Further-
more, given the bounded nature of the distribution, it is often
used as the model of choice for modeling soil moisture time
series (Sheffield et al., 2004). The general formula for the
beta probability density function (pdf) is:

f (x)=
(x− a)(p−1)(b− x)(q−1)

B(p,q)(b− a)p+q−1 ,

a ≤ x ≤ b, p,q > 0, (1)

where p and q are shape parameters, and a and b are lower
and upper bounds, respectively, of the distribution. In the

Figure 1. Number of retrievals for each season. (a) Warm season
(1 April–30 September); (b) cold season (1 October–31 March).

case where a = 0 and b = 1, this becomes a standard beta
distribution (NIST, 2013). B(p,q) is a beta constant com-
puted with the formula

B(p,q)=

1∫
0

tp−1(1− t)q−1dt. (2)

A main challenge is to fit the four parameters of the beta
distribution, given a set of empirical observations. Sheffield
et al. (2004) used the method of moments to fit the beta dis-
tribution to historical soil moisture simulations from the VIC
LSM. They computed the first three moments and minimized
the difference between the distribution estimates and sam-
ple estimates, since they were over-constrained. We also used
the standard method of moments to calculate the parameters
p and q. But for each grid location, we fit the beta distri-
bution to six sets of data related to the SPL3SMP product:
(1) short warm season VIC, (2) short warm season SMAP
(1 April–30 September for 2015, 2016 and 2017; 18 months),
(3) long warm season VIC (1 April–30 September, 1979–
2017; 129 months), (4) short cold season VIC, (5) short
cold season SMAP (1 October–31 March, 2015–2016 and
1 October–31 December 2017; 15 months) and (6) long cold
season VIC (1 October–31 March for 1979 and 2016 and
1 October–31 December for 2017; 126 months), using the
first and second moments µ= p/(p+ q) and CV= µ/σ ,
where p and q are parameters and its standard deviation is
defined as

σ =

√
p× q

(p+ q)2× (p+ q + 1)
. (3)

For the SPL4SMAU root-zone soil moisture product, the
beta distribution was fit to the warm season and cold season
using all 457 and 549 records, respectively.

Figure 2 shows the 20th percentile, average and 80th per-
centile soil moisture data in the warm season and cold sea-
son for the SPL3SMP 5 cm soil moisture product, and this
is shown similarly in Fig. 3 for the SPL4SMAU root-zone
product after data were fit to the beta distribution.
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Figure 2. (a–c) SMAP soil moisture values for the warm season during summer for SPL3SMP top 5 cm soil moisture (a) at the 20th
percentile, (b) at the average soil moisture, and (c) at the 80th percentile; (d–f) same as the top row, but for the cold season. Total period is
from 1 April 2015 to 31 December 2017. The soil moisture unit is m3 m−3.

Figure 3. Same as shown in Fig. 2, but for SPL4SMAU (root-zone soil moisture).

2.3 Data adequacy filters

An insufficient SMAP record length may result in unreli-
able index values. To be meaningful in using short SPL3SMP
data for making confident predictions, we will analyze which

grids have the highest certainty in our SMAP drought index.
That is, we perform adequacy analysis and define filters that
separate grids with high reliability in drought monitoring and
prediction from ones where we do not expect our predictions
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to be as accurate. We first define two filters which can sep-
arate the 5815 grids covering CONUS into grids that passed
and failed quality control. The two filters are as follows:

1. the KS test for beta-fitted long-term and short-term VIC
with 95 % confidence;

2. good correlation (≥ 0.4) between beta-fitted VIC and
beta-fitted SPL3SMP.

Below we expand upon these two filters and then show
how we used them to numerically find the best SPL3SMP
filter. We also investigate if combinations of the filters are
superior to the individual filters taken alone.

