Articles | Volume 22, issue 11
https://doi.org/10.5194/hess-22-5759-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-5759-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Felipe Hernández
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
Xu Liang
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
Related authors
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-454, https://doi.org/10.5194/hess-2016-454, 2016
Manuscript not accepted for further review
Short summary
Short summary
We combine the best characteristics of the two established paradigms (sequential and variational) for estimating the initial conditions of geophysical models. Our algorithm also includes the ability to balance the physical consistency of the model with the fit to the observed data, and provides simplified approaches to enable running high-resolution simulations while making an efficient use of the computational resources. We validate the advantages of our approach on two hydrologic models.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-454, https://doi.org/10.5194/hess-2016-454, 2016
Manuscript not accepted for further review
Short summary
Short summary
We combine the best characteristics of the two established paradigms (sequential and variational) for estimating the initial conditions of geophysical models. Our algorithm also includes the ability to balance the physical consistency of the model with the fit to the observed data, and provides simplified approaches to enable running high-resolution simulations while making an efficient use of the computational resources. We validate the advantages of our approach on two hydrologic models.
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Technical Note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Recession discharge from compartmentalized bedrock hillslopes
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Physically based model for gully simulation: application to the Brazilian semiarid region
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Multi-source data assimilation for physically based hydrological modeling of an experimental hillslope
A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem
Reconstructing long-term gully dynamics in Mediterranean agricultural areas
Evaluating performance of simplified physically based models for shallow landslide susceptibility
Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory
Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review
Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
Quantification of the influence of preferential flow on slope stability using a numerical modelling approach
Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models
Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale
Analysis of landslide triggering conditions in the Sarno area using a physically based model
The influence of grid resolution on the prediction of natural and road-related shallow landslides
Incipient subsurface heterogeneity and its effect on overland flow generation – insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory
Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA
Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths
Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)
A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution
A paradigm shift in stormflow predictions for active tectonic regions with large-magnitude storms: generalisation of catchment observations by hydraulic sensitivity analysis and insight into soil-layer evolution
Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems
Statistical analysis and modelling of surface runoff from arable fields in central Europe
Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
Characterization of groundwater dynamics in landslides in varved clays
A critical assessment of simple recharge models: application to the UK Chalk
The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale
Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems
Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian highlands
A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide
Scale effect on overland flow connectivity at the plot scale
Physical models for classroom teaching in hydrology
Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China
Effects of peatland drainage management on peak flows
A conceptual model of the hydrological influence of fissures on landslide activity
A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment
A novel explicit approach to model bromide and pesticide transport in connected soil structures
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024, https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Short summary
Antecedent effective precipitation (AEP) plays an important role in debris flow formation, but the relationship between AEP and the debris flow occurrence (Pdf) is still not quantified. We used numerical calculation and the Monte Carlo integration method to solve this issue. The relationship between Pdf and AEP can be described by the piecewise function, and debris flow is a small-probability event comparing to rainfall frequency because the maximum Pdf in Jiangjia Gully is only 15.88 %.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023, https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Short summary
This study shows a methodological approach using machine learning techniques to disentangle the relationships among the variables in a synthetic dataset to identify suitable variables that control the hydrologic response of the slopes. It has been found that not only is the rainfall responsible for the water accumulation in the slope; the ground conditions (soil water content and aquifer water level) also indicate the activation of natural slope drainage mechanisms.
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
EGUsphere, https://doi.org/10.5194/egusphere-2023-659, https://doi.org/10.5194/egusphere-2023-659, 2023
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage-discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023, https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
Short summary
In a localized area with the same vegetation, an overwhelming propensity of shallow landslides on the south-facing slope over the north-facing slope could not be attributed to plant roots. We provide new evidence from the pore water pressure of failing mass, unsaturated hydraulic conductivity, water storage, and drainage and the hillslope stability fluctuation to prove that the infinite slope model may be suitable for elucidating the aspect-dependent landslide distribution in the study area.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng
Hydrol. Earth Syst. Sci., 25, 4473–4494, https://doi.org/10.5194/hess-25-4473-2021, https://doi.org/10.5194/hess-25-4473-2021, 2021
Short summary
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020, https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Short summary
Soil erosion by water has been emphasized as a key problem to be faced in the 21st century. Thus, it is critical to understand land degradation and to answer fundamental questions regarding how and why such processes occur. Here, we present a model for gully erosion (channels carved by rainwater) based on existing equations, and we identify some major variables that influence the initiation and evolution of this process. The successful model can help in planning soil conservation practices.
