Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 4
Hydrol. Earth Syst. Sci., 22, 2589–2605, 2018
https://doi.org/10.5194/hess-22-2589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 2589–2605, 2018
https://doi.org/10.5194/hess-22-2589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Apr 2018

Research article | 27 Apr 2018

A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage

Peter Metcalfe et al.

Related authors

Hydrology modelling R packages: a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-498,https://doi.org/10.5194/hess-2020-498, 2020
Preprint under review for HESS
Short summary
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020,https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
A history of TOPMODEL
Keith J. Beven, Rob Lamb, Mike J. Kirkby, and Jim E. Freer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-409,https://doi.org/10.5194/hess-2020-409, 2020
Revised manuscript accepted for HESS
Short summary
The era of Infiltration
Keith Beven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-308,https://doi.org/10.5194/hess-2020-308, 2020
Revised manuscript accepted for HESS
Short summary
A history of the concept of time of concentration
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020,https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020,https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Physically based model for gully simulation: application to the Brazilian semiarid region
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020,https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020,https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018,https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci., 22, 5759–5779, https://doi.org/10.5194/hess-22-5759-2018,https://doi.org/10.5194/hess-22-5759-2018, 2018
Short summary

Cited articles

Barber, N. and Quinn, P.: Mitigating diffuse water pollution from agriculture using soft engineered runoff attenuation features, Area, 44, 454–462, 2012. 
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, 2006. 
Beven, K.: Rainfall-Runoff Modelling: The Primer, 2nd Edn., Wiley-Blackwell, Chichester, UK, ISBN-13: 978-0-470-71459-1, 2012. 
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992. 
Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28, 5897–5918, 2014. 
Publications Copernicus
Download
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Flooding is a significant hazard and extreme events in recent years have focused attention on...
Citation