Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5551-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-22-5551-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HESS Opinions: How should a future water census address consumptive use? (And where can we substitute withdrawal data while we wait?)
Benjamin L. Ruddell
CORRESPONDING AUTHOR
School of Informatics Computing and Cyber Systems, Northern Arizona
University, Flagstaff, AZ, USA
Related authors
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024, https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Short summary
This study finds that bedroom cities show higher water productivity based on the standard efficiency benchmark of gallons per capita, but core cities that host large businesses show higher water productivity using a basket of economic values like taxes, payroll, and business revenues. Using a broader basket of water productivity benchmarks that consider more of the community’s socio-economic values and goals could inform more balanced and equitable water allocation decisions by policymakers.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Richard R. Rushforth and Benjamin L. Ruddell
Hydrol. Earth Syst. Sci., 22, 3007–3032, https://doi.org/10.5194/hess-22-3007-2018, https://doi.org/10.5194/hess-22-3007-2018, 2018
Short summary
Short summary
The National Water Economy Database is a new data resource to better understand the human economy's water use impact on the hydrosphere. NWED quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing several datasets: US Geological Survey, the US Department of Agriculture, the US Energy Information Administration, the US Department of Transportation, the US Department of Energy, and the US Bureau of Labor Statistics.
Christopher A. Sanchez, Benjamin L. Ruddell, Roy Schiesser, and Venkatesh Merwade
Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, https://doi.org/10.5194/hess-20-1289-2016, 2016
Short summary
Short summary
The use of authentic learning activities is especially important for place-based geosciences like hydrology, where professional breadth and technical depth are critical for practicing hydrologists. The current study found that integrating computerized learning content into the learning experience, using only a simple spreadsheet tool and readily available hydrological data, can effectively bring the "real world" into the classroom and provide an enriching educational experience.
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024, https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Short summary
This study finds that bedroom cities show higher water productivity based on the standard efficiency benchmark of gallons per capita, but core cities that host large businesses show higher water productivity using a basket of economic values like taxes, payroll, and business revenues. Using a broader basket of water productivity benchmarks that consider more of the community’s socio-economic values and goals could inform more balanced and equitable water allocation decisions by policymakers.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Richard R. Rushforth and Benjamin L. Ruddell
Hydrol. Earth Syst. Sci., 22, 3007–3032, https://doi.org/10.5194/hess-22-3007-2018, https://doi.org/10.5194/hess-22-3007-2018, 2018
Short summary
Short summary
The National Water Economy Database is a new data resource to better understand the human economy's water use impact on the hydrosphere. NWED quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing several datasets: US Geological Survey, the US Department of Agriculture, the US Energy Information Administration, the US Department of Transportation, the US Department of Energy, and the US Bureau of Labor Statistics.
Christopher A. Sanchez, Benjamin L. Ruddell, Roy Schiesser, and Venkatesh Merwade
Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, https://doi.org/10.5194/hess-20-1289-2016, 2016
Short summary
Short summary
The use of authentic learning activities is especially important for place-based geosciences like hydrology, where professional breadth and technical depth are critical for practicing hydrologists. The current study found that integrating computerized learning content into the learning experience, using only a simple spreadsheet tool and readily available hydrological data, can effectively bring the "real world" into the classroom and provide an enriching educational experience.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Mathematical applications
Synthesis of historical reservoir operations from 1980 to 2020 for the evaluation of reservoir representation in large-scale hydrologic models
A Bayesian model for quantifying errors in citizen science data: application to rainfall observations from Nepal
A novel objective function DYNO for automatic multivariable calibration of 3D lake models
The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
Decreased virtual water outflows from the Yellow River basin are increasingly critical to China
AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment
Optimal water use strategies for mitigating high urban temperatures
Physical versus economic water footprints in crop production: a spatial and temporal analysis for China
Development of a revised method for indicators of hydrologic alteration for analyzing the cumulative impacts of cascading reservoirs on flow regime
Changing global cropping patterns to minimize national blue water scarcity
Climate change impacts on the Water Highway project in Morocco
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
Water footprint of crop production for different crop structures in the Hebei southern plain, North China
Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China
Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences
Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
The question of Sudan: a hydro-economic optimization model for the Sudanese Blue Nile
Evolution of the human–water relationships in the Heihe River basin in the past 2000 years
A dynamic water accounting framework based on marginal resource opportunity cost
Climate change and non-stationary flood risk for the upper Truckee River basin
Determining regional limits and sectoral constraints for water use
China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands
Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy
Assessing water reservoirs management and development in Northern Vietnam
A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 1071–1088, https://doi.org/10.5194/hess-28-1071-2024, https://doi.org/10.5194/hess-28-1071-2024, 2024
Short summary
Short summary
Reservoirs impact all river systems in the United States, yet their operations are difficult to quantify due to limited data. Using historical reservoir operations, we find that storage has declined over the past 40 years, with clear regional differences. We observe that active storage ranges are increasing in arid regions and decreasing in humid regions. By evaluating reservoir model assumptions, we find that they may miss out on seasonal dynamics and can underestimate storage.
