Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5709-2017
https://doi.org/10.5194/hess-21-5709-2017
Research article
 | 
17 Nov 2017
Research article |  | 17 Nov 2017

New insights into the differences between the dual node approach and the common node approach for coupling surface–subsurface flow

Rob de Rooij

Related authors

Technical note: Finite element formulations to map discrete fracture elements in three-dimensional groundwater models
Rob de Rooij
Hydrol. Earth Syst. Sci., 29, 2697–2705, https://doi.org/10.5194/hess-29-2697-2025,https://doi.org/10.5194/hess-29-2697-2025, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary

Cited articles

An, H., and Yu, S.: Finite volume integrated surface- subsurface flow modeling on nonorthogonal grids, Water Resour. Res., 50, 2312–2328, 2014.
Blazek, J.: Computational fluid dynamics: Principles and applications, Elsevier, Oxford, UK, 2005.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.: Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512, https://doi.org/10.1029/2008WR007536, 2010.
Delfs, J. O., Park, C. H., and Kolditz, O.: A sensitivity analysis of Hortonian flow, Adv. Water Res., 32, 1386–1395, 2009.
de Rooij, R., Graham, W., and Maxwell, R.: A particle-tracking scheme for simulating pathlines in coupled surface-subsurface flows, Adv. Water Res., 52, 7–18, 2013a.
Download
Short summary
The dual node and common node approach are widely used to simulate coupled surface–subsurface flows. In this study it is shown that the dual node approach should be conceptualized as a one-sided finite difference approximation of the vertical head gradients at the land surface. This consistent dual node approach can be more accurate as well as as more numerically efficient than the common node approach.
Share