2.3.1 Kolmogorov–Smirnov (KS) filter

The KS test is a well-known nonparametric statistical test
that compares whether two samples are coming from the
same continuous distribution. We used the KS test for each
grid, comparing the modeled beta distribution of the long-
term VIC with the modeled beta distribution of the short-
term VIC, in both warm and cold seasons. This shows if the
long-term and short-term distributions are statistically indis-
tinguishable. If this strong condition is satisfied for a grid,
then it is reasonable to assume, for that grid, that the short
SMAP time series would be consistent with a hypothetical
long SMAP time series. The null hypothesis – that the un-
derlying beta distribution of short-term soil moisture data is
the same as the underlying beta distribution of long-term soil
moisture data for VIC – is rejected for values of the KS statis-
tic D that exceed a critical value at the 95 % significance
level:Dcritical =

1.36
√
n

, where n is the number of observed vari-
able (Lindgren, 1962).

2.3.2 Correlation filter

As mentioned earlier, one of the key assumptions of this pa-
per is that if the beta distribution fit to the short-term VIC
series is statistically consistent with beta fit to the long-term
VIC time series, then we assume that the short-term beta-
fitted SMAP series is consistent with the hypothetical long-
term beta-fitted SMAP time series. This is possible because
VIC modeled soil moisture is validated by ground measure-
ments (Pan et al., 2016; Cai et al., 2017), and it is most
plausible where the correlation between SPL3SMP and VIC
is highest. Correlation maps are shown in Fig. 4 between
SPL3SMP and the VIC-ns product for the warm season and
cold season periods. This suggests another filter to use: re-
quire that the correlation of beta-fitted SPL3SMP and beta-
fitted VIC soil moisture be relatively high. We examined the
distribution of correlation values across all grids in order to
pick the cutoff between high and low correlation. We chose
the mean correlation, minus the standard deviation of cor-
relation (across all grids), as a threshold. Thus grids whose
correlation is close to average or better than the average pass
the filter. For both the warm and cold seasons, this value was

Figure 4. (a) Correlations (R) between VIC and SMAP beta mod-
els for the warm season (average R = 0.57) and (b) cold season
(average R = 0.56). White regions signify a negative correlation.

very close to 0.4, and as a result, we picked this as the com-
mon threshold.

2.3.3 Mean distance (MD)

To evaluate whether the KS-based filter, the correlation filter
or a combination of both is best, we define a simple mean
distance (MD) metric. Assuming that a VIC index at 36 km
resolution is the ground truth, we can calculate a distance be-
tween VIC and SMAP. For every day that SMAP provided a
retrieval, if SMAPi is the drought index percentile of grid i
that passes the filter, and VICi is the VIC drought index per-
centile of the same grid, and in total ng grids on day d passed
the filter, then the MDd is defined as the average of absolute
distances between the SPL3SMP drought index percentiles
and the VIC drought index percentiles. For the candidate date
d and for a given filter,

MDd =
∑ng
i=1 |VICi −SMAPi |

ng
. (4)

In Eq. (4), VICi and SMAPi are VIC and SMAP drought
index values for grid i, ng is the total number of grids that
passed the filter, and MDd is the mean distance for date d.

For each filter, the final pass and fail distance scores are
calculated by averaging MDd values over the number of
days, especially for both dry or wet seasons:

MD=
∑nd
i=1 |MDd |
nd

, (5)

where nd is the total number of days for which the MDd
value is available. While ng varies every day, since the num-
ber of overpasses varies every day, the value of nd was con-
stant (549 for warm season and 457 for cold season). The
MD value obtained from grids that failed a filter is called
MDfail, and the MD value from grids that passed a filter
is called MDpass. For each filter a difference (Diff) was
computed by reducing the MDpass from the MDfail: Diff=
MDfail−MDpass > 0.
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2.3.4 Combination filters

In addition to the KS filter and the correlation filter, we inves-
tigate two filters defined by the following combination rules:

– Intersection filter. A grid cell g passes the intersection
filter if it passes both the KS filter and the correlation
filter. Otherwise, it fails.

– Union filter. A grid cell g passes the union filter if
it passes either filter or both filters. Note that using
the union filter gives the best coverage of the grids
throughout CONUS, while the intersection filter has the
strongest requirements for passing.