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020, https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
Short summary
Roads in sloping fens constitute a hydraulic barrier for surface and subsurface flow. This can lead to the drying out of downslope areas of the fen as well as gully erosion. By combining fieldwork and numerical models, this study presents an assessment of the hydrogeological impact of three road structures especially designed to limit their impact. The study shows that the impact of roads on the hydrological regime in fens can be significantly reduced by using appropriate engineering measures.
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018, https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Short summary
Soil erosion is a global problem and models identify vulnerable areas for management. One such model is the Revised Universal Soil Loss Equation. We review its different sub-factors and compile studies and equations that modified it for local conditions. The limitations of RUSLE include its data requirements and exclusion of gullying and landslides. Future directions include accounting for these erosion types. This paper serves as a reference for others working with RUSLE and related approaches.
Anna Botto, Enrica Belluco, and Matteo Camporese
Hydrol. Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018, https://doi.org/10.5194/hess-22-4251-2018, 2018
Short summary
Short summary
We present a multivariate application of the ensemble Kalman filter (EnKF) in hydrological modeling of a real-world hillslope test case with dominant unsaturated dynamics and strong nonlinearities. Overall, the EnKF is able to correctly update system state and soil parameters. However, multivariate data assimilation may lead to significant tradeoffs between model predictions of different variables, if the observation data are not high quality or representative.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Antonio Hayas, Tom Vanwalleghem, Ana Laguna, Adolfo Peña, and Juan V. Giráldez
Hydrol. Earth Syst. Sci., 21, 235–249, https://doi.org/10.5194/hess-21-235-2017, https://doi.org/10.5194/hess-21-235-2017, 2017
Short summary
Short summary
Gully erosion is one of the most important erosion processes. In this study, we provide new data on gully dynamics over long timescales with an unprecedented temporal resolution. We apply a new Monte Carlo based method for calculating gully volumes based on orthophotos and, especially, for constraining uncertainties of these estimations. Our results show that gully erosion rates are highly variable from year to year and significantly higher than other erosion processes.
Giuseppe Formetta, Giovanna Capparelli, and Pasquale Versace
Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016, https://doi.org/10.5194/hess-20-4585-2016, 2016
Short summary
Short summary
This paper focuses on performance evaluation of simplified, physically based landslide susceptibility models. It presents a new methodology to systemically and objectively calibrate, verify, and compare different models and models performances indicators in order to individuate and select the models whose behavior is more reliable for a certain case study. The procedure was implemented in a package for landslide susceptibility analysis and integrated the open-source hydrological model NewAge.
