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Abstract. This paper presents a novel methodology for esti-
mating the unknown discharge hydrograph at the entrance
of a river reach when no information is available. The
methodology couples an optimization procedure based on
the Bayesian geostatistical approach (BGA) with a forward
self-developed 2-D hydraulic model. In order to accurately
describe the flow propagation in real rivers characterized by
large floodable areas, the forward model solves the 2-D shal-
low water equations (SWEs) by means of a finite volume ex-
plicit shock-capturing algorithm. The two-dimensional SWE
code exploits the computational power of graphics process-
ing units (GPUs), achieving a ratio of physical to computa-
tional time of up to 1000. With the aim of enhancing the com-
putational efficiency of the inverse estimation, the Bayesian
technique is parallelized, developing a procedure based on
the Secure Shell (SSH) protocol that allows one to take ad-
vantage of remote high-performance computing clusters (in-
cluding those available on the Cloud) equipped with GPUs.
The capability of the methodology is assessed by estimat-
ing irregular and synthetic inflow hydrographs in real river
reaches, also taking into account the presence of downstream
corrupted observations. Finally, the procedure is applied to
reconstruct a real flood wave in a river reach located in north-
ern Italy.

1 Introduction

The definition of discharge hydrographs in specific river sec-
tions is still a relevant hydraulic problem not only for flood
modelling purposes but also for more practical issues re-
lated to flood-protection measures, hydropower plants, wa-
ter resource management, the design of new structures, etc.
Flood-routing techniques, either hydrological or hydraulic,
are extensively studied and are widely used to estimate dis-
charge hydrographs in downstream ungauged sites based on
data available at upstream gauged stations (forward propa-
gation). However, the flow hydrograph is often required in a
river section that is completely ungauged and does not have
useful upstream information for its definition. In these cases,
discharge hydrographs at specific sites can be estimated by
coupling rainfall-runoff and forward flood-propagation mod-
els. However, rainfall-runoff models (Beven, 2011) present
several uncertainties associated, for example, with the choice
of the model for the basin schematization, the evaluation of
the effective rainfall, and the calibration procedure. An alter-
native approach is to assess the upstream unknown flow hy-
drograph using only the information in terms of the discharge
values or water levels available downstream from the se-
lected site and possibly the characteristics of the river reach.
In the literature, this approach is known as reverse flow rout-
ing (D’Oria and Tanda, 2012), an ill-posed inverse problem
that presents two main challenges; the solution may be non-
unique, and instabilities may arise during the inversion. The
traditional attempts of solving the reverse flow routing prob-
lem are based on two main approaches: the solution of a
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reverse form of the Saint Venant equations (e.g. Eli et al.,
1974; Szymkiewicz, 1993; Dooge and Bruen, 2005; Bruen
and Dooge, 2007) and the back-oriented application of hy-
drological routing schemes (e.g. Das, 2009; Koussis et al.,
2012; Koussis and Mazi, 2016). Beyond the approximations
introduced by the hydrological routing schemes, the afore-
mentioned procedures were applied to simplified reach ge-
ometries and flow conditions. In almost all cases, especially
considering downstream information affected by errors, in-
stabilities and spurious oscillations appeared; low-pass filters
with subjective parameters were sometimes used to dampen
the estimated inflow fluctuations. D’Oria and Tanda (2012)
and Zucco et al. (2015) provide additional references and de-
tails on the reverse flow routing problem.

In addition to the above procedures, the estimation of an
unknown upstream flow hydrograph based only on down-
stream information (observations) can be performed via op-
timization methods. These techniques aim at finding the
upstream flow hydrograph that, routed downstream, best
matches the available observations. D’Oria and Tanda (2012)
solved the reverse flow routing problem by adopting a novel
Bayesian geostatistical approach (BGA) as an optimization
procedure that considers the flow hydrograph as a continuous
random function that presents autocorrelation. The authors
showed the capability of the BGA methodology, in combi-
nation with a forward hydraulic model, to estimate the dis-
charges in an upstream-ungauged section based only on an
available downstream flow hydrograph: the solution was sta-
ble also in the presence of corrupted downstream flow values.
The forward model, which solves the 1-D Saint Venant equa-
tions, was considered already implemented and calibrated
and was able to describe the hydraulic routing process with
sufficient accuracy. The BGA method was further extended
in order to adopt stage hydrographs instead of discharge ones
as downstream observations (D’Oria et al., 2014). Saghafian
et al. (2015) identified the upstream hydrograph of a river
reach given the downstream one by using a genetic algorithm
coupled with a forward hydraulic model that solves the 1-D
Saint-Venant equations under the kinematic wave approxi-
mations. Only some minor oscillations and instabilities oc-
curred during the inversion, but the authors applied the pro-
cedure to a rectangular prismatic channel, and no errors were
added to the downstream observations. Zucco et al. (2015)
investigated the reverse flow routing process in natural chan-
nels and estimated the discharge hydrograph in ungauged
sections by means of a genetic algorithm coupled with a sim-
plified routing model. The parametric forward model was
based on the continuity equation written in a characteristic
form, lumped over the entire river reach, and on simplified
rating curves at the channel ends. In addition, the unknown
inflow hydrograph was assumed to be distributed in time as
a Pearson type III function with three parameters, thus pre-
venting the possibility of estimating real flood waves with
irregular shapes (e.g. multi-peak hydrographs).

All the previously cited works adopted 1-D hydraulic
models or simplified hydrological routing schemes in combi-
nation with different optimization procedures. Nevertheless,
in many real cases, the complex hydrodynamic field gener-
ated by the flood propagation cannot be accurately described
under 1-D assumptions, and it is necessary to adopt schemes
based on the 2-D shallow water equations, even if this poses
the drawback of the computational burden and requires a de-
tailed terrain survey. However, nowadays, bathymetric data
can be easily obtained from high-resolution digital terrain
models (DTM), and fast 2-D numerical models have been de-
veloped. With the purpose of estimating the discharge hydro-
graph in an upstream-ungauged river section, having water
level information only in a downstream observation site, this
paper extends the BGA methodology for reverse flow routing
from D’Oria and Tanda (2012) and D’Oria et al. (2014) to a
2-D forward algorithm in order to model natural rivers with
complex geometry, including flood plains and floodable ar-
eas. With this aim, the stable, accurate and fast PARFLOOD
graphics processing unit (GPU) code (Vacondio et al., 2014,
2016, 2017), which solves the conservative form of the 2-
D shallow water equations on a finite volume scheme, is
adopted as forward model and is coupled with the inverse
estimation procedure. In order to reduce the computational
time, the Jacobian matrix estimation procedure, which is the
key point of the BGA method, has been parallelized. Addi-
tionally, a host–server data management procedure has been
implemented to exploit the computational power of remote
large modern supercomputer and/or cloud HPC resources.
The capability of the optimization procedure has been tested
by estimating real or pseudo-real inflow hydrographs in nat-
ural river reaches, where 1-D models cannot accurately de-
scribe the flood propagation. Moreover, during the discharge
estimation, the presence of downstream corrupted observa-
tions has also been taken into account, since registered data
at gauging stations are quite often affected by instrumental
errors.