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023, https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
Short summary
Citizen scientists often submit high-quality data, but a robust method for assessing data quality is needed. This study develops a semi-automated program that characterizes the mistakes made by citizen scientists by grouping them into communities of citizen scientists with similar mistake tendencies and flags potentially erroneous data for further review. This work may help citizen science programs assess the quality of their data and can inform training practices.
Wei Xia, Taimoor Akhtar, and Christine A. Shoemaker
Hydrol. Earth Syst. Sci., 26, 3651–3671, https://doi.org/10.5194/hess-26-3651-2022, https://doi.org/10.5194/hess-26-3651-2022, 2022
Short summary
Short summary
The common practice of calibrating lake hydrodynamic models only to temperature data is shown to be unable to reproduce the flow dynamics well. We proposed a new dynamically normalized objective function (DYNO) for multivariable calibration to be used with parallel or serial optimization methods. DYNO is successfully applied to simultaneously calibrate the temperature and velocity of a 3-dimensional tropical lake model.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021, https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.
Bin Liu, Zhenghui Xie, Shuang Liu, Yujing Zeng, Ruichao Li, Longhuan Wang, Yan Wang, Binghao Jia, Peihua Qin, Si Chen, Jinbo Xie, and ChunXiang Shi
Hydrol. Earth Syst. Sci., 25, 387–400, https://doi.org/10.5194/hess-25-387-2021, https://doi.org/10.5194/hess-25-387-2021, 2021
Short summary
Short summary
We implemented both urban water use schemes in a model (Weather Research and Forecasting model) and assessed their cooling effects with different amounts of water in different parts of the city (center, suburbs, and rural areas) for both road sprinkling and urban irrigation by model simulation. Then, we developed an optimization scheme to find out the optimal water use strategies for mitigating high urban temperatures.
Xi Yang, La Zhuo, Pengxuan Xie, Hongrong Huang, Bianbian Feng, and Pute Wu
Hydrol. Earth Syst. Sci., 25, 169–191, https://doi.org/10.5194/hess-25-169-2021, https://doi.org/10.5194/hess-25-169-2021, 2021
Short summary
Short summary
Maximizing economic benefits with higher water productivity or lower water footprint is the core sustainable goal of agricultural water resources management. Here we look at spatial and temporal variations and developments in both production-based (PWF) and economic value-based (EWF) water footprints of crops, by taking a case study for China. A synergy evaluation index is proposed to further quantitatively evaluate the synergies and trade-offs between PWF and EWF.
Xingyu Zhou, Xiaorong Huang, Hongbin Zhao, and Kai Ma
Hydrol. Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/hess-24-4091-2020, https://doi.org/10.5194/hess-24-4091-2020, 2020
Short summary
Short summary
The main objective of this work is to discuss the cumulative effects on flow regime with the construction of cascade reservoirs. A revised IHA (indicators of hydrologic alteration) method was developed by using a projection pursuit method based on the real-coded accelerated genetic algorithm in this study. Through this method, IHA parameters with a high contribution to hydrological-alteration evaluation could be selected out and given high weight to reduce the redundancy among the IHA metrics.