3 Results and discussion

3.1 Data adequacy metrics

3.1.1 Correlation filter

Figure 4 shows that the average correlation for both warm
and cold seasons is high and is around 0.6. During the warm
season, the Central Valley and Southern California, Florida,
the northeastern US, the north of Wisconsin, and Minnesota
show poor correlation with VIC, at around 0.2. The extent
of this poor correlation increases during the cold season for
the northeastern US, Wisconsin and Minnesota. Snow sea-
son results in poor SMAP coverage during winter time in
those areas. In addition, the low number of overpasses (pre-
sented in Fig. 1) during winter in the Northeast can play a
role in the low amount of data and poor correlation during the
cold season. Contrary to the warm season, southern Califor-
nia shows a high a correlation with VIC during the cold sea-
son, at around 0.9. We attribute this change from cold season
to warm season in southern and southern-central California
to the irrigation that SMAP picks up (Lawston et al., 2017)
but VIC does not, since the version used here does not have
water management effects. A land use and land cover map
shows that about one-third of these areas are irrigated veg-
etation and another third are forests and woodlands (USGS,
2018). There are also as many as 2 million water wells in
California that contribute to the irregularity of groundwater
and affecting the soil moisture. They range from hand-dug,
shallow wells to carefully designed large-production wells
drilled to great depths (California Dept. of Water Resources,
2018). More data are needed before we can recognize further
attributions to the low correlation between VIC and SMAP
in that region. While systematic biases are not revealed in
correlations, the temporal consistency among the time series
is captured.

3.1.2 KS filter

Figure 5 shows which grids passed the 95 % KS test; there,
we have confidence that the SMAP drought (pluvial) indices

Figure 5. (a) Grids in red show areas whose short-term VIC in
warm season data has the same underlying beta distribution as the
long-term VIC in warm season data (n= 3560 or 68 % of grids are
red); (b) the same as panel (a), but for cold season period shown
in blue (n= 2927 or 57 % of grids). Gray areas are grids where the
short-term VIC does not have the same beta distribution as their
long-term VIC.

provide reliable risk levels given the current period of record.
The warm season shows 11 % more grids passing the ade-
quacy test than the cold season. Note that as the record length
gets extended, the above analysis needs to be repeated to see
if the adequacy changes.

In the warm season, the majority of the grids whose un-
derlying short-term and long-term beta distribution were dif-
ferent were in the western US. The low warm season cor-
respondence in the Pacific Northwest (PNW) region is par-
ticularly apparent. The PNW region is covered by dense
forests, mountain and heavily regulated agricultural lands
by irrigation. This contributes to the fact that most grids in
PNW do not pass the KS filter. A pattern of low correspon-
dence over the major mountain areas (e.g., the Rocky Moun-
tains, Sierra and Cascades) is also apparent, given the coarse
SMAP brightness temperature (Tb) footprint and dense veg-
etation.

3.1.3 Combined filters

Figure 6 represents the results of correlation filter and KS
filter together for both warm (panel a) and cold (panel b) sea-
sons over all 5815 grids. We use these filters (passed and
failed grids) on a daily basis for MDd measures, though the
value changes every day, depending on the number of over-
passes for that date. Table 1 summarizes how many grids pass
or fail each filter.

3.2 Evaluation of results under different filters

For each filter, the values of MDd were averaged to calculate
MDfail and MDpass for the whole CONUS over the 549 days
of the warm season and 457 days of the cold season. The
summary result of all four tests is shown in Tables 2 and 3.
To test if having a filter is better than having no filter, for
each season, we performed a two-sided null hypothesis. The
tests used 95 % confidence limits between the MD of all grids
– which was 22.7 in the warm season and 22.6 in the cold
season – versus the MD of only passed grids. The results
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Figure 6. (a) Warm season grids that pass the correlation filter
and/or the KS filter. Dark green grids include grids that pass inter-
section filters. (b) Cold season grids that pass the correlation filter
and/or the KS filter. Dark orange grids include grids that pass inter-
section filters. In both figures, white grids show the grids that pass
neither filter and will be cross-hatched in index maps.