The paper is organized as follows; in Sect. 2 the theory
of the Bayesian geostatistical approach is illustrated. A step-
by-step description of the inverse procedure is provided in
Sect. 3: the parallel implemented scheme, the forward model
optimization for reducing the run times, and the iteration
management between the local host and the remote server
are described in detail. Section 4 is dedicated to the appli-
cation of the procedure to synthetic test cases concerning
the estimation of inflow hydrographs with different shapes
in two rivers in northern Italy. The practicability of the in-
verse procedure for reconstructing a historical flooding event
is presented in Sect. 5. Some concluding remarks are finally
outlined in Sect. 6.
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2 Theory of the Bayesian geostatistical approach

The optimization software adopted to solve the reverse flow
routing problem is the bgaPEST (Fienen et al., 2013), which
implements the Bayesian geostatistical approach of Kitanidis
(1995), and it is developed according to the PEST (model in-
dependent parameter estimation) software (Doherty, 2016).
The bgaPEST is appropriate for solving inverse problems
(in a context of a highly parameterized inversion), which are
characterized by unknown parameters that are correlated to
one another in space or time, for example, the discharge val-
ues of a flow hydrograph. The first applications of the inverse
methodology were related to the estimation of spatial param-
eter fields in a groundwater context (Kitanidis and Vomvoris,
1983; Hoeksema and Kitanidis, 1984, among others), but
later the method was adopted to evaluate unknown time func-
tions in different areas (e.g. Snodgrass and Kitanidis, 1997;
Michalak et al., 2004; Butera et al., 2013; D’Oria and Tanda,
2012; D’Oria et al., 2015; Leonhardt et al., 2014).

2.1 Bayes’ theorem

The crux of the adopted bgaPEST, as well as other methods
based on the Bayesian approach, is Bayes’ theorem, which
reads

p(s|y)∝ L(y|s)p (s) , (1)

where s is the vector of the unknown parameters, y is the vec-
tor of the measured data, p(s|y) is the posterior probability
density function (pdf) of s given y, L(y|s) is the likelihood
function, and p(s) is the prior probability density function of
s. Since the present work aims at estimating an upstream hy-
drograph in an ungauged section, assuming the knowledge
of downstream water levels, s represents the discharge val-
ues over time of the unknown inflow hydrograph, whereas
y denotes the downstream water level observations. Follow-
ing Eq. (1), the posterior pdf can be seen as a combination
between a priori knowledge on the parameters (prior pdf),
where a priori means that the observed data are still not con-
sidered, and information about parameters contained in the
measured data (likelihood function) (Glickman and Van Dyk,
2007). In the BGA method proposed by Kitanidis (1995), the
prior pdf and the likelihood function are described by means
of Gaussian distributions, and the best set of parameter s is
obtained by maximizing the posterior pdf.

2.1.1 The likelihood function

The likelihood function L(y|s) in Eq. (1) characterizes the
deviation between observed data and model results (Fienen
et al., 2013). Starting from the results of the forward model,
L(y|s) delineates how a particular set of parameters s is able
to reproduce the observations y in space and/or time, thus
accounting for the epistemic errors. The investigated inverse
problem presents different sources of errors that are related

to the conceptual schematization of the inverse procedure,
the numerical forward model, and the data measurement. In
the likelihood function, the errors are assumed to be inde-
pendent and identically distributed, with the zero mean and
covariance matrix expressed as follows;

R= σ 2
RI, (2)

where σ 2
R denotes the variance that expresses the misfit be-

tween observed and modelled data, and I is the identity ma-
trix.

2.1.2 The prior probability density function

The prior knowledge about s (p(s) in Eq. 1) is limited to
the definition of a mean value (unknown and estimated dur-
ing the procedure) and a characteristic about the continuity
and/or smoothness of the parameter field described through a
covariance function. It furnishes a soft knowledge about the
structure/shape of the unknowns and provides a regulariza-
tion of the solution; the prior pdf can also be used to enforce
non-negativity to the parameters (D’Oria and Tanda, 2012).
The prior mean is defined as:

E [s]= Xβ, (3)

where E is the expected value, β is the vector of drift coef-
ficients, and X is a known matrix of basis functions. In our
case, β is a single unknown scalar, but different drift coeffi-
cients can be used to introduce discontinuities in the stochas-
tic function to be estimated (e.g. when the unknown parame-
ters are likely to form distinct populations). For example, in
the context of reverse flow routing problems, multiple values
of β are adopted if more than one inflow hydrograph must
be estimated at the same time (e.g. the inflow on both the up-
stream branches of a river confluence). The matrix of the ba-
sis function, X, links each unknown parameter with the cor-
responding element of β and, at the same time, specifies the
model of the mean (e.g. constant mean, mean with a trend,
etc.); in our case the mean is constant and therefore X is a
single vector of one (Fienen et al., 2008).

The prior covariance matrix of the unknown parameters
Qss is then defined as

Qss = E
[
(s−Xβ)(s−Xβ)T

]
. (4)

In the context of geostatistics, the covariance matrix Qss is
a function of the separation distance (in time in this case)
between the parameters and describes their deviations from
the mean behaviour. Different functions can be adopted to
describe the covariance. For example, it can be assumed as a
linear function, represented through a limiting case of the ex-
ponential covariance function (Fienen et al., 2008) according
to the following relation;

Qss(θ)= θl exp
(
−
|d|

l

)
, (5)
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where d represents the vector of the separation times be-
tween all the parameter pairs (di,j = ti − tj , with i, j = 1,
. . ., Np, t denoting the time associated with each parame-
ter and Np the total number of unknowns), l a fixed integral
scale (l = 10maxd), and θ the slope (structural parameter)
that governs the correlation between the discharge values of
the unknown hydrograph. A different formulation (D’Oria
et al., 2014) defines the prior covariance matrix Qss by means
of a Gaussian function characterized by two structural pa-
rameters (σ 2

s and l);

Qss(σ
2
s , l)= σ

2
s exp

−
∣∣∣d2
∣∣∣

l2

 , (6)

where σ 2
s denotes the variance. The linear function (Eq. 5)

enforces only continuity to the solution, whereas the Gaus-
sian function (Eq. 6) also adds a degree of smoothness, but
the final solution is still driven by the observations.

2.1.3 The posterior probability density function

With the assumptions made, the likelihood and prior terms
that compose the posterior pdf of Eq. (1) can be rewritten as
follows (Fienen et al., 2009; D’Oria and Tanda, 2012; D’Oria
et al., 2014);

L(y|s)= exp
(
−

1
2
(y−h(s))TR−1 (y−h(s))

)
, (7)

p(s)= exp
(
−

1
2
(s−Xβ)TQ−1

ss (s−Xβ))
)
. (8)

In the likelihood function, the term h(s) represents the
modelled values in the same place and time as the available
observations y. Therefore, to evaluate h(s), a forward model
of the considered river reach that is able to describe the hy-
draulic routing process is required in order to provide the
corresponding downstream water levels for a given set of pa-
rameter s.

Recalling that the aim of the inverse procedure is to obtain
the vector of the unknown parameters s, as well as to quan-
tify the uncertainty in the estimation, the solution is found
by maximizing the posterior pdf or, more conveniently, min-
imizing its negative logarithm (objective function) (Fienen
et al., 2013).

