Articles | Volume 21, issue 12
https://doi.org/10.5194/hess-21-6485-2017
https://doi.org/10.5194/hess-21-6485-2017
Research article
 | 
20 Dec 2017
Research article |  | 20 Dec 2017

Spatiotemporal response of the water cycle to land use conversions in a typical hilly–gully basin on the Loess Plateau, China

Linjing Qiu, Yiping Wu, Lijing Wang, Xiaohui Lei, Weihong Liao, Ying Hui, and Xianyong Meng

Related authors

Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci., 28, 5541–5555, https://doi.org/10.5194/hess-28-5541-2024,https://doi.org/10.5194/hess-28-5541-2024, 2024
Short summary
Real-time reservoir flood control operation enhanced by data assimilation
Jingwen Zhang, Ximing Cai, Xiaohui Lei, Pan Liu, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-304,https://doi.org/10.5194/hess-2020-304, 2020
Preprint withdrawn
Short summary
The impact of elevation and flow dynamics on hydrological drought and wet spell characteristics in semi-arid southeast Arizona
Mengtian Lu, Pieter Hazenberg, Xiaohui Lei, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-356,https://doi.org/10.5194/hess-2019-356, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary

Cited articles

Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment – Part 1: Model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Bari, M. and Smettem, K. R. J.: Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions, Hydrol. Earth Syst. Sci., 8, 903–922, https://doi.org/10.5194/hess-8-903-2004, 2004.
Bi, H., Zhang, J., Zhu, J., Lin, L., Guo, C., Ren, Y., Yun, L., and Ma, N.: Spatial dynamics of soil moisture in a complex terrain in the semi-arid Loess Plateau region, China, J. Am. Water Resour. As., 44, 1121–1131, https://doi.org/10.1111/j.1752-1688.2008.00236.x, 2008.
Download
Short summary
What are the effects of the Grain for Green project on the water balance in the Loess Plateau of China? Our modeling study indicated that surface runoff and water yield exhibited a decreasing trend with the expansion of woodland on the sloping land because of overland flow retention and intensification of ET, while these effects were at the expense of soil water reduction in the region. Thus, land use planning should consider all water balance components to promote watershed sustainability.
Share