Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4449-2017
https://doi.org/10.5194/hess-21-4449-2017
Research article
 | 
07 Sep 2017
Research article |  | 07 Sep 2017

An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

Tadesse Alemayehu, Ann van Griensven, Befekadu Taddesse Woldegiorgis, and Willy Bauwens

Related authors

CoSWAT-WQ v1.0: a high-resolution community global SWAT+ water quality model
Albert Nkwasa, Celray James Chawanda, Maria Theresa Nakkazi, and Ann van Griensven
EGUsphere, https://doi.org/10.5194/egusphere-2025-703,https://doi.org/10.5194/egusphere-2025-703, 2025
Short summary
A High-Resolution Global SWAT+ Hydrological Model for Impact Studies
Celray James Chawanda, Ann van Griensven, Albert Nkwasa, Jose Pablo Teran Orsini, Jaehak Jeong, Soon-Kun Choi, Raghavan Srinivasan, and Jeffrey G. Arnold
EGUsphere, https://doi.org/10.5194/egusphere-2025-188,https://doi.org/10.5194/egusphere-2025-188, 2025
Short summary
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption
Anna Msigwa, Celray James Chawanda, Hans C. Komakech, Albert Nkwasa, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 4447–4468, https://doi.org/10.5194/hess-26-4447-2022,https://doi.org/10.5194/hess-26-4447-2022, 2022
Short summary
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022,https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary

Cited articles

Alemayehu, T., van Griensven, A., and Bauwens, W.: Evaluating CFSR and WATCH Data as Input to SWAT for the Estimation of the Potential Evapotranspiration in a Data-Scarce Eastern-African Catchment, J. Hydrol. Eng., 21, 5015028, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001305, 2015.
Alemayehu, T., van Griensven, A., Senay, G. B., and Bauwens, W.: Evapotranspiration Mapping in a Heterogeneous Landscape Using Remote Sensing and Global Weather Datasets: Application to the Mara Basin, East Africa, Remote Sens., 9, 390, https://doi.org/10.3390/rs9040390, 2017.
Andersen, J., Dybkjaer, G., Jensen, K. H., Refsgaard, J. C., and Rasmussen, K.: Use of remotely sensed precipitation and leaf area index in a distributed hydrological model, J. Hydrol., 264, 34–50, https://doi.org/10.1016/S0022-1694(02)00046-X, 2002.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Download
Short summary
The goal of this paper is to improve the vegetation growth modelling in SWAT for tropical ecosystems. Therefore, we propose a straightforward but robust soil moisture index (SMI) – a quotient of rainfall (P) and reference evapotranspiration (ETr) – to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the simulated LAI corresponds well with the MODIS LAI for for evergreen forest, savanna grassland and shrubland.
Share