In case a linear relationship between parameters and ob-
servations (linear forward model) holds, a computationally
efficient method to find the best estimate ŝ of vector s (and β̂
of β) is obtained by introducing the vector ξ = (HQssHT

+

R)−1(y−HXβ̂) and solving the following linear system of
equations (Fienen et al., 2009);
ŝ = Xβ̂ +QssHT ξ[

HQssHT
+R HX

XTHT 0

][
ξ

β̂

]
=

[
y

0

]
,

(9)

where H is the sensitivity (Jacobian) matrix, representing
how the observations y are influenced by each unknown pa-
rameter si (D’Oria et al., 2015). However, for the particular
problem under investigation, h(s) is non-linear and matrix
H therefore depends on s. Following the quasi-linear geosta-
tistical approach (Kitanidis, 1995), the relationship between
observations and parameters can be successively linearized
about a candidate solution sk , where k represents each itera-
tion;

h(s)≈ h(sk)+ H̃k (s− sk) . (10)

Then, a correction to the measurements is applied according
to the following relation;

yk = y−h(sk)+ H̃ksk. (11)

Therefore, the sensitivity matrix is evaluated at each itera-
tion as follows (D’Oria et al., 2014);

H̃k =
∂h(s)

∂s

∣∣∣∣
sk

. (12)

Analogously to the linear system in Eq. (9), the linearized
system is solved according to[

H̃kQssH̃T
k +R H̃kX

XT H̃T
k 0

][
ξ k+1
β̂k+1

]
=

[
yk
0

]
, (13)

and the next estimate of the parameters is evaluated by means
of

s̃k+1 = Xβ̂k+1+QssH̃T
k ξ k+1. (14)

A proper selection of the covariance function structural pa-
rameters (θ , σ 2

s and l) and optionally of the epistemic error
variance σ 2

R is important in order to reach a good solution.
The structural parameters are estimated from the data using
a Bayesian adaptation of the restricted maximum likelihood
(RML) method of Kitanidis (1995) that allows one to reach
the best compromise between the fitting of the modelled data
with the observations and the prior information (Fienen et al.,
2013). Dealing with non-linear problems, unknowns (s) and
structural parameters must be iteratively estimated in suc-
cessive steps. The linearization process ends if the improve-
ment (absolute difference between two successive iterations)
in the objective function is below a user-defined value or if
the maximum number of iterations Ni is reached. The struc-
tural parameter iteration loop (outer loop) progresses until
the L2-norm of the differences between structural parame-
ter values at consecutive iterations is below a user-defined
value or if the maximum number of iterations No is reached
(Fienen et al., 2013). Finally, at the end of the estimation, the
linearized uncertainties of the unknowns can be evaluated in
terms of the posterior covariance matrix of the estimated pa-
rameters (Fienen et al., 2013). The diagonal elements of this
matrix represent the posterior variance (σ 2) of the estimated
parameters; thus, the 95 % credibility interval of the solution
is evaluated as ±2σ 2.
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Figure 1. Definition of the reverse flood routing problem (a) and of the unknown parameters (b).

3 Description of the Bayesian estimation procedure

After having described the theory of the Bayesian geostatis-
tical approach in Sect. 2, some operational information about
the BGA inverse procedure is now illustrated. As mentioned
in the introduction and illustrated in Fig. 1a, the goal of the
adopted BGA methodology is the estimation of the discharge
hydrograph in an upstream-ungauged river section (identified
by a question mark in Fig. 1a), with information about water
levels being observed in a downstream section (intermediate
site in Fig. 1a). A boundary condition downstream of the ob-
servation site must also be specified; this can be based on
observed data or can be approximated extending the compu-
tational domain far away from the intermediate section. The
inverse method estimates theNp parameters (the vector of the
unknown parameters s in Eq. 1) that originate from the dis-
cretization of the upstream discharge hydrograph by means
of time intervals, which are regular in this case (Fig. 1b).

The BGA algorithm solves the inverse problem by means
of the following steps.

First, the unknown parameters and the structural ones are
initialized. The first ones may all be assumed equal to a
constant discharge value coherent with the considered river,
whereas the starting values for the structural parameters are
assigned so that the variability between contiguous parame-
ters is small (flat solution, with a high degree of correlation);
complexity is then introduced during the optimization pro-
cess if supported by the data. The variance of the epistemic
errors is assumed as being close to the expected one.

Assuming that the first guess for the unknown parameters
is the upstream boundary condition, the hydraulic forward
model is run, and the resulting water levels are extracted at
the observation site. The simulation of a base run once a par-

ticular set of parameters has been assumed (deriving from the
initialization or from previous estimation steps) represents a
mandatory step for the Jacobian matrix evaluation, which is
performed at this point in the procedure in order to quantify
how each observation is influenced by the variation of each
estimable parameter. Particularly, Eq. (12) is approximated
using a finite difference method; hence each element of the
matrix is evaluated as the ratio between the variation of each
observation (numerator) for given variation of each param-
eter (denominator) with respect to the base run. Therefore,
in addition to the base run, the hydraulic forward model is
further run as many times as the number of parameters to
estimate Np. With each run, a single value of the upstream
boundary condition is modified by a known quantity with re-
spect to the previous value, and the hydraulic forward model
is run again. As a consequence, each simulation tests the sen-
sitivity of the resulted water levels (all the observations at
once) to the variation of a single parameter i.

In order to exemplify this step, Fig. 2a shows the dis-
charge imposed as upstream boundary condition for a base
run of an intermediate set of parameters; after the propaga-
tion, the resulting water levels extracted at the observation
site are shown in Fig. 2c. To test the sensitivity to parameter
i, in Fig. 2b, the considered parameter is changed by a known
quantity, and a new upstream boundary condition is defined
(solid line); it is worth noting that the solid and the dotted
lines differ only for the parameter i. The water levels result-
ing from this single parameter variation are shown in Fig. 2d
(solid line); they are identical to ones of the base run until
time i− 1, whereas after that time, they differ from those of
the base run (dotted line). The computation of the differences
between the resulting water levels of the simulation i and the
base run (solid and dotted lines) and the variation of parame-
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Figure 2. Example of the base run (a) and of the run i for the Jacobian matrix evaluation (b).

ter i allows for the computing of the column i of the Jacobian
matrix, which is a Nobs×Np matrix where Nobs represents
the number of the observations. After Np runs, the Jacobian
(sensitivity) matrix is evaluated and a new set of parameters
s is estimated (Eq. 14).

This procedure is repeated until convergence or the max-
imum number of iteration Ni is reached. Then, the struc-
tural parameters are estimated using the last set of param-
eters s. Due to the non-linearity of the forward problem, the
model and the structural parameter estimation is repeated un-
til convergence or the maximum number of iterations No is
reached. Therefore, the BGA implementation requires run-
ning the forward model Nt times according to the following
relation (Fienen et al., 2013);

Nt =
(
Np+ 1

)
NoNi+ 1. (15)

The whole BGA procedure previously described is illus-
trated in Fig. 3a.

3.1 Parallelization of the Jacobian matrix evaluation

The most relevant contribution to the total computational
time required by the inverse procedure is ascribed to the for-
ward model runs (i.e. the computation of each element in
the Jacobian matrix) rather than to the bgaPEST operations.
However, since each of the Np runs in Eq. (15) checks the
sensitivity of the observations to the variation of a single pa-
rameter, the solution of a run does not affect the other ones.
Therefore, in order to reduce the computational burden, the
independentNp runs can be potentially performed in parallel.

