Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5709-2017
https://doi.org/10.5194/hess-21-5709-2017
Research article
 | 
17 Nov 2017
Research article |  | 17 Nov 2017

New insights into the differences between the dual node approach and the common node approach for coupling surface–subsurface flow

Rob de Rooij

Related authors

Technical note: Finite element formulations to map discrete fracture elements in three-dimensional groundwater models
Rob de Rooij
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-289,https://doi.org/10.5194/hess-2024-289, 2024
Preprint under review for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025,https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025,https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary

Cited articles

An, H., and Yu, S.: Finite volume integrated surface- subsurface flow modeling on nonorthogonal grids, Water Resour. Res., 50, 2312–2328, 2014.
Blazek, J.: Computational fluid dynamics: Principles and applications, Elsevier, Oxford, UK, 2005.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.: Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512, https://doi.org/10.1029/2008WR007536, 2010.
Delfs, J. O., Park, C. H., and Kolditz, O.: A sensitivity analysis of Hortonian flow, Adv. Water Res., 32, 1386–1395, 2009.
de Rooij, R., Graham, W., and Maxwell, R.: A particle-tracking scheme for simulating pathlines in coupled surface-subsurface flows, Adv. Water Res., 52, 7–18, 2013a.
Download
Short summary
The dual node and common node approach are widely used to simulate coupled surface–subsurface flows. In this study it is shown that the dual node approach should be conceptualized as a one-sided finite difference approximation of the vertical head gradients at the land surface. This consistent dual node approach can be more accurate as well as as more numerically efficient than the common node approach.