Table 1. Number of grids, out of total 5815, that fail and pass the
quality control for each filter.

ng KS Correlation Intersection Union
filter filter filter filter

Warm season fail 2255 1056 2793 518
Warm season pass 3560 4759 3022 5297
Cold season fail 2888 1156 3692 352
Cold season pass 2927 4656 2123 5463

Note: per day, the ng numbers are less because of SMAP overpass missing grids.

showed that all four filters are significantly different than the
MD of the whole CONUS. Thus, regardless of the type of the
filter, having some sort of filter is better than having no filter.

In the warm season, the KS filter did better (i.e., larger
Diff values or better skill in separating high- and low-
performance grids) than the correlation filter for only
115 days out of 546 days, mostly in April. For almost half
of the dates (260 days out of 546), the union filter did better
than the correlation filter. This outperforming of the union
filter occurs evenly throughout the warm season.

In the cold season, for only 48 days out of 457 days,
the KS filter did better than the correlation filter, and for
198 days, the union filter did better than the correlation filter.
These results suggest that for the cold season, the correlation

Table 2. Mean distance (MD) of four tests averaged over 549 days
of warm season. Diff is the difference between the first and second
row.

KS Correlation Intersection Union
filter filter filter filter

MDfail 24.1 26.5 24.5 26.8
MDpass 21.9 21.9 21.1 22.3
Diff 2.2 4.5 3.4 4.5

Table 3. Mean distance (MD) of four tests averaged over 457 days
of cold season. Diff is the difference between the first and second
row.

KS Correlation Intersection Union
filter filter filter filter

MDfail 22.8 29.0 24.1 29.2
MDpass 22.4 21.2 20.1 22.1
Diff 0.4 7.8 4.0 7.1

filter is providing the most effective filter. However, if we
only accept the grids that pass the correlation filter, we lose
804 grids. This area involved almost all of the northeastern
coast and central East Coast as well as northern Wisconsin
and northeastern Minnesota. However this is not a concern-
ing problem for drought, since for most of the cold season
these areas are covered by snow. We still decided to generate
a cold season filter by including the KS filter with the corre-
lation filter, thus we used the union filter for the cold season.

Three considerations for doing so are the following:

1. The Diff values. The correlation-filter Diff value and
union-filter Diff value during the cold season are sim-
ilar and close.

2. The nature of our tests. It is not that surprising that the
correlation filter has a higher Diff than that of the union
filter. The MD metric measures how the SMAP index
resembles the VIC index. Thus, we find that the most
important predictor is that the SMAP values should be
correlated with the VIC values.

3. Optimum coverage. Although the cold season East
Coast drought index is not a matter of concern for this
study, cold season soil moisture variability can affect
warm season soil moisture and consequently agricul-
tural drought. The goal is to create a filter that does
not lose important information while providing the best
knowledge of soil moisture data.

During the warm season, most of the grids that failed the
test were in southern California and southern Nevada, in the
Northeast (New Hampshire, Massachusetts, and Connecti-
cut), and in the Southeast along the eastern coast of Florida.
These are attributed to both the lack of correlation between
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Figure 7. Comparison between SPL3SMP index map and VIC-ns, SPI-1 and USDM in 2017. The black x symbols in the SPL3SMP maps
are the grids that passed neither filter and were shown as white grids in Fig. 6. For USDM, drought levels from 30 to 100 are shown in white.

SMAP and VIC and high variability between short-term and
long-term soil moisture. These areas show non-stationarity
in soil moisture, meaning that soil moisture distribution is
subject to change over time, either due to climate or human
interventions. During the cold season, most of the areas are
covered using the union filter. However, as discussed, we use
this filter with caution, knowing that at least according to our
numerical analysis, the correlation filter did better than the
union filter. The Great Lakes region, Minnesota, and the Mid-
Atlantic region do not show a high correlation between VIC
and SMAP in the cold season. Snow, heavy canopy and land
development cause SMAP retrievals to have errors. In addi-
tion, this region does not have a good coverage of soil mois-
ture and has a smaller number of retrievals per grid (Fig. 1).
However, the KS filter complements the map by showing that
the long-term and short-term VIC during cold season stays
pretty stationary over time. This means that the soil mois-

ture in this area has been less subject to change during cold
season at least for the past 40 years.