Carlotta Scudeler, Luke Pangle, Damiano Pasetto, Guo-Yue Niu, Till Volkmann, Claudio Paniconi, Mario Putti, and Peter Troch
Hydrol. Earth Syst. Sci., 20, 4061–4078, https://doi.org/10.5194/hess-20-4061-2016, https://doi.org/10.5194/hess-20-4061-2016, 2016
Short summary
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
G. Capparelli and P. Versace
Hydrol. Earth Syst. Sci., 18, 3225–3237, https://doi.org/10.5194/hess-18-3225-2014, https://doi.org/10.5194/hess-18-3225-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
G.-Y. Niu, D. Pasetto, C. Scudeler, C. Paniconi, M. Putti, P. A. Troch, S. B. DeLong, K. Dontsova, L. Pangle, D. D. Breshears, J. Chorover, T. E. Huxman, J. Pelletier, S. R. Saleska, and X. Zeng
Hydrol. Earth Syst. Sci., 18, 1873–1883, https://doi.org/10.5194/hess-18-1873-2014, https://doi.org/10.5194/hess-18-1873-2014, 2014
J. Tao and A. P. Barros
Hydrol. Earth Syst. Sci., 18, 367–388, https://doi.org/10.5194/hess-18-367-2014, https://doi.org/10.5194/hess-18-367-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
A. Richard, S. Galle, M. Descloitres, J.-M. Cohard, J.-P. Vandervaere, L. Séguis, and C. Peugeot
Hydrol. Earth Syst. Sci., 17, 5079–5096, https://doi.org/10.5194/hess-17-5079-2013, https://doi.org/10.5194/hess-17-5079-2013, 2013
S. R. Lutz, H. J. van Meerveld, M. J. Waterloo, H. P. Broers, and B. M. van Breukelen
Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, https://doi.org/10.5194/hess-17-4505-2013, 2013
Makoto Tani
Hydrol. Earth Syst. Sci., 17, 4453–4470, https://doi.org/10.5194/hess-17-4453-2013, https://doi.org/10.5194/hess-17-4453-2013, 2013
M. N. Papa, V. Medina, F. Ciervo, and A. Bateman
Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, https://doi.org/10.5194/hess-17-4095-2013, 2013
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
R. Greco, L. Comegna, E. Damiano, A. Guida, L. Olivares, and L. Picarelli
Hydrol. Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-4001-2013, https://doi.org/10.5194/hess-17-4001-2013, 2013
C. Lepore, E. Arnone, L. V. Noto, G. Sivandran, and R. L. Bras
Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, https://doi.org/10.5194/hess-17-3371-2013, 2013
J. E. van der Spek, T. A. Bogaard, and M. Bakker
Hydrol. Earth Syst. Sci., 17, 2171–2183, https://doi.org/10.5194/hess-17-2171-2013, https://doi.org/10.5194/hess-17-2171-2013, 2013
A. M. Ireson and A. P. Butler
Hydrol. Earth Syst. Sci., 17, 2083–2096, https://doi.org/10.5194/hess-17-2083-2013, https://doi.org/10.5194/hess-17-2083-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
G. Martelloni, S. Segoni, D. Lagomarsino, R. Fanti, and F. Catani
Hydrol. Earth Syst. Sci., 17, 1229–1240, https://doi.org/10.5194/hess-17-1229-2013, https://doi.org/10.5194/hess-17-1229-2013, 2013
C. D. Guzman, S. A. Tilahun, A. D. Zegeye, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 17, 1067–1077, https://doi.org/10.5194/hess-17-1067-2013, https://doi.org/10.5194/hess-17-1067-2013, 2013
D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 17, 947–959, https://doi.org/10.5194/hess-17-947-2013, https://doi.org/10.5194/hess-17-947-2013, 2013
A. Peñuela, M. Javaux, and C. L. Bielders
Hydrol. Earth Syst. Sci., 17, 87–101, https://doi.org/10.5194/hess-17-87-2013, https://doi.org/10.5194/hess-17-87-2013, 2013
A. Rodhe
Hydrol. Earth Syst. Sci., 16, 3075–3082, https://doi.org/10.5194/hess-16-3075-2012, https://doi.org/10.5194/hess-16-3075-2012, 2012
G. Y. Gao, B. J. Fu, Y. H. Lü, Y. Liu, S. Wang, and J. Zhou
Hydrol. Earth Syst. Sci., 16, 2347–2364, https://doi.org/10.5194/hess-16-2347-2012, https://doi.org/10.5194/hess-16-2347-2012, 2012
C. E. Ballard, N. McIntyre, and H. S. Wheater
Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, https://doi.org/10.5194/hess-16-2299-2012, 2012
D. M. Krzeminska, T. A. Bogaard, Th. W. J. van Asch, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 16, 1561–1576, https://doi.org/10.5194/hess-16-1561-2012, https://doi.org/10.5194/hess-16-1561-2012, 2012
T. Maurer, A. Schneider, and H. H. Gerke
Hydrol. Earth Syst. Sci., 15, 3617–3638, https://doi.org/10.5194/hess-15-3617-2011, https://doi.org/10.5194/hess-15-3617-2011, 2011
J. Klaus and E. Zehe
Hydrol. Earth Syst. Sci., 15, 2127–2144, https://doi.org/10.5194/hess-15-2127-2011, https://doi.org/10.5194/hess-15-2127-2011, 2011
Cited articles
Adams, R. M., Houston, L. L., McCarl, B. A., Tiscareño, M. L., Matus, J.
