Research article
16 Oct 2018
Research article | 16 Oct 2018
Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model
Alessia Ferrari et al.
Related authors
Related subject area
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product
Charlotte Marie Emery, Adrien Paris, Sylvain Biancamaria, Aaron Boone, Stéphane Calmant, Pierre-André Garambois, and Joecila Santos da Silva
Hydrol. Earth Syst. Sci., 22, 2135–2162, https://doi.org/10.5194/hess-22-2135-2018,https://doi.org/10.5194/hess-22-2135-2018, 2018
Short summary
Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland
J. C. Peña, L. Schulte, A. Badoux, M. Barriendos, and A. Barrera-Escoda
Hydrol. Earth Syst. Sci., 19, 3807–3827, https://doi.org/10.5194/hess-19-3807-2015,https://doi.org/10.5194/hess-19-3807-2015, 2015
Short summary
The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
D. A. Plaza, R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, and V. R. N. Pauwels
Hydrol. Earth Syst. Sci., 16, 375–390, https://doi.org/10.5194/hess-16-375-2012,https://doi.org/10.5194/hess-16-375-2012, 2012
Cited articles
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons,
2011. a
Butera, I., Tanda, M. G., and Zanini, A.: Simultaneous identification of the
pollutant release history and the source location in groundwater by means of
a geostatistical approach, Stoch. Env. Res. Risk
A., 27, 1269–1280, 2013. a
Das, A.: Reverse stream flow routing by using Muskingum models, Sadhana, 34,
483–499, 2009. a
Doherty, J. E.: PEST, Model-Independent Parameter Estimation – User
Manual, sixth ed., Tech. rep., Watermark Numerical Computing, Brisbane,
Australia, 2016. a
D'Oria, M. and Tanda, M. G.: Reverse flow routing in open channels: A
Bayesian Geostatistical Approach, J. Hydrol., 460, 130–135, 2012.
a,
b,
c,
d,
e,
f,
g
D'Oria, M., Mignosa, P., and Tanda, M. G.: Bayesian estimation of inflow
hydrographs in ungauged sites of multiple reach systems, Advances in Water
Resources, 63, 143–151, 2014.
a,
b,
c,
d,
e,
f
D'Oria, M., Mignosa, P., and Tanda, M. G.: An inverse method to estimate the
flow through a levee breach, Adv. Water Resour., 82, 166–175, 2015.
a,
b,
c
Fienen, M., Hunt, R., Krabbenhoft, D., and Clemo, T.: Obtaining parsimonious
hydraulic conductivity fields using head and transport observations: A
Bayesian geostatistical parameter estimation approach, Water Resour.
Res., 45, W08405,
https://doi.org/10.1029/2008WR007431, 2009.
a,
b
Fienen, M. N., Clemo, T., and Kitanidis, P. K.: An interactive Bayesian
geostatistical inverse protocol for hydraulic tomography, Water Resour.
Res., 44, W00B01,
https://doi.org/10.1029/2007WR006730, 2008.
a,
b
Fienen, M. N., D'Oria, M., Doherty, J. E., and Hunt, R. J.: Approaches in
highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach
implementation with PEST: documentation and instructions, Tech. rep., US
Geological Survey, available at:
https://pubs.usgs.gov/tm/07/c09/ (last access: 12 October 2018), 2013.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Hoeksema, R. J. and Kitanidis, P. K.: An application of the geostatistical
approach to the inverse problem in two-dimensional groundwater modeling,
Water Resour. Res., 20, 1003–1020, 1984. a
Kitanidis, P. K.: Quasi-linear geostatistical theory for inversing, Water
Resour. Res., 31, 2411–2419, 1995.
a,
b,
c,
d
Kitanidis, P. K. and Vomvoris, E. G.: A geostatistical approach to the
inverse
problem in groundwater modeling (steady state) and one-dimensional
simulations, Water Resour. Res., 19, 677–690, 1983. a
Koussis, A. D. and Mazi, K.: Reverse flood and pollution routing with the
lag-and-route model, Hydrolog. Sci. J., 61, 1952–1966, 2016. a
Koussis, A. D., Mazi, K., Lykoudis, S., and Argiriou, A. A.: Reverse flood
routing with the inverted Muskingum storage routing scheme, Nat. Hazards
Earth Syst. Sci., 12, 217–227,
https://doi.org/10.5194/nhess-12-217-2012,
2012.
a
Leonhardt, G., D'Oria, M., Kleidorfer, M., and Rauch, W.: Estimating inflow
to
a combined sewer overflow structure with storage tank in real time:
evaluation of different approaches, Water Sci. Technol., 70,
1143–1151, 2014. a
Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical approach to
surface flux estimation of atmospheric trace gases, J. Geophys.
Res.-Atmos., 109, D14109,
https://doi.org/10.1029/2003JD004422, 2004.
a
Szymkiewicz, R.: Solution of the inverse problem for the Saint Venant
equations, J. Hydrol., 147, 105–120, 1993. a
Vacondio, R., Dal Palù, A., and Mignosa, P.: GPU-enhanced finite volume
shallow water solver for fast flood simulations, Environ. Modell.
Softw., 57, 60–75, 2014.
a,
b,
c
Vacondio, R., Aureli, F., Ferrari, A., Mignosa, P., and Dal Palù, A.:
Simulation of the January 2014 flood on the Secchia River using a fast and
high-resolution 2D parallel shallow-water numerical scheme, Nat. Hazards,
80, 103–125, 2016.
a,
b,
c
Vacondio, R., Dal Palù, A., Ferrari, A., Mignosa, P., Aureli, F., and
Dazzi,
S.: A non-uniform efficient grid type for GPU-parallel Shallow Water
Equations models, Environ. Modell. Softw., 88, 119–137, 2017.
a,
b,
c
Zucco, G., Tayfur, G., and Moramarco, T.: Reverse flood routing in natural
channels using genetic algorithm, Water Resour. Manag., 29, 4241–4267,
2015.
a,
b