Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 22, issue 8
Hydrol. Earth Syst. Sci., 22, 4425–4447, 2018
https://doi.org/10.5194/hess-22-4425-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 4425–4447, 2018
https://doi.org/10.5194/hess-22-4425-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Aug 2018

Research article | 22 Aug 2018

How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps

Manuel Antonetti and Massimiliano Zappa

Related authors

Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations
Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016,https://doi.org/10.5194/hess-20-2929-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Which rainfall score is more informative about the performance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020,https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020,https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020,https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020,https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary

Cited articles

Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H.: Assessing the impact of climate change on water resources in Iran, Water Resour. Res., 45, W10434, https://doi.org/10.1029/2008WR007615, 2009.
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014.
Antonetti, M., Buss, R., Scherrer, S., Margreth, M., and Zappa, M.: Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations, Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016, 2016.
Antonetti, M., Scherrer, S., Kienzler, P. M., Margreth, M., and Zappa, M.: Process-based Hydrological Modelling: The Potential of a Bottom-Up Approach for Runoff Predictions in Ungauged Catchments, Hydrol. Process., 31, 2902–2920, https://doi.org/10.1002/hyp.11232, 2017.
Bahremand, A.: HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation, Hydrol. Earth Syst. Sci., 20, 1433–1445, https://doi.org/10.5194/hess-20-1433-2016, 2016.
Publications Copernicus
Download
Short summary
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or modellers' (top-down) thinking and forced them with data of increasing accuracy. Results showed that the differences in performance arising from the forcing data were due to compensation effects. We also found that modellers' and experimentalists' concept of model realism differs, and the level of detail a model should have to reproduce the processes expected must be agreed in advance.
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or...
Citation