In this work, the PARFLOOD two-dimensional-GPU nu-
merical model presented in Vacondio et al. (2014) and
Vacondio et al. (2017) has been adopted for routing the in-
flow hydrograph. Therefore, the bgaPEST routine to evalu-
ate the Jacobian matrix has been parallelized in order to take
advantage of the computational capability of modern high-
performance computing (HPC) clusters, which are usually
equipped with many GPUs. The implemented parallel pro-
cedure, which is illustrated in the flow chart of Fig. 3b, han-
dles the parallelism among host and GPUs by means of the
Secure Shell network protocol (SSH) and manages the most
operative parts of the parallelism (login, run, etc.) outside of
the bgaPEST code. In the serial version (Fig. 3a), the crucial
part of the Jacobian matrix evaluation consists of a DO-loop
over the parameters. Considering the parameter i, the input
file that will be read by the forward model is first written, then
the model is run, and the resulting values are finally read. In
the modified version (Fig. 3b), this main loop is split in three
parts: first, the input files (equal to Np) in which a particular
parameter is modified are written, then the forward model is
run (Np times), and a second loop is finally performed to read
all the resulted values.

3.2 The forward model

In the parallel bgaPEST (Fig. 3b), the “run forward model”
instruction actually runs a shell script that controls the file
transfer between the host (a standard PC or a single node of
a cluster) and the HPC platform, the creation of the Np simu-
lations for the Jacobian matrix evaluation, and the run of the
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Figure 3. Illustration of BGA algorithm in the serial (a) and parallel (b) version.

two-dimensional SWE-GPU code on the device (GPU). In
the present work, a cluster with 10 NVIDIA® Tesla® P100
GPUs hosted by the University of Parma was adopted. As
shown in Fig. 4, the bgaPEST algorithm runs on the CPU of
a computer, where the Np simulations (assumed equal to 3
for the sake of simplicity in Fig. 4) are first created and then
sent to the server user partition by means of the SSH proto-
col. Here, the cluster access node schedules all the jobs sub-
mitted by the users, using the HPC scheduler Portable Batch
System (PBS). Then, each simulation is assigned to a spe-
cific GPU node. At the end of the computation, the observa-
tions are extracted and the output files remain on the cluster
partition until the CPU verifies via SSH the end of the simu-
lation and copies the results back. The procedure illustrated
in Fig. 4 and later described represents the parallelization of
the Jacobian matrix computation.

Listing 1 provides a detailed description of the “run for-
ward model” shell file. In order to use the algorithm for dif-
ferent test cases and potentially on different HPC clusters,
all the paths are first declared together with the involved vari-

ables (number of parameters to estimate, time interval among
parameters, and start and end of the simulation; line 2). Then,
the algorithm (line 3) checks if the considered run is one use-
ful for the Jacobian matrix evaluation where a given param-
eter varies, or if it is the base run. Considering the first if
condition as true (line 3), the script generates and copies the
input files for all the Np simulations to the server (lines 5–7).
These files contain the same bathymetrical initial conditions
(water level and velocity) and roughness configuration but
have a different upstream boundary condition; each simula-
tion tests the sensitivity of the observations to the variation
of a given model parameter. Moreover, all the simulations
adopt the same grid (Cartesian or multi-resolution), which is
generated only once at the beginning of the procedure. It is
relevant to note that all the Np simulations do not have to
be run from time tstart to time tend; in fact, the variation of
parameter i affects the observations only after time ti−1 (see
Fig. 2). The PARFLOOD model guarantees the possibility
of using the results of the base run and starting simulations
from time ti−1. The theoretical physical time T required to
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Figure 4. Schematization of the data transfer assuming three parameters and thus three parallel simulations.

evaluate the Jacobian matrix simulating each of the Np runs
from tstart to tend is equal to

T =Np
(
Np− 1

)
1t, (16)

where 1t denotes the constant time interval between two
consecutive parameters.

Conversely, the physical time T ∗ required to simulate all
the Np runs by restarting the ith simulation from time ti−1
instead of tstart is equal to

T ∗ = (Np− 1)1t +
Np∑
i=2

[
Np− (i− 1)

]
1t. (17)

As pointed out by Eqs. (16)–(17) and exemplified in Fig. 5,
this simple operation allows for the reaching of a relevant de-
crease of the total computational time. Therefore, at line 8,
the algorithm computes the time needed to restart the simu-
lation.

In order to perform the simulation, the host logs in to the
HPC cluster by means of the SSH protocol (line 9) and a
sleep condition ensures the login procedure (line 10). Then
the job is submitted to the queue of the cluster using exter-
nal parameters for passing the name of the simulation folder
and the time for restart (line 11); the submitted job contains
the reference to the PBS queue and the link to the executable
two-dimensional SWE-GPU code. At the end of the simu-
lation, the water levels at the observation site are automati-
cally extracted. Once the job is submitted, the SSH login is
closed (line 12). After having submitted all the simulations,
for each parameter (line 15), the code regularly (line 18) tests
the presence of the end_file via SSH, which states the end
of the simulation (line 20) and waits in case it is missing
(line 25). Once the simulation is finished, the resulting ob-
servations are copied back to the host client (line 28), and
the folder is removed from the server (line 29).

Figure 5. Time reduction T ∗/T as a function of the number of es-
timable parameters (the x-axis is in logarithmic scale).

Conversely, the else condition (line 30) is true for the base
run. The simulation folder with the input files is copied to the
server (line 31), and the job is submitted (line 34). Then, the
algorithm periodically verifies the end of the simulation and
copies the results back to the host client (lines 39–49). It is
relevant to note that the base run is performed first, whereas
the other Np runs can be performed in parallel.

4 Application of the inverse methodology to synthetic
test cases

In the context of applying the BGA method described above,
it is worth noting that reference solutions for inverse prob-
lems are by definition unavailable, since the goal of the
methodology is the estimation of an upstream inflow hydro-
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Listing 1. Run forward model for the parallel bgaPEST scheme.

graph that is unknown at the beginning of the process. There-
fore, in this section the inflow hydrographs in two natural
rivers in northern Italy are estimated, and the reference so-
lutions, which are necessary in order to validate the inverse
procedure, are obtained as follows (D’Oria et al., 2014). Con-
sidering the domain in Fig. 6, a selected inflow discharge
Qref is routed from the upstream section A to the down-
stream boundary D, where a rating curve is imposed far away
from C. The resulting water level hydrographs are extracted
at sites B and C. The inverse procedure is then applied to the
sub-domain illustrated with solid line in Fig. 6 by assuming
the water levels in sites B and C (derived in step 1) as the ob-
servations and downstream boundary condition, respectively.
The information in sub-reach C–D is only preparatory for
setting up the synthetic cases, and it is not used in the inverse
procedure. Imposing a rating curve in D allows one to obtain
water levels with a non-unique stage–discharge relationship
in section C, which is more close to the real situations when
applying the inverse procedure. The methodology estimates
the inflow Qest assuming that no information is available on
the discharge (or water stage) at the inflow section A.

Quantitative information about the accuracy of the inverse
methodology is provided by evaluating the differences be-
tween the referenceQref and the estimatedQest hydrographs
by means of three different indicators. First, the Nash–
Sutcliffe efficiency criterion (Nash and Sutcliffe, 1970) Eh
was adopted according to the following relation;

Eh =

[
1−

∑Np
i=1(Qi

ref
−Qi

est)2∑Np
i=1(Qi

ref
−Q

ref
)2

]
· 100, (18)

Figure 6. Exemplification of a test case definition.

where Np is the number of parameters, Qref
i and Qest

i are the
ith reference and estimated inflow values, respectively, and
Q

ref
is the mean value of the reference hydrograph. Then, the

root-mean-square error (RMSE) was evaluated as follows:

RMSE=

√∑N
i=1(Qi

ref
−Qi

est)2

Np
. (19)

Finally, the estimation error in the peak discharge Ep was
assessed as

Ep =

[
Qest

p

Qref
p
− 1

]
· 100, (20)

where Qest
p and Qref

p denote the peak discharge value of the
estimated and reference hydrographs, respectively.