This information can be used to inform an interpretation of
SMAP soil moisture percentiles maps based on < 10 years
of data, as presented in Figs. 7 and 8 for a selection of soil
moisture drought and flood indices. The grids that fail both
KS and correlation tests (white grids in Fig. 6) will be flagged
and are where we have the highest uncertainty of the quality
of the data. This includes about 500 grids in the warm season
and about 350 grids in the cold season over the CONUS.

3.3 Comparison of the drought indices

In Figs. 7 to 10, several indices are compared to the SMAP-
based drought index. For the surface soil moisture index
based on SPL3SMP, we provide a 3-day composite SMAP
index to offer more continuous coverage. The union filter is
applied to omit the grids that do not have reliable estimates.
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Figure 8. Comparison between SPL3SMP index map and VIC-ns, SPI-1 and USDM in 2016. The black x symbols in the SPL3SMP maps
are the grids that passed neither filter and were shown as white grids in Fig. 6. For USDM, drought levels from 30 to 100 are shown in white.

Our index SPL3SMP index maps are compared with the 1-
month SPI (SPI-1) index, a VIC-ns index and the USDM.
For SMAP soil moisture index based on the SPL4SMAU,
comparisons are made with a 3-month SPI (SPI-3) index
and a GRACE satellite product. All the products except for
GRACE were described in Sect. 1. GRACE is NASA’s satel-
lite system that detects small changes in the Earth’s grav-
ity field caused by the redistribution of water on and be-
neath the land surface. Combined with the Catchment LSM
using an ensemble Kalman smoother for data assimilation
(Zaitchik et al., 2008), GRACE maps root-zone soil mois-
ture and groundwater transformed into percentiles (NDMC,
2018b).

Figures 7 and 9 show drought during the period from
4 June through 17 October 2017, for both the near sur-
face and root zone. In this period, there was one agricul-
tural drought event in Montana and North and South Dakota,
with losses exceeding USD 1 billion across the United States

(NOAA, 2018b). The plains of eastern Montana experienced
exceptional drought from July to October 2017, and in late
October, drought started to end. The peak of the drought was
in July 2017 when 20 % of Montana was in severe drought
and 23 % of it was in moderate drought. Concurrently, 40 %
of North Dakota was in extreme drought, while 70 % of the
state was under some level of drought; similarly, 68 % of
South Dakota was under severe drought (NOAA, 2018b).
Both SPL3SMP and SPL4SMAU index maps seem to catch
this drought event, although the event was more pronounced
in the root zone than the surface. The maps of these two fig-
ures are also in general agreement. It is important to clar-
ify that for 2017 period, the GRACE sensor was failing,
and the resulting water storage observations were unreliable.
Therefore, the last GRACE gravity field retrieval processing
only goes through June 2017. Therefore, GRACE National
Drought Mitigation Center (NDMC) results associated with
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Figure 9. Comparison between SPL4SMAU index map and VIC-rz, SPI-3 and GRACE in 2017.

Fig. 9 are not consistent with other products and likely do not
reflect actual GRACE observations for 2017.

In Figs. 8 and 10, drought during the period of 3 October
to 8 November 2016 is shown for both near the surface and
the root zone. In 2016, there were three drought events in
the western, northeastern and southeastern parts of the US,
which are captured by both SPL3SMP and SPL4SMAU in-
dex maps. The drought had mostly been alleviated in north-
ern California by near-normal precipitation during the 2015–
2016 winter and above normal precipitation in fall 2016. The
extent that the drought persisted in Southern California after
this period it is reflected in total column soil moisture rather
than near-surface soil moisture (Fig. 9).