Hatem Chouchane, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 24, 3015–3031, https://doi.org/10.5194/hess-24-3015-2020, https://doi.org/10.5194/hess-24-3015-2020, 2020
Short summary
Short summary
Previous studies on water saving through food trade focussed either on comparing water productivities among countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, both differences in water productivities and water endowments to analyse national comparative advantages. Our study reveals that blue water scarcity can be reduced to sustainable levels by changing cropping patterns while maintaining current levels of global production.
Nabil El Moçayd, Suchul Kang, and Elfatih A. B. Eltahir
Hydrol. Earth Syst. Sci., 24, 1467–1483, https://doi.org/10.5194/hess-24-1467-2020, https://doi.org/10.5194/hess-24-1467-2020, 2020
Short summary
Short summary
The present work addresses the impact of climate change on the Water Highway project in Morocco. This project aims to transfer 860 × 106 m3 yr−1 of water from the north to the south. As the project is very sensitive to the availability of water in the northern regions, we evaluate its feasibility under different future climate change scenarios: under a pessimistic climate scenario, the project is infeasible; however, under an optimistic scenario a rescaled version might be feasible.
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Short summary
This study investigates the relationship between skill and value of ensemble seasonal streamflow forecasts. Using data from a modern forecasting system, we show that skilled forecasts are more likely to provide benefits for reservoirs operated to maintain a target water level rather than reservoirs operated to satisfy a target demand. We identify the primary causes for this behaviour and provide specific recommendations for assessing the value of forecasts for reservoirs with supply objectives.
Yingmin Chu, Yanjun Shen, and Zaijian Yuan
Hydrol. Earth Syst. Sci., 21, 3061–3069, https://doi.org/10.5194/hess-21-3061-2017, https://doi.org/10.5194/hess-21-3061-2017, 2017
Short summary
Short summary
In this study, we analyzed the water footprint (WF) of crop production and found winter wheat, summer maize and vegetables were the top water-consuming crops in the Hebei southern plain (HSP). The total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012. Finally, we evaluated a reasonable farming structure by analyzing scenarios of the main crops' WF.
La Zhuo, Mesfin M. Mekonnen, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 20, 4547–4559, https://doi.org/10.5194/hess-20-4547-2016, https://doi.org/10.5194/hess-20-4547-2016, 2016
Short summary
Short summary
Benchmarks for the water footprint (WF) of crop production can serve as a reference and be helpful in setting WF reduction targets. The study explores which environmental factors should be distinguished when determining benchmarks for the consumptive (green and blue) WF of crops. Through a case study for winter wheat in China over 1961–2008, we find that when determining benchmark levels for the consumptive WF of a crop, it is most useful to distinguish between different climate zones.
Wei Hu and Bing Cheng Si
Hydrol. Earth Syst. Sci., 20, 3183–3191, https://doi.org/10.5194/hess-20-3183-2016, https://doi.org/10.5194/hess-20-3183-2016, 2016
Short summary
Short summary
Bivariate wavelet coherence has been used to explore scale- and location-specific relationships between two variables. In reality, a process occurring on land surface is usually affected by more than two factors. Therefore, this manuscript is to develop a multiple wavelet coherence method. Results showed that new method outperforms other multivariate methods. Matlab codes for a new method are provided. This method can be widely applied in geosciences where a variable is controlled by many factors.
Julie E. Shortridge, Seth D. Guikema, and Benjamin F. Zaitchik
Hydrol. Earth Syst. Sci., 20, 2611–2628, https://doi.org/10.5194/hess-20-2611-2016, https://doi.org/10.5194/hess-20-2611-2016, 2016
Short summary
Short summary
This paper compares six methods for data-driven rainfall–runoff simulation in terms of predictive accuracy, error structure, interpretability, and uncertainty. We demonstrate that autocorrelation in model errors can result in biased estimates of important values and show how certain model structures can be more easily interpreted to yield insights on physical watershed function. Finally, we explore how model structure can impact uncertainty in climate change sensitivity estimates.