4.1 Inflow hydrograph estimation on the Parma River

The first test concerns the estimation of a hypothetical dis-
charge hydrograph at the entrance of the Parma River (north-
ern Italy). Figure 7a illustrates the studied domain and the
locations of the upstream boundary condition A, the obser-
vation site B, and the downstream boundary section C. The
domain includes a 20 km long embanked reach that is char-
acterized by several meanders and flood plains. As shown in
Fig. 7, the flow field significantly varies at low and high dis-
charge values due to the river morphology. At the beginning
of the flood wave, the flow is characterized by both low wa-
ter depths (Fig. 7b) and velocity (Fig. 7d). Conversely, at the
arrival of the flood peak, most of the meanders are cut by the
flow, as shown in Fig. 7c and e for water depths and veloc-
ity, respectively. This makes the adoption of 1-D numerical
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Figure 7. Map of the maximum simulated water depths for the Parma River. (a) the upstream (A) and downstream (C) boundary conditions
and the intermediate observation site (B) are indicated. With reference to the area marked with dotted white line in (a), (b) and (c) represent
the water depths and (d) and (e) the velocity field at low and high discharge values, respectively.

schemes not suitable to accurately describe the flood propa-
gation.

The bathymetry was derived from a 1 m resolution DTM
obtained through a LiDAR survey carried out in drought con-
dition. The domain was discretized by means of a Cartesian
grid with cell sizes 1x =1y = 4 m, and about 275× 103

computing cells were adopted. The Manning roughness coef-
ficient was assumed equal to 0.05 s m−1/3. The steady-state
values of water depth and velocity fields, obtained consid-
ering the initial discharge value of the hydrograph, were
adopted as initial conditions.

The inflow condition to be estimated was assumed as fol-
lows (D’Oria et al., 2015);

Q(t)= A+B · f (t,b,k), (21)

where t denotes the time, A the base flow (constant value), B
the volume above the base flow (constant value), and f the
gamma distribution, which states that

f (t,b,k)=
1

kb0(b)
tb−1e−

t
k , (22)

where 0(b) represents the gamma function defined through
the parameters b and k that denote the shape and the scale
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parameter, respectively. The parameters of the gamma distri-
bution were set as follows: A= 100 m3 s−1, B = 3×107 m3,
b = 6, and k = 10 000 s. The resulted flood wave presented
a peak value of about 630 m3 s−1 at time (b− 1)k ≈ 14 h
(Fig. 8a).

During the estimation, when the sensitivity to the first pa-
rameter p1 is investigated, the steady-state flow for the ini-
tial discharge is also recomputed. This means that parameter
p1 determines not only the first value of the estimated flood
wave but also governs the initial condition of the river reach.

The inflow hydrograph duration was limited to 40 h, and it
was discretized using 2 h time interval (Np = 21), whereas
the observation stage hydrographs were discretized every
0.5 h. The prior pdf was defined by means of a Gaussian co-
variance function, and the initial structural parameters were
set as reported in Table 1. In order to avoid non-physical dis-
charge values during the computations, non-negativity was
enforced to the unknown parameters by performing the es-
timation in a logarithmic space. The initial model parameter
values were defined by applying the Linesearch tool of the
bgaPEST, which dampens the solution between successive
iterations (Fienen et al., 2013) and avoids numerical instabil-
ities that may occur starting from a first choice of the param-
eters too far from the true one.

The inflow hydrograph was estimated first considering true
observations (the variance was set equal to 10−8 m2 to take
into account the truncation error). Then, the same discharge
hydrograph was defined corrupting the observed water lev-
els with random errors uniformly distributed with maximum
deviations of ±0.05 m and variance 10−3 m2 (Fig. 8b).

Qualitative assessment of the inverse methodology is
achieved by comparing the reference with the estimated in-
flow hydrograph, as well as the observed with the modelled
water levels in the observation site. Considering the simula-
tion without errors in the observations, Fig. 9 shows that the
estimated flood wave overlaps the reference one (a), and the
modelled water levels agree almost perfectly with the mea-
sured ones (b).

The results of the simulation with random errors corrupt-
ing the observations are depicted in Fig. 10. The estimated
flood wave matches well with the reference one again, pre-
senting a misfit relative to the peak value lower than 5 %, and
the modelled water levels similarly reproduce the reference
ones with a residual of less than 1 %. Only the last value of
the reconstructed flood wave is slightly overestimated, since
the more the tested parameter nears the end of the wave, the
fewer observations contain information about the related ef-
fects, as illustrated by the increasing range of the 95 % cred-
ibility interval. However, the “true” discharge values are in-
side the 95 % credibility interval, thus confirming the high
accuracy of the solution. In addition to this behaviour at
the end of the discharge hydrograph (that can be postponed
extending the hydrograph total duration), very small differ-
ences between the observed and modelled variables appear
when abrupt changes in the inflow function are present (e.g.

Table 1. Parma River: initial and estimated structural parameters
and epistemic error variance.

No random errors Random errors

σ 2
R

(m2) Initial – 1.00E-4
Estimated – 1.09E-3

σ 2
s (m6 s−2) Initial 5.00E+2 5.00E+2

Estimated 1.07E+3 5.36E+1

l (s) Initial 6.48E+4 6.48E+4
Estimated 2.90E+4 5.28E+4

Table 2. Parma River: Nash–Sutcliffe Eh, root-mean-square error
(RMSE), and error in the peak discharge Ep values.

Eh (–) RMSE (m3 s−1) Ep (%)

No random errors 99.99 0.49 −0.04
Random errors 99.88 6.65 0.15

the initial transition from the steady state to the flood wave).
This behaviour is due to the regularization introduced into the
solution by the prior information that imposes some degree
of continuity and/or smoothness to the estimated hydrograph.
However, the residuals are practically negligible, and abrupt
discontinuities in the inflow hydrographs are not common in
natural floods.

The structural parameters and the epistemic error variance
estimated in the presence and absence of corrupted observa-
tions are reported in Table 1.

An assessment of the methodology accuracy has been
quantified by means of the Nash–Sutcliffe Eh, root-mean-
square error (RMSE), and error in the peak discharge Ep val-
ues reported in Table 2. The Eh values are greater than 99 %,
theEp values are almost negligible and the RMSE is less than
0.5 m3 s−1 without random errors and reaches the maximum
value of 6 m3 s−1 with corrupted observations.

4.2 Inflow hydrograph estimation on the Secchia River

The second test case concerns both a different river reach
and shape of the inflow hydrograph. The studied domain in-
cludes a 25 km long reach of the Secchia River (northern
Italy) between the outflow of the flood control reservoir of
Rubiera-Campogalliano, located west of the town of Modena
(point A) and the gauging station of Ponte Bacchello (point
C), referring the water level observations to the gauging sta-
tion of Ponte Alto (point B) (Fig. 11). The modelled river
reach is characterized by the presence of many flood plains
and floodable areas that influence the flood propagation. The
bathymetry was derived from a 1 m resolution DTM obtained
through a LiDAR survey carried out in drought conditions.
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Figure 8. Parma River: flow and stage hydrographs at sections A and C, respectively, (a) and observation error distribution (b).

Figure 9. Parma River: reference and estimated inflow hydrograph (a) and observed (uncorrupted) and modelled water levels (b). The
residuals between reference and estimated values are also reported.