G., and Weiher, R. F.: The benefits to Mexican agriculture of an
El Niño-southern oscillation (ENSO) early warning system, Agr. Forest
Meteorol., 115, 183–194, https://doi.org/10.1016/S0168-1923(02)00201-0, 2003.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow
observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886,
https://doi.org/10.1016/j.advwatres.2005.08.004, 2006.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric
variational data assimilation. II: Modelling the forecast error covariance
statistics, Q. J. Roy. Meteorol. Soc., 134, 1971–1996, https://doi.org/10.1002/qj.340, 2008.
Bannister, R. N.: A review of operational methods of variational and
ensemble-variational data assimilation, Q. J. Roy. Meteorol. Soc., 29, 1–29,
https://doi.org/10.1002/QJ.2982, 2016.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Bröcker, J.: Evaluating raw ensembles with the continuous ranked probability
score, Q. J. R. Meteorol. Soc., 138, 1611–1617, https://doi.org/10.1002/qj.1891, 2012.
Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L. and He, B.:
Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter
for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations,
Mon. Weather Rev., 138, 1567–1586, https://doi.org/10.1175/2009MWR3158.1, 2010.
Carpenter, J., Clifford, P., and Fearnhead, P.: Improved particle filter for
nonlinear problems, IEEE Proc. - Radar, Sonar Navig., 146, 2–7,
https://doi.org/10.1049/ip-rsn:19990255, 1999.
Clark, M. P., Rupp, D. E., Woods, R. a., Zheng, X., Ibbitt, R. P., Slater, A.
G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the
ensemble Kalman filter: Use of streamflow observations to update states in a
distributed hydrological model, Adv. Water Resour., 31, 1309–1324,
https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.
Clark, M. P., Bierkens, M. F. P. P., Samaniego, L., Woods, R. A., Uijlenhoet,
R., Bennett, K. E., Pauwels, V. R. N. N., Cai, X., Wood, A. W.,
Peters-Lidard, C. D., Uijenhoet, R., Bennet, K. E., Pauwels, V. R. N. N.,
Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of
process-based hydrologic models: Historical challenges and the collective
quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440,
https://doi.org/10.5194/hess-21-3427-2017, 2017.
Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F.,
Schaake, J. C., Robock, A., Marshall, C., Sheffield, J., Duan, Q., Luo, L.,
Higgins, R. W., Pinker, R. T., Tarpley, J. D., and Meng, J.: Real-time and
retrospective forcing in the North American Land Data Assimilation
System (NLDAS) project, J. Geophys. Res.-Atmos., 108, 1–12,
https://doi.org/10.1029/2002JD003118, 2003.
Crainic, T. G. and Toulouse, M.: Parallel Meta-heuristics, in: Handbook of
Metaheuristics, vol. 146, edited by: Gendreau, M. and Potvin, J.-Y., Springer US,
497–541, 2010.
Deb, K.: Multi-objective Optimization, in: Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, edited by: Burke,
E. K. and Kendall, G., Springer US, 403–449, 2014.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182–197,
https://doi.org/10.1109/4235.996017, 2002.
Desroziers, G., Camino, J. T., and Berre, L.: 4DEnVar: Link with 4D state
formulation of variational assimilation and different possible implementations,
Q. J. Roy. Meteorol. Soc., 140, 2097–2110, https://doi.org/10.1002/qj.2325, 2014.
Dumedah, G. and Coulibaly, P.: Evolutionary assimilation of streamflow in
distributed hydrologic modeling using in-situ soil moisture data, Adv. Water
Resour., 53, 231–241, https://doi.org/10.1016/j.advwatres.2012.07.012, 2013.