S. Satti, B. Zaitchik, and S. Siddiqui
Hydrol. Earth Syst. Sci., 19, 2275–2293, https://doi.org/10.5194/hess-19-2275-2015, https://doi.org/10.5194/hess-19-2275-2015, 2015
Z. Lu, Y. Wei, H. Xiao, S. Zou, J. Xie, J. Ren, and A. Western
Hydrol. Earth Syst. Sci., 19, 2261–2273, https://doi.org/10.5194/hess-19-2261-2015, https://doi.org/10.5194/hess-19-2261-2015, 2015
Short summary
Short summary
This paper quantitatively analyzed the evolution of human-water relationships in the Heihe River basin over the past 2000 years by reconstructing the catchment water balance. The results provided the basis for investigating the impacts of human societies on hydrological systems. The evolutionary processes of human-water relationships can be divided into four stages: predevelopment, take-off, acceleration, and rebalancing. And the transition of the human-water relationship had no fixed pattern.
A. Tilmant, G. Marques, and Y. Mohamed
Hydrol. Earth Syst. Sci., 19, 1457–1467, https://doi.org/10.5194/hess-19-1457-2015, https://doi.org/10.5194/hess-19-1457-2015, 2015
Short summary
Short summary
As water resources are increasingly used for various purposes, there is a need for a unified framework to describe, quantify and classify water use in a region, be it a catchment, a river basin or a country. This paper presents a novel water accounting framework whereby the contribution of traditional water uses but also storage services are properly considered.
L. E. Condon, S. Gangopadhyay, and T. Pruitt
Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, https://doi.org/10.5194/hess-19-159-2015, 2015
T. K. Lissner, C. A. Sullivan, D. E. Reusser, and J. P. Kropp
Hydrol. Earth Syst. Sci., 18, 4039–4052, https://doi.org/10.5194/hess-18-4039-2014, https://doi.org/10.5194/hess-18-4039-2014, 2014
X. Chen, D. Naresh, L. Upmanu, Z. Hao, L. Dong, Q. Ju, J. Wang, and S. Wang
Hydrol. Earth Syst. Sci., 18, 1653–1662, https://doi.org/10.5194/hess-18-1653-2014, https://doi.org/10.5194/hess-18-1653-2014, 2014
J. Shi, J. Liu, and L. Pinter
Hydrol. Earth Syst. Sci., 18, 1349–1357, https://doi.org/10.5194/hess-18-1349-2014, https://doi.org/10.5194/hess-18-1349-2014, 2014
A. Castelletti, F. Pianosi, X. Quach, and R. Soncini-Sessa
Hydrol. Earth Syst. Sci., 16, 189–199, https://doi.org/10.5194/hess-16-189-2012, https://doi.org/10.5194/hess-16-189-2012, 2012
D. Anghileri, F. Pianosi, and R. Soncini-Sessa
Hydrol. Earth Syst. Sci., 15, 2025–2038, https://doi.org/10.5194/hess-15-2025-2011, https://doi.org/10.5194/hess-15-2025-2011, 2011
Cited articles
Arbués, F., Garcıa-Valiñas, M. Á., and Martınez-Espiñeira, R.: Estimation of residential water demand: a
state-of-the-art review, J. Socio-Econ., 32, 81–102, 2003.
Averyt, K., Macknick, J., Rogers, J., Madden, N., Fisher, J., Meldrum, J., and Newmark, R.: Water use for
electricity in the United States: An analysis of reported and calculated
water use information for 2008, Environ. Res. Lett., 8,
015001, https://doi.org/10.1088/1748-9326/8/1/015001, 2008.