The domain was discretized by means of a non-uniform
Block-Uniform Quadtree (BUQ) grid (Vacondio et al., 2017),
resulting in 77× 103 computing cells. The Manning rough-
ness coefficient in the riverbed was assumed equal to
0.05 s m−1/3 (Vacondio et al., 2016).

The discharge hydrograph to be estimated is the flood
wave of a 20-year return period of the Secchia River, with
a peak value of about 780 m3 s−1. In order to increase the
non-smoothness of the wave, a quite abrupt increment that
separates the initial steady-state condition (100 m3 s−1) from
the rising limb was introduced (Fig. 12a). It is noteworthy
that this flow hydrograph is characterized by a pseudo-real
irregular shape, which cannot be properly approximated by
an analytical parametric function (e.g. Gamma distribution,
Pearson function). The inflow hydrograph ended in 72 h and

was discretized using 2 h time interval (Np = 37), whereas
the observed stage hydrograph was discretized every 0.5 h.
The inflow hydrograph was first estimated assuming that the
true water levels extracted at section B only had a truncation
error resulting in a variance of 10−8 m2, and then consider-
ing corrupted observations with random errors uniformly dis-
tributed with maximum deviations of ±0.05 m and variance
of 10−3 m2 (Fig. 12b). Figure 12a also depicts the discharge
hydrograph at the downstream boundary condition section
C in order to highlight the attenuation effect exerted by the
flood plains and floodable areas.

As before, the parameters were estimated in a logarithmic
space, and their initial values were calculated by adopting
the Linesearch tool of the bgaPEST (Fienen et al., 2013).
The prior pdf was described by means of a linear and Gaus-
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Figure 10. Parma River: reference and estimated (with a 95 % credibility interval) inflow hydrographs (a) and observed (corrupted) and
modelled water levels (b). The residuals between reference and estimated values are also reported.

Figure 11. Map of the water depths at the flood peak occurrence on
the Secchia River, with indication of the upstream (A) and down-
stream (C) boundary conditions and the intermediate observation
site (B).

sian covariance function in the configuration with and with-
out corrupted observations, respectively (Table 3).

As shown in Fig. 13 for the simulation without corrupted
observations, the estimated flood wave matches almost per-
fectly with the reference one, and the modelled water levels
agree with the measured ones.

The results of the simulation with corrupted observations
depicted in Fig. 14 highlight that both the shape and the peak
value are well captured. The small discrepancies between the
estimated peak flood wave and the reference one are essen-

Table 3. Secchia River: initial and estimated structural parameters
and epistemic error variance.

No random errors Random errors

θ (m6 s−3) Initial 1.00E-10 –
Estimated 3.97E-6 –

σ 2
R

(m2) Initial – 1.00E-4
Estimated – 1.11E-3

σ 2
s (m6 s−2) Initial – 5.00E+2

Estimated – 1.38E+1

l(s) Initial – 4.32E+4
Estimated – 3.88E+4

tially caused by the fact that the portion with the peak is dis-
cretized with only a few parameters and that the adopted co-
variance function smooths the solution.

The structural parameters and the epistemic error variance
estimated in the presence and absence of corrupted observa-
tions are reported in Table 3.

The indicators used for evaluating the accuracy of the
methodology are reported in Table 4. The Nash–Sutcliffe ef-
ficiency Eh values exceed 99 %, the errors in the peak flow
Ep are almost negligible, and the RMSE is less than 1 m3 s−1

without random errors and reaches the maximum value of
16 m3 s−1 with corrupted observations; these values high-
light the accuracy of the procedure in estimating the overall
shape and peak of the inflow hydrograph.

For this case, some details about the computational char-
acteristics are reported in Table 5.
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Figure 12. Secchia River: flow hydrograph in section A and flow and stage hydrographs in section C (a) and observation error distribution (b).

Figure 13. Secchia River: reference and estimated inflow hydrograph (a) and observed (uncorrupted) and modelled water levels (b). The
residuals between reference and estimated values are also reported.

Table 4. Secchia River: Nash–Sutcliffe Eh, root-mean-square error
(RMSE), and error in the peak discharge Ep values.

Eh (–) RMSE (m3 s−1) Ep (%)

No random errors 99.99 0.13 −0.02
Random errors 99.44 16.57 2.89

The computational time of the whole inflow hydrograph
simulation (72 h) is 9.62 min, whereas the simulations for
evaluating the Jacobian matrix and testing parameters 2–
37 required a computational time progressively lower than
9.62 min, thanks to the restart option illustrated in the Sect. 3.
In order to evaluate the total time required by the inverse

procedure, it is noteworthy that dealing with an HPC cluster
the global run time depends on the number of the available
GPUs. However, this test was performed using 10 GPUs, and
the computational cost of the 609 runs was about 13 h. Since
the implemented procedure that manages the interaction be-
tween host and server can be used for different HPC clusters,
the availability of a cluster equipped with Np GPUs would
have allowed the estimation of the flood wave in about 8 h.
On the other side, the adoption of the serial bgaPEST proce-
dure and the PARFLOOD code as routing model would have
required about 4 days of computations, which means about 8
times higher than the parallel procedure proposed here. Par-
ticularly interesting is the hypothetical evaluation of the com-
putational time for a serial BGA procedure and the adoption
of a serial CPU code as the forward hydraulic model. Vacon-
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Figure 14. Secchia River: reference and estimated (with a 95 % credibility interval) inflow hydrograph (a) and observed (corrupted) and
modelled water levels (b). The residuals between reference and estimated values are also reported.

Table 5. Secchia River: characteristics of the simulation.

Number of parameters Np 37
Physical total time of the inflow hydrograph 72 h
Physical total time of the run testing the 1st parameter p1, assuming 100 h for reaching the steady state condition 172 h
Computational time of the whole inflow hydrograph simulation (72 h) 9.62 min
Computational time of the run testing the 1st parameter (172 h) 19.38 min
Number of the BGA iterations Ni for the model parameter estimation 4
Number of the BGA iterations No for the structural parameter estimation 4
Total number of simulations Nt (Eq. 15) 609

dio et al. (2014) pointed out that the PARFLOOD code led
to a speed-up of up to 2 orders of magnitude if compared to
a serial CPU code. Therefore, if a serial BGA procedure and
the GPU forward model would have required about 4 com-
putational days, the inverse problem solution with a serial
forward code would have ended in 400 computational days,
making the use of the inverse procedure practically infeasi-
ble.

5 Reconstruction of a historical event: the December
2009 flood wave on the Secchia River

The inverse procedure is now validated by investigating the
December 2009 flooding event on the Secchia River, which
is one of the most significant events that occurred in the
last 10 years in this river. The Interregional Agency for the
Po River (AIPo) monitored the river and provided the water
stage hydrographs recorded in the two gauging stations indi-
cated in Fig. 11 with letters B and C, respectively. As shown

in Fig. 15, the recorded water levels present more than one
rising and recession limb; thus, besides the challenges related
to a real field application, this test also aims at addressing the
estimation of an inflow with multiple peaks. In order to es-
timate the discharge in section A (Fig. 11), the water levels
recorded at points B and C were assumed as observations
and the downstream boundary condition, respectively. The
event was simulated from 21:00 LT on 22 December 2009
to 12:00 LT on 26 December, with a total duration of 87 h.
The water levels were recorded every 0.5 h, whereas the un-
known inflow hydrograph was discretized into 88 parameters
(one per hour, Np = 88).

