Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 3
Hydrol. Earth Syst. Sci., 21, 1491–1514, 2017
https://doi.org/10.5194/hess-21-1491-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Vegetation changes under a changing environment and the impacts...

Hydrol. Earth Syst. Sci., 21, 1491–1514, 2017
https://doi.org/10.5194/hess-21-1491-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Mar 2017

Research article | 10 Mar 2017

An integrated probabilistic assessment to analyse stochasticity of soil erosion in different restoration vegetation types

Ji Zhou et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by Editor and Referees) (29 Nov 2016) by Lixin Wang
AR by Ji Zhou on behalf of the Authors (24 Dec 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (30 Dec 2016) by Lixin Wang
RR by Anonymous Referee #1 (04 Jan 2017)
RR by Chiyuan Miao (16 Feb 2017)
ED: Publish as is (16 Feb 2017) by Lixin Wang
Publications Copernicus
Download
Short summary
We constructed an integrated probabilistic assessment to describe, simulate and evaluate the stochasticity of soil erosion in restoration vegetation in the Loess Plateau. We found that morphological structures in vegetation are the source of different stochasticities of soil erosion, and proved that the Poisson model is fit for predicting erosion stochasticity. This assessment could be an important complement to develop restoration strategies to improve understanding of stochasticity of erosion.
We constructed an integrated probabilistic assessment to describe, simulate and evaluate the...
Citation