Dumedah, G., Berg, A. A., and Wineberg, M.: An Integrated Framework for a Joint
Assimilation of Brightness Temperature and Soil Moisture Using the Nondominated
Sorting Genetic Algorithm II, J. Hydrometeorol., 12, 1596–1609, https://doi.org/10.1175/JHM-D-10-05029.1, 2011.
Duong, T. and Hazelton, M. L.: Cross-validation bandwidth matrices for
multivariate kernel density estimation, Scand. J. Stat., 32, 485–506,
https://doi.org/10.1111/j.1467-9469.2005.00445.x, 2005.
Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective calibration
approaches in hydrological modelling: a review, Hydrolog. Sci. J., 55, 58–78,
https://doi.org/10.1080/02626660903526292, 2010.
Errico, R. M.: What Is an Adjoint Model?, B. Am. Meteorol. Soc., 78, 2577–2591,
https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2, 1997.
Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer
Science & Business Media, 2009.
Evensen, G. and van Leeuwen, P. J.: An ensemble Kalman smoother for nonlinear
dynamics, Mon. Weather Rev., 128, 1852–1867, https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2, 2000.
Fisher, M.: Background error covariance modelling, Semin. Recent Dev. Data
Assim., 45–63, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2003/9404-background-error-covariance-modelling.pdf
(last access: 29 October 2018), 2003.
Friedman, J., Hastie, T., and Tibshirani, R.: Sparse inverse covariance
estimation with the graphical lasso, Biostatistics, 9, 432–441,
https://doi.org/10.1093/biostatistics/kxm045, 2008.
Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S., and Morneau, J.: Extension
of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada,
Mon. Weather Rev., 135, 2339–2354, https://doi.org/10.1175/MWR3394.1, 2007.
Ghil, M. and Malanotte-Rizzoli, P.: Data assimilation in meteorology and
oceanography, Adv. Geophys., 33, 141–266,
https://doi.org/10.1016/S0065-2687(08)60442-2, 1991.
Ghorbanidehno, H., Kokkinaki, A., Li, J. Y., Darve, E. and Kitanidis, P. K.:
Real-time data assimilation for large-scale systems: The spectral Kalman filter,
Adv. Water Resour., 86, 260–272, https://doi.org/10.1016/j.advwatres.2015.07.017, 2015.
GitHub: felherc, available at: https://github.com/felherc/, last
access: 1 October 2018.
Gordon, N. J., Salmond, D. J., and Smith, A. F. M.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, IEEE Proc. F Radar Signal
Process., 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993.
Guo, J., Liang, X., and Leung, L. R.: A new multiscale flow network generation
scheme for land surface models, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL021381, 2004.
Haario, H., Saksman, E., and Tamminen, J.: An Adaptive Metropolis Algorithm,
Bernoulli, 7, 223–242, https://doi.org/10.2307/3318737, 2001.
Hawkins, D. M.: The Problem of Overfitting, J. Chem. Inf. Comput. Sci., 44,
1–12, https://doi.org/10.1021/ci0342472, 2004.
Hazelton, M. L.: Variable kernel density estimation, Aust. N. Z. J. Stat.,
45, 271–284, https://doi.org/10.1111/1467-842X.00283, 2003.
Homer, C., Fry, J., and Barnes, C.: The National Land Cover Database,
US Geol. Surv. Fact Sheet, 3020, 1–4, available at:
http://pubs.usgs.gov/fs/2012/3020/ (last access: 22 October 2018),
2012.
Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed,
K. H., and Goodrich, D. C.: Integration of soil moisture remote sensing and
hydrologic modeling using data assimilation, Water Resour. Res., 34,
3405–3420, 1998.
Karafotias, G., Hoogendoorn, M., and Eiben, A. E.: Parameter Control in
Evolutionary Algorithms: Trends and Challenges, IEEE Trans. Evol. Comput., 2,
167–187, https://doi.org/10.1109/TEVC.2014.2308294, 2014.