The studied domain is the same as the one previously
adopted for a synthetic inflow; thus, the reader is kindly re-
ferred to Sect. 4.2 for the information about bathymetry, ini-
tial conditions, and the roughness configuration.

As before, the parameters were estimated in a logarithmic
space and their initial values were calculated by adopting the
Linesearch tool of the bgaPEST (Fienen et al., 2013). The
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Figure 15. December 2009 recorded stage hydrographs on the Sec-
chia River at sections B and C.

Table 6. Secchia 2009 event: initial and estimated structural param-
eters.

σ 2
s (m6 s−2) l (s)

Initial 5.00E+2 6.48E+4
Estimated 1.49E+1 3.36E+4

prior pdf was described by means of a Gaussian covariance
function; the initial and estimated structural parameters are
reported in Table 6.

Figure 16 shows the estimated flood wave (and the 95 %
credibility interval), which presents an irregular shape and
two main peaks, as it could be expected from the observed
stage hydrograph. Moreover, an additional small intermedi-
ate peak is captured that was not as evident in the registered
water levels at section B (Fig. 15), even if a little pronounced
local maximum can be seen around 15:00 LT on 24 Decem-
ber 2009. The resulting flood wave presents neither instabili-
ties nor oscillations. During the computation, the variance of
the epistemic error was assumed equal to 10−3 m2; as shown
in Sect. 4, this means considering the observed water levels
corrupted with random errors with maximum deviations of
±0.05 m. In Fig. 16, the flood wave estimated by increasing
the variance by half an order of magnitude is also depicted
(dotted line); the solution appears slightly smoothed in a few
points but substantially similar when compared to the inflow
resulting in the smaller variance, which is thus considered
the estimated inflow of the studied event. The comparison
between modelled and measured water levels at section B is
presented in Fig. 17; it is relevant to note that the residuals
between the two hydrographs are mostly less than 2 cm, and
only in a few points of the first rising limb do they reach the
highest value of 18 cm.

With the aim of validating the methodology for this real
application, it is noteworthy that the upstream section of the
river is located immediately downstream from a flood control
reservoir equipped with water level sensors. Therefore, the
“reference” discharge hydrograph has been obtained from

Figure 16. Secchia 2009 event: estimated inflow hydrographs as-
suming the epistemic error variance equal to 10−3 m2 and 5×
10−3 m2. The 95 % credibility interval applies to the simulation
with the epistemic variance equal to 10−3 m2.

Figure 17. Secchia 2009 event: observed and modelled water levels
in section B. The residuals between recorded and estimated values
are also reported.

the dam’s geometrical data (i.e. number and dimension of
the bottom openings, crest length of the spillway, etc.) and
the recorded water levels adopting the classic hydraulic the-
ory of sluice gates and spillways.

Due to the uncertainty in evaluating the discharge coeffi-
cients and the fact that during flood events a large amount of
wood debris reduces the outflow discharge from the bottom
openings (especially during the depletion phase) and inter-
feres with the overflow spillway, the discharge hydrograph
has been calculated by adopting equally likely coefficients
(Fig. 18). The flood wave estimated by the inverse proce-
dure is in good agreement with the one calculated using the
flood reservoir data; the main differences are after the highest
peak, which is well reproduced, although the inverse method-
ology provides a smoother solution. For this real application,
even though the river roughness coefficient was already cal-
ibrated in previous studies (Vacondio et al., 2016), an addi-
tional inverse Bayesian estimation was performed with a dif-
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Figure 18. Secchia 2009 event: comparison among the inflow hy-
drographs obtained from the inverse procedure using two different
Manning coefficients and the envelope of different solutions ob-
tained using the records at the flood control reservoir.

ferent value in order to assess the effect of this coefficient on
the solution. Particularly, the Manning coefficient, originally
set to 0.05 s m−1/3, was decreased by 15 % (0.0425 s m−1/3),
which, for example, can happen due to seasonal changes in
vegetation. As shown in Fig. 18, the estimated flood waves
are similar, and the highest difference, which is in corre-
spondence with the main peak, is less than 6 %. Therefore,
the influence of assuming a “wrong” roughness coefficient is
less than linear in the discharge estimation. Despite all the
involved approximations, this comparison confirms that the
proposed inverse procedure is capable of estimating inflow
hydrographs with multiple peaks and irregular shapes in real
rivers.

6 Conclusions

In this work the inverse problem of estimating the unknown
inflow hydrograph in an upstream-ungauged section, having
water level information only in downstream sites, has been
solved by means of a Bayesian methodology. The key as-
pects in the solution of this problem have been the adoption
of a parallel two-dimensional SWE code running on GPUs
and the performance of the simulations over a HPC cluster.
The parallelization of the runs useful for the Jacobian matrix
computation and the implementation of an ad hoc procedure,
which allows one to take advantage of any HPC cluster with
GPUs, have provided a remarkable reduction of the compu-
tational costs. In a test case, this parallel procedure reduced
the computational time by a factor of 8 against running the
two-dimensional SWE code on a single GPU. Furthermore,
the analysis of the runtimes has highlighted that the use of a
parallel hydraulic forward routing model is the conditio sine
qua non for solving this type of inverse problem, whereas the
adoption of a serial code would lead to inadmissible compu-
tational times. The inverse procedure has been validated con-
sidering two different natural rivers; in both tests, no instabil-
ities due to the adopted inverse procedure or to the availabil-

ity of a stable, fast, and accurate forward hydraulic model
arose. Moreover, the obtained results have highlighted that
the implemented procedure estimates the unknown inflow
hydrographs with different and irregular shapes and in the
presence of corrupted observations well; quantitative indica-
tors have proved the accuracy of the methodology. In all the
presented tests, the resulting Nash–Sutcliffe efficiency cri-
terion exceeded 99 %, the error in the peak discharge was
less than 3 %, and the RMSE was less than 2 %. Finally, the
proposed inverse procedure allowed for the estimation of a
historical flood wave characterized by the presence of mul-
tiple peaks, without causing instabilities in the solution. The
test cases were simulated while taking advantage of the HPC
cluster of the University of Parma. However, since the im-
plemented procedure is general, it is possible to adopt clouds
of GPUs or online mini clusters, which are now common
and accessible to everyone. The adopted Bayesian software
(bgaPEST) is open access, and two-dimensional SWE mod-
els are a quite common tools for practitioners, even if few
of them were fast enough to perform the necessary simula-
tions with a reasonable computing time until now. Therefore,
the 2-D coupled methodology proposed here can be adopted
in the near future by professional hydrologists, too, who are
involved, for example, in the design of hydraulic infrastruc-
tures, as well as for engineers working on water resource
management (i.e. irrigation systems, hydroelectric power sta-
tions, etc.) or forensic activities. The future development of
the methodology will also focus on the possibility of recon-
structing the flood waves in the presence of levee breaches
and flooding outside the river region, where the adoption of
a two-dimensional SWE model is mandatory.

Data availability. The bgaPEST software is open source and avail-
able at the link: https://pubs.usgs.gov/tm/07/c09/ (Fienen et al.,
2013) The PARFLOOD model is available for non-commercial
scientific collaboration upon request from Renato Vacondio (re-
nato.vacondio@unipr.it). The recorded water levels on the Secchia
River were provided by the Interregional Agency for the Po River
(AIPo; https://www.agenziapo.it/, last access: 12 October 2018).