Averyt, K., Meldrum, J., Caldwell, P., Sun, G., McNulty, S., Huber-Lee, A.,
and Madden, N.: Sectoral contributions to surface water stress in the
coterminous United States, Environ. Res. Lett., 8, 035046, https://doi.org/10.1088/1748-9326/8/3/035046, 2013.
Bermudez, L. E. and Arctur, D.: OGC Engineering Report: Water Information
Services Concept Development Study, Open Geospatial Consortium, Document
No. OGC 11-013r6, 2011.
BM: Good practice guidelines for water data management policy, World Water
Data Initiative, Bureau of Meteorology, Melbourne, Australia, 2017.
Clark, R. M., Stevie, R., and Trygg, G.: The Cost of Municipal Water Supply:
A Case Study (Vol. 1), US Environmental Protection Agency, Office of Research
and Development, Municipal Environmental Research Laboratory, Water Supply
Research Division, 1976.
Commerce: 1982 Census of Manufactures, Water Use in Manufacturing, U.S.
Department of Commerce Bureau of the Census, March 1986, MC82-S-6, 1986.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B.,
and Raskin, R. G.: The value of the world's ecosystem services and natural
capital, Nature, 387, https://doi.org/10.1038/387253a0, 1997.
Diehl, T. H. and Harris, M. A.: Withdrawal and consumption of water by
thermoelectric power plants in the United States, 2010, U.S. Geological
Survey Scientific Investigations Report 2014–5184, 28 pp., 2014.
Dirmeyer, P. A. and Brubaker, K. L.: Characterization of the global
hydrologic cycle from a back-trajectory analysis of atmospheric water vapor,
J. Hydrometeorol., 8, 20–37, 2007.
Dunham, C., Fuch, H., and Stratton, H.: Benefits of a National Survey on
Water Demand: Existing Data and Reporting Recommendations, Lawrence Berkeley
National Laboratory, December 2017, LBNL-2001085, 2017.
Fishman, C.: Water Is Broken. Data Can Fix It, The New York Times, March 17,
available at: https://nyti.ms/22o8mRc (last access:
24 January 2018), 2016.
Gates, T. K., Garcia, L. A., Hemphill, R. A., Morway, E. D., and Elhaddad,
A.: Irrigation Practices, Water Consumption, & Return Flows in Colorado's
Lower Arkansas River Valley, Technical Completion Report No. 221, Colorado
Water Institute, Technical Report No. TR12-10, Colorado Agricultural
Experiment Station, 2012.
Graveland, C. and Baas, K.: Improvement of waterflows in the National Water
Balance; Water Stocks; feasibility of Water Balances per River Basin,
Statistics Netherlands, the Hague, 2012.
Hamilton, D. A. and Seelbach, P. W.: Michigan's water withdrawal assessment
process and internet screening tool, Fisheries Division Special Report, 55,
2011.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., and Mekonnen, M. M.: The
water footprint assessment manual: Setting the global standard, Earthscan,
London, UK, 2011.
Kallis, G. and Butler, D.: The EU Water Framework Directive: measures and
implications, Water Policy, 3, 125–142, 2001.
Lant, C., Baggio, J., Konar, M., Mejia, A., Ruddell, B., Rushforth, R., Sabo, J. L.,
and Troy, T. J.: The US
food–energy–water system: A blueprint to fill the mesoscale gap for science
and decision-making, Ambio, 1–13, 2018.
Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., and
Ostrom, E.: Complexity of coupled human and natural systems, Science, 317,
1513–1516, 2007.
Macknick, J., Newmark, R., Heath, G., and Hallett, K.: Operational water
consumption and withdrawal factors for electricity generating technologies: a
review of existing literature, Environ. Res. Lett., 7, 045802, https://doi.org/10.1088/1748-9326/7/4/045802, 2012.
Maidment, D. R. and Morehouse, S.: Arc Hydro: GIS for water resources,
Vol. 1, ESRI, Inc., 2002.