Koster, R. D., Betts, A. K., Dirmeyer, P. A., Bierkens, M., Bennett, K. E.,
Déry, S. J., Evans, J. P., Fu, R., Hernández, F., Leung, L. R., Liang,
X., Masood, M., Savenije, H., Wang, G., and Yuan, X.: Hydroclimatic variability
and predictability: a survey of recent research, Hydrol. Earth Syst. Sci., 21,
3777–3798, https://doi.org/10.5194/hess-21-3777-2017, 2017.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci., 5, 89–97,
https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Krishnamoorthy, A. and Menon, D.: Matrix Inversion Using Cholesky
Decomposition, CoRR, 10–12, available at:
http://arxiv.org/abs/1111.4144 (last access: 1 October 2018), 2011.
Li, J. Y., Kokkinaki, A., Ghorbanidehno, H., Darve, E. F., and Kitanidis, P. K.:
The compressed state Kalman filter for nonlinear state estimation: Application
to large-scale reservoir monitoring, Water Resour. Res., 51, 9942–9963,
https://doi.org/10.1002/2015WR017203, 2015.
Liang, X. and Xie, Z.: A new surface runoff parameterization with subgrid-scale
soil heterogeneity for land surface models, Adv. Water Resour., 24, 1173–1193, 2001.
Liang, X. and Xie, Z.: Important factors in land–atmosphere interactions:
surface runoff generations and interactions between surface and groundwater,
Global Planet. Change, 38, 101–114, 2003.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for general
circulation models, J. Geophys. Res., 99, 14415, https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional statistical
dynamic representation of subgrid spatial variability of precipitation in the
two-layer variable infiltration capacity model, J. Geophys. Res.-Atmos.,
101, 21403–21422, 1996a.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global Planet.
Change, 13, 195–206, 1996b.
Liu, J. S. and Chen, R.: Sequential Monte Carlo Methods for Dynamic Systems, J.
Am. Stat. Assoc., 93, 1032–1044, https://doi.org/10.2307/2669847, 1998.
Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an
integrated data assimilation framework, Water Resour. Res., 43, 1–18,
https://doi.org/10.1029/2006WR005756, 2007.
Lohmann, D., Rashke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale
hydrology: I. Formulation of the VIC-2L model coupled to a routing model,
Hydrolog. Sci. J., 43, 131–141, https://doi.org/10.1080/02626669809492107, 1998.
Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R., and Fairbairn, D.:
Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for
Global NWP, Mon. Weather Rev., 143, 212–229, https://doi.org/10.1175/MWR-D-14-00195.1, 2015.
Mahalanobis, P. C.: On the generalized distance in statistics, Proc. Natl.
Inst. Sci., 2, 49–55, 1936.
Miller, D. A. and White, R. A.: A Conterminous United States Multilayer Soil
Characteristics Dataset for Regional Climate and Hydrology Modeling, Earth
Interact., 2, 1–26,
https://doi.org/10.1175/1087-3562(1998)002<0002:CUSMS>2.0.CO;2,
1998.
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The ECMWF ensemble
prediction system: Methodology and validation, Q. J. Roy. Meteorol. Soc., 122,
73–119, https://doi.org/10.1002/qj.49712252905, 1996.
Montgomery, D. C.: Design and analysis of experiments, 8th Edn., John Wiley & Sons,
2012.
Montgomery, D. C., Runger, G. C., and Hubele, N. F.: Engineering statistics,
John Wiley & Sons, USA, 2009.
Montzka, C., Pauwels, V. R. N., Franssen, H.-J. H., Han, X., and Vereecken, H.:
Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review,
Sensors, 12, 16291–16333, https://doi.org/10.3390/s121216291, 2012.
Moradkhani, H., DeChant, C. M., and Sorooshian, S.: Evolution of ensemble
data assimilation for uncertainty quantification using the particle filter –
Markov chain Monte Carlo method, Water Resour. Res., 48, 1–13,
https://doi.org/10.1029/2012WR012144, 2012.
