Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-221-2018
https://doi.org/10.5194/hess-22-221-2018
Research article
 | 
12 Jan 2018
Research article |  | 12 Jan 2018

Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

Zexuan Xu, Bill X. Hu, and Ming Ye

Related authors

Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023,https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Uncertainty analysis
Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-15,https://doi.org/10.5194/hess-2023-15, 2023
Revised manuscript accepted for HESS
Short summary
Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020,https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Interpretation of multi-scale permeability data through an information theory perspective
Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 24, 3097–3109, https://doi.org/10.5194/hess-24-3097-2020,https://doi.org/10.5194/hess-24-3097-2020, 2020
Short summary
Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019,https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019,https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary

Cited articles

Bear, J.: Seawater intrusion in coastal aquifers, Springer Science & Business Media, 1999. 
Calvache, M. and Pulido-Bosch, A.: Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain, Environ. Geol., 30, 215–223, 1997. 
Chang, Y., Wu, J., Jiang, G., and Kang, Z.: Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model, J. Hydrol., 548, 75–87, 2017. 
Chen, Z., Hartmann, A., and Goldscheider, N.: A new approach to evaluate spatiotemporal dynamics of controlling parameters in distributed environmental models, Environ. Model. Softw., 87, 1–16, 2017. 
Custodio, E.: Salt-fresh water interrelationships under natural conditions, Groundwater Problems in Coastal Areas, UNESCO Studies and Reports in Hydrology, 45, 14–96, 1987. 
Download
Short summary
This study helps hydrologists better understand the parameters in modeling seawater intrusion in a coastal karst aquifer. Local and global sensitivity studies are conducted to evaluate a density-dependent numerical model of seawater intrusion. The sensitivity analysis indicates that karst features are critical for seawater intrusion modeling, and the evaluation of hydraulic conductivity is biased in continuum SEAWAT model. Dispervisity is no longer important in the advection-dominated aquifer.