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was partially supported by Ministry
of Education, Universities and Research under the Scientific
Independence of young Researchers project, grant number
RBSI14R1GP, CUP code D92I15000190001. This research
benefits from the HPC (High Performance Computing) facility of
the University of Parma, Italy. The Interregional Agency for the Po
River (AIPo) is also gratefully acknowledged for providing data.
The authors are grateful to the editor, the anonymous reviewer,
and Antonis D. Koussis for the valuable suggestions on the early
version of this manuscript.

www.hydrol-earth-syst-sci.net/22/5299/2018/ Hydrol. Earth Syst. Sci., 22, 5299–5316, 2018

https://pubs.usgs.gov/tm/07/c09/
https://www.agenziapo.it/


5316 A. Ferrari et al.: Discharge hydrograph estimation at upstream-ungauged sections

Edited by: Roberto Greco
Reviewed by: Antonis D. Koussis and one anonymous referee

References

Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley &
Sons, 2011.

Bruen, M. and Dooge, J. C. I.: Harmonic analysis of the stability
of reverse routing in channels, Hydrol. Earth Syst. Sci., 11, 559–
568, https://doi.org/10.5194/hess-11-559-2007, 2007.

Butera, I., Tanda, M. G., and Zanini, A.: Simultaneous identifica-
tion of the pollutant release history and the source location in
groundwater by means of a geostatistical approach, Stoch. Env.
Res. Risk A., 27, 1269–1280, 2013.

Das, A.: Reverse stream flow routing by using Muskingum models,
Sadhana, 34, 483–499, 2009.

Doherty, J. E.: PEST, Model-Independent Parameter Estimation –
User Manual, sixth ed., Tech. rep., Watermark Numerical Com-
puting, Brisbane, Australia, 2016.

Dooge, J. and Bruen, M.: Problems in reverse routing, Acta Geo-
physica Polonica, 53, 357–371, 2005.

D’Oria, M. and Tanda, M. G.: Reverse flow routing in open chan-
nels: A Bayesian Geostatistical Approach, J. Hydrol., 460, 130–
135, 2012.

D’Oria, M., Mignosa, P., and Tanda, M. G.: Bayesian estimation of
inflow hydrographs in ungauged sites of multiple reach systems,
Advances in Water Resources, 63, 143–151, 2014.

D’Oria, M., Mignosa, P., and Tanda, M. G.: An inverse method to
estimate the flow through a levee breach, Adv. Water Resour., 82,
166–175, 2015.

Eli, R., Wiggert, J., and Contractor, D.: Reverse flow routing by the
implicit method, Water Resour. Res., 10, 597–600, 1974.

Fienen, M., Hunt, R., Krabbenhoft, D., and Clemo, T.: Ob-
taining parsimonious hydraulic conductivity fields using head
and transport observations: A Bayesian geostatistical param-
eter estimation approach, Water Resour. Res., 45, W08405,
https://doi.org/10.1029/2008WR007431, 2009.

Fienen, M. N., Clemo, T., and Kitanidis, P. K.: An inter-
active Bayesian geostatistical inverse protocol for hy-
draulic tomography, Water Resour. Res., 44, W00B01,
https://doi.org/10.1029/2007WR006730, 2008.

Fienen, M. N., D’Oria, M., Doherty, J. E., and Hunt, R. J.:
Approaches in highly parameterized inversion: bgaPEST, a
Bayesian geostatistical approach implementation with PEST:
documentation and instructions, Tech. rep., US Geological Sur-
vey, available at: https://pubs.usgs.gov/tm/07/c09/ (last access:
12 October 2018), 2013.

Glickman, M. E. and Van Dyk, D. A.: Basic bayesian methods, Top-
ics in Biostatistics, 319–338, 2007.

Hoeksema, R. J. and Kitanidis, P. K.: An application of the geo-
statistical approach to the inverse problem in two-dimensional
groundwater modeling, Water Resour. Res., 20, 1003–1020,
1984.

Kitanidis, P. K.: Quasi-linear geostatistical theory for inversing, Wa-
ter Resour. Res., 31, 2411–2419, 1995.

Kitanidis, P. K. and Vomvoris, E. G.: A geostatistical approach to
the inverse problem in groundwater modeling (steady state) and
one-dimensional simulations, Water Resour. Res., 19, 677–690,
1983.

Koussis, A. D. and Mazi, K.: Reverse flood and pollution routing
with the lag-and-route model, Hydrolog. Sci. J., 61, 1952–1966,
2016.

Koussis, A. D., Mazi, K., Lykoudis, S., and Argiriou, A. A.:
Reverse flood routing with the inverted Muskingum storage
routing scheme, Nat. Hazards Earth Syst. Sci., 12, 217–227,
https://doi.org/10.5194/nhess-12-217-2012, 2012.

Leonhardt, G., D’Oria, M., Kleidorfer, M., and Rauch, W.: Estimat-
ing inflow to a combined sewer overflow structure with storage
tank in real time: evaluation of different approaches, Water Sci.
Technol., 70, 1143–1151, 2014.

Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geo-
statistical approach to surface flux estimation of atmo-
spheric trace gases, J. Geophys. Res.-Atmos., 109, D14109,
https://doi.org/10.1029/2003JD004422, 2004.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290, 1970.

Saghafian, B., Jannaty, M., and Ezami, N.: Inverse hydrograph rout-
ing optimization model based on the kinematic wave approach,
Eng. Optimiz., 47, 1031–1042, 2015.

Snodgrass, M. F. and Kitanidis, P. K.: A geostatistical approach to
contaminant source identification, Water Resour. Res., 33, 537–
546, 1997.

Szymkiewicz, R.: Solution of the inverse problem for the Saint
Venant equations, J. Hydrol., 147, 105–120, 1993.

Vacondio, R., Dal Palù, A., and Mignosa, P.: GPU-enhanced finite
volume shallow water solver for fast flood simulations, Environ.
Modell. Softw., 57, 60–75, 2014.

Vacondio, R., Aureli, F., Ferrari, A., Mignosa, P., and Dal Palù, A.:
Simulation of the January 2014 flood on the Secchia River using
a fast and high-resolution 2D parallel shallow-water numerical
scheme, Nat. Hazards, 80, 103–125, 2016.

Vacondio, R., Dal Palù, A., Ferrari, A., Mignosa, P., Aureli, F., and
Dazzi, S.: A non-uniform efficient grid type for GPU-parallel
Shallow Water Equations models, Environ. Modell. Softw., 88,
119–137, 2017.

Zucco, G., Tayfur, G., and Moramarco, T.: Reverse flood routing in
natural channels using genetic algorithm, Water Resour. Manag.,
29, 4241–4267, 2015.

Hydrol. Earth Syst. Sci., 22, 5299–5316, 2018 www.hydrol-earth-syst-sci.net/22/5299/2018/

https://doi.org/10.5194/hess-11-559-2007
https://doi.org/10.1029/2008WR007431
https://doi.org/10.1029/2007WR006730
https://pubs.usgs.gov/tm/07/c09/
https://doi.org/10.5194/nhess-12-217-2012
https://doi.org/10.1029/2003JD004422

	Abstract
	Introduction
	Theory of the Bayesian geostatistical approach
	Bayes' theorem
	The likelihood function
	The prior probability density function
	The posterior probability density function


	Description of the Bayesian estimation procedure
	Parallelization of the Jacobian matrix evaluation
	The forward model

	Application of the inverse methodology to synthetic test cases
	Inflow hydrograph estimation on the Parma River
	Inflow hydrograph estimation on the Secchia River

	Reconstruction of a historical event: the December 2009 flood wave on the Secchia River
	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