Ning, L., Carli, F. P., Ebtehaj, A. M., Foufoula-Georgiou, E., and Georgiou, T.
T.: Coping with model error in variational data assimilation using optimal mass
transport, Water Resour. Res., 50, 5817–5830, https://doi.org/10.1002/2013WR014966, 2014.
Noh, S. J., Tachikawa, Y., Shiiba, M., and Kim, S.: Applying sequential Monte
Carlo methods into a distributed hydrologic model: Lagged particle filtering
approach with regularization, Hydrol. Earth Syst. Sci., 15, 3237–3251,
https://doi.org/10.5194/hess-15-3237-2011, 2011.
Park, S., Hwang, J. P., Kim, E., and Kang, H. J.: A new evolutionary particle
filter for the prevention of sample impoverishment, IEEE Trans. Evol. Comput.,
13, 801–809, https://doi.org/10.1109/TEVC.2008.2011729, 2009.
Penning-Rowsell, E. C., Tunstall, S. M., Tapsell, S. M. and Parker, D. J.: The
benefits of flood warnings: Real but elusive, and politically significant, J.
Chart. Inst. Water Environ. Manage., 14, 7–14, https://doi.org/10.1111/j.1747-6593.2000.tb00219.x, 2000.
Pham, D. T.: Stochastic methods for sequential data assimilation in strongly
nonlinear systems, Mon. Weather Rev., 129, 1194–1207, https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001.
Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity,
G. W., Lorenc, A. C., and Payne, T. J.: The Met Office global four-dimensional
variational data assimilation scheme, Q. J. Roy. Meteorol. Soc., 133, 347–362,
https://doi.org/10.1002/qj.32, 2007.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Variational data
assimilation of microwave radiobrightness observations for land surface hydrology
applications, IEEE T. Geosci. Remote, 39, 1708–1718, https://doi.org/10.1109/36.942549, 2001.
Rodríguez, E., Morris, C. S., and Belz, J. E.: A global assessment of the
SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260, 2006.
Rogers, E., DiMego, G., Black, T., Ek, M., Ferrier, B., Gayno, G., Janic, Z.,
Lin, Y., Pyle, M., Wong, V., and Wu, W.-S.: The NCEP North American Mesoscale
Modeling System: Recent Changes and Future Plans, in: 23rd Conf. Weather
Anal. Forecast. Conf. Numer. Weather Predict., available at:
http://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm (last
access: 1 October 2018), 2009.
Seaber, P. R., Kapinos, F. P., and Knapp, G. L.: Hydrologic unit maps,
US Government Printing Office Washington, D.C., USA, 1987.
Sheather, S. J. and Jones, M. C.: A Reliable Data-Based Bandwidth Selection
Method for Kernel Density Estimation, J. R. Stat. Soc. Ser. B, 53, 683–690,
available at: http://www.jstor.org/stable/2345597 (last access:
1 October 2018), 1991.
Silverman, B. B. W.: Density estimation for statistics and data analysis,
CRC Press, USA, 1986.
Smith, A., Doucet, A., de Freitas, N., and Gordon, N.: Sequential Monte Carlo
methods in practice, Springer Science & Business Media, USA, 2013.
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to
High-Dimensional Particle Filtering, Mon. Weather Rev., 136, 4629–4640,
https://doi.org/10.1175/2008MWR2529.1, 2008.
Socha, K. and Dorigo, M.: Ant colony optimization for continuous domains, Eur.
J. Oper. Res., 185, 1155–1173, https://doi.org/10.1016/j.ejor.2006.06.046, 2008.
Terrell, G. R. and Scott, D. W.: Variable kernel density estimation, Ann.
Stat., 20, 1236–1265, https://doi.org/10.1214/aos/1176348768, 1992.
Trémolet, Y.: Accounting for an imperfect model in 4D-Var, Q. J. Roy.