There is a high correspondence among the drought maps,
particularly in the development of the drought in the south-
eastern US during October and November 2016. Due to
heavy rainfall along the Mississippi River in November,
the drought migrated eastwards. Also, by November 2016
the drought in Southern California was alleviated, which

is picked up by SPL3SMP, SPL4SMAU, VIC-ns and VIC-
rz, SP-1 and 3, GRACE, and to a much lesser extent, by
the USDM that showed an increasing area under drought
on 28 November compared to SPL3SMP, SPL4SMAU,
GRACE, or VIC-ns and VIC-rz. Additionally, for the maps
that also include wetness (all except USDM), there is a high
correspondence of pluvial regions (see Fig. 7).

Most of the grids where we do not have confidence in
the accuracy of predictions are in Southern California and
Nevada during the warm season (e.g., SPL3SMP index map
on 4 June and 25 July 2017; Fig. 7). In fact, there is a visible
discrepancy between SPL3SMP and VIC-ns index maps dur-
ing that period in Southern California. We believe that this is
due to a lack of correlation between SPL3SMP and VIC-ns
in that area, since VIC does not model regulation. Human in-
terference and the use of groundwater wells during the warm
season can play a major part in what VIC models and SMAP
see. For that reason, we think SMAP’s metrics in the area are
more accurate than those from VIC-ns.
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Figure 10. Comparison between SPL4SMAU index map and VIC-rz, SPI-3 and GRACE in 2016.

4 Conclusions

The drought index described in this study provides a reli-
able estimate of the state of drought on a daily basis for
the CONUS, using SMAP. We fitted beta distributions to
the SMAP data and used correlation, KS, and a combina-
tion of those two filters to numerically assess the adequacy
of the short-term SMAP data for each grid cell. The areas
that passed neither the KS nor correlation tests were flagged
in the final SMAP drought index. These areas are grids where
we have less confidence in reliable drought index estimates;
they are non-stationary, and thus their soil moisture has been
changing over the past 40 years. The flagged grids can be
seen as an adjustment to the model to remove non-climatic
influences or water management practices, although more in-
depth research is needed to confirm such changes. Given the
limited scope of the data, the results should be considered a
demonstration of the reliability and usefulness of SMAP for

a drought-monitoring product and for implementation into an
operational drought-monitoring tool.

Besides drought, SMAP can also identify regions of
anomalously wet conditions that can be of great use to water
and agricultural managers. Wet indices can indicate potential
flood-prone conditions and regions can therefore be put on
flood alerts if additional heavy rain occurs. Also, wet condi-
tions can impact farm management, especially in the spring
when sowing takes place or during the harvesting period.

Through comparing SMAP-based index maps for drought
and wet conditions with other index products, we see a high
similarity. Although there can be some errors at different lev-
els, the overall evaluation reveals that SMAP-based drought
products can be a viable alternative for drought monitoring in
the US. This is advantageous, since SMAP is generated at a
daily resolution with almost complete coverage every 3 days.
This enables an observation of the effect of fluctuations in
other hydrological variables, such as precipitation. In com-
parison, USDM, GRACE and the SPI have a low temporal
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resolution, which makes it difficult to study the shorter-term
impacts from the other variables on soil moisture.

Both near-surface and root-zone soil moisture drought
products can provide important information about the avail-
ability of soil moisture at the stage where plants develop in
order to cultivate the optimum harvest. Future applications of
this study can couple plant growth models with near-surface
and root-zone soil moisture drought index products (NDMC,
2018a).

The soil moisture data are a culmination of all hydro-
logical processes and represent available water from incom-
ing precipitation and throughfall to evapotranspiration and
drainage processes. The SMAP satellite provides global ob-
servations of soil moisture of unprecedented quality. Be-
cause SMAP monitors soil moisture directly and provides
critical information for drought early warning, it is impor-
tant that the future developments focus on drought assess-
ment using SMAP in underrepresented parts of the world.
Thus the results here provide significant support for a global
SMAP drought and pluvial conditions monitoring system.
Since SMAP data can be retrieved and maps can be generated
in near-real time, it is very promising that a SMAP drought
index product can be implemented operationally.
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the daily resolution for CONUS is available at http://hydrology.
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