Maupin, M. A., Kenny, J. F., Hutson, S. S., Lovelace, J. K., Barber, N. L.,
and Linsey, K. S.: Estimated use of water in the United States in 2010, US
Geological Survey, 2014.
Mayer, A., Mubako, S., and Ruddell, B. L.: Developing the greatest Blue
Economy: Water productivity, fresh water depletion, and virtual water trade
in the Great Lakes basin, Earth's Future, 4, 282–297, 2016.
Michelsen, A. M., Jones, S., Evenson, E., and Blodgett, D.: The USGS Water
Availability and Use Science Program: Needs, Establishment, and Goals of a
Water Census, J. Am. Water Resour. As., 52, 836–844, 2016.
Patterson, L., et al.: INTERNET OF
WATER: Sharing and Integrating Water Data for Sustainability, The Aspen
Institute, Washington, DC, ISBN: 0-89843-665-6, 2017.
Perrone, D., Hornberger, G., Vliet, O., and Velde, M.: A Review of the United
States' Past and Projected Water Use, J. Am. Water Resour. As., 51,
1183–1191, 2015.
Qureshi, M. E., Schwabe, K., Connor, J., and Kirby, M.: Environmental water
incentive policy and return flows, Water Resour. Res., 46,
W04517, https://doi.org/10.1029/2008WR007445, 2010.
Ruddell, B. L., Adams, E. A., Rushforth, R., and Tidwell, V.C.: Embedded
resource accounting for coupled natural-human systems: An application to
water resource impacts of the western US electrical energy trade, Water
Resour. Res., 50, 7957–7972, 2014.
Rushforth, R. R. and Ruddell, B. L.: A spatially detailed blue water
footprint of the United States economy, Hydrol. Earth Syst. Sci., 22,
3007–3032, https://doi.org/10.5194/hess-22-3007-2018,
2018.
Scanlon, B. R., Ruddell, B. L., Reed, P. M., Hook, R. I., Zheng, C., Tidwell,
V. C., and Siebert, S.: The food-energy-water nexus: Transforming science for
society, Water Resour. Res., 53, 3550–3556, 2017.
Senay, G. B., Friedrichs, M., Singh, R. K., and Velpuri, M. N.: Evaluating
Landsat 8 evapotranspiration for water use mapping in the Colorado River
Basin, Remote Sens. Environ., 185, 171–185, https://doi.org/10.1016/j.rse.2015.12.043, 2016.
Shaffer, K. and Runkle, D. L.: Consumptive Water, Use Coefficients for the
Great Lakes Basin and Climatically Similar Areas, US Geological Survey
Reston, VA, 2007.
Solley, W. B., Pierce, R. R., and Perlman, H. A.: Estimate use of water in
the United States in 1995, USGS Circular 1200, 71 pp., 1998.
UNEP: Measuring water use in a green economy, A Report of the Working Group
on Water Efficiency to the International Resource Panel, edited by: McGlade,
J., Werner, B., Young, M., Matlock, M., Jefferies, D., Sonnemann, G., Aldaya,
M., Pfister, S., Berger, M., Farell, C., Hyde, K., Wackernagel, M., Hoekstra,
A., Mathews, R., Liu, J., Ercin, E., Weber, J. L., Alfieri, A.,
Martinez-Lagunes, R., Edens, B., Schulte, P., von Wirén-Lehr, S., and
Gee, D., ISBN: 978-92-807-3220-7, 2012.
Ward, F. A. and Pulido-Velazquez, M.:, Water conservation in irrigation can
increase water use, P. Natl. Acad. Sci. USA, 105, 18215–18220, 2008.
Short summary
We now lack sufficient empirical observations of consumptive use of water by humans and their economy, so it is worth considering what we can do with the withdrawal-based water use data we already possess. Fortunately, a wide range of applied water management and policy questions can be addressed using currently available withdrawal data. This discussion identifies important data collection problems and argues that the withdrawal data we already possess are adequate for some important purposes.
We now lack sufficient empirical observations of consumptive use of water by humans and their...
Special issue