Meteorol. Soc., 132, 2483–2504, https://doi.org/10.1256/qj.05.224, 2006.
van Leeuwen, P. J.: Particle Filtering in Geophysical Systems, Mon. Weather
Rev., 137, 4089–4114, https://doi.org/10.1175/2009MWR2835.1, 2009.
van Leeuwen, P. J.: Nonlinear Data Assimilation for high-dimensional systems,
in Nonlinear Data Assimilation, edited by: Van Leeuwen, J. P., Cheng, Y., and
Reich, S., Springer International Publishing, 1–73, 2015.
Verkade, J. S. and Werner, M. G. F.: Estimating the benefits of single value
and probability forecasting for flood warning, Hydrol. Earth Syst. Sci., 15,
3751–3765, https://doi.org/10.5194/hess-15-3751-2011, 2011.
Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from
genetically adaptive multimethod search, P. Natl. Acad. Sci. USA, 104, 708–711,
https://doi.org/10.1073/pnas.0610471104, 2007.
Wand, M. P. and Jones, M. C.: Kernel smoothing, CRC Press, New York, 1994.
Wen, Z., Liang, X., and Yang, S.: A new multiscale routing framework and its
evaluation for land surface modeling applications, Water Resour. Res., 48,
1–16, https://doi.org/10.1029/2011WR011337, 2012.
West, M.: Mixture models, Monte Carlo, Bayesian updating, and dynamic models,
Comput. Sci. Stat., 1–11, available at:
http://www.stat.duke.edu/~mw/MWextrapubs/West1993a.pdf (last access:
1 October 2018), 1993.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Resour. Res., 30,
1665–1679, https://doi.org/10.1029/94WR00436, 1994.
Wigmosta, M. S., Nijssen, B., and Storck, P.: The distributed hydrology soil
vegetation model, Math. Model. Small Watershed Hydrol. Appl., 7–42,
available at:
http://ftp.hydro.washington.edu/pub/dhsvm/The-distributed-hydrology-soil-vegetation-model.pdf
(last access: 1 October 2018), 2002.
Yang, S.-C., Corazza, M., Carrassi, A., Kalnay, E., and Miyoshi, T.: Comparison
of Local Ensemble Transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic
Model, Mon. Weather Rev., 137, 693–709, https://doi.org/10.1175/2008MWR2396.1, 2009.
Zhang, F., Zhang, M., and Hansen, J.: Coupling ensemble Kalman filter with
four-dimensional variational data assimilation, Adv. Atmos. Sci., 26, 1–8,
https://doi.org/10.1007/s00376-009-0001-8, 2009.
Zhang, L., Nan, Z., Liang, X., Xu, Y., Hernández, F., and Li, L.: Application
of the MacCormack scheme to overland flow routing for high-spatial resolution
distributed hydrological model, J. Hydrol., 558, 421–431, https://doi.org/10.1016/j.jhydrol.2018.01.048, 2018.
Zhang, X., Tian, Y., Cheng, R., and Jin, Y.: An Efficient Approach to
Nondominated Sorting for Evolutionary Multiobjective Optimization, IEEE Trans.
Evol. Comput., 19, 201–213, https://doi.org/10.1109/TEVC.2014.2308305, 2015.
Zhu, Y., Toth, Z., Wobus, R., Richardson, D., and Mylne, K.: The economic value
of ensemble-based weather forecasts, B. Am. Meteorol. Soc., 83, 73–83,
https://doi.org/10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2, 2002.
Ziervogel, G., Bithell, M., Washington, R., and Downing, T.: Agent-based social
simulation: A method for assessing the impact of seasonal climate forecast
applications among smallholder farmers, Agric. Syst., 83, 1–26,
https://doi.org/10.1016/j.agsy.2004.02.009, 2005.
Short summary
Predicting floods requires first knowing the amount of water in the valleys, which is complicated because we cannot know for sure how much water there is in the soil. We created a unique system that combines the best methods to estimate these conditions accurately based on the observed water flow in the rivers and on detailed simulations of the valleys. Comparisons with popular methods show that our system can produce realistic predictions efficiently, even for very detailed river networks.
Predicting floods requires first knowing the amount of water in the valleys, which is...