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Abstract. The stochasticity of soil erosion reflects the vari-
ability of soil hydrological response to precipitation in a
complex environment. Assessing this stochasticity is impor-
tant for the conservation of soil and water resources; how-
ever, the stochasticity of erosion event in restoration vegeta-
tion types in water-limited environment has been little inves-
tigated. In this study, we constructed an event-driven frame-
work to quantify the stochasticity of runoff and sediment
generation in three typical restoration vegetation types (Ar-
meniaca sibirica (T1), Spiraea pubescens (T2) and Artemisia
copria (T3)) in closed runoff plots over five rainy seasons
in the Loess Plateau of China. The results indicate that,
under the same rainfall condition, the average probabilities
of runoff and sediment in T1 (3.8 and 1.6 %) and T3 (5.6
and 4.4 %) were lowest and highest, respectively. The bi-
nomial and Poisson probabilistic model are two effective
ways to simulate the frequency distributions of times of
erosion events occurring in all restoration vegetation types.
The Bayes model indicated that relatively longer-duration
and stronger-intensity rainfall events respectively become the
main probabilistic contributors to the stochasticity of an ero-
sion event occurring in T1 and T3. Logistic regression mod-
elling highlighted that the higher-grade rainfall intensity and
canopy structure were the two most important factors to re-
spectively improve and restrain the probability of stochas-
tic erosion generation in all restoration vegetation types. The
Bayes, binomial, Poisson and logistic regression models con-
stituted an integrated probabilistic assessment to systemat-
ically simulate and evaluate soil erosion stochasticity. This
should prove to be an innovative and important complement
in understanding soil erosion from the stochasticity view-

point, and also provide an alternative to assess the efficacy of
ecological restoration in conserving soil and water resources
in a semi-arid environment.

1 Introduction

Soil erosion is a global environmental problem. In recent
centuries, the erosion rate worldwide has been accelerating
due to climate change and anthropogenic activities, caus-
ing soil deterioration and terrestrial ecosystem degradation
(Jiao et al., 1999; Marques et al., 2008; Fu et al., 2011;
Portenga and Bierman, 2011). The uncertainty and inten-
sity of soil erosion are major features of the erosion phe-
nomenon. Although many studies have concentrated on the
intensity of erosion at different spatiotemporal scales (Can-
tón et al., 2011; Puigdefábregas et al., 1999), the uncer-
tainty of soil erosion generation is a further challenge for
researchers working to improve the accuracy of erosion pre-
diction. The stochasticity of environment and spatiotemporal
heterogeneity of soil loss is the main influence on the ran-
domness of runoff production and sediment transportation in
natural conditions (Kim et al., 2016). But the complex mech-
anism of erosion generation also increases the uncertainty
and variation of erosion processes (Sidorchuk, 2005, 2009).
Therefore, how to effectively describe erosion stochasticity
and to reasonably assess its impacting factors is necessary
and important for understating soil erosion science from the
perspective of randomness.
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First, combinations of various probabilistic, conceptual
and physical models have been reported as different inte-
grated approaches to describe the stochasticity of soil ero-
sion intensity (see Table 1). As one form of erosion in-
tensity, the runoff has been shown as a stochastic process
by different mathematic simulation models. Some studies
(Moore, 2007; Janzen and McDonnell, 2015) have also simu-
lated the stochasticity, and further quantified the randomness
of runoff production and its connectivity dynamics in hill-
slope and catchment scales by using different probabilistic
distribution functions and conceptual models. In these stud-
ies, the theory-driven conceptual models simplified the main
hydrological behaviours related to runoff production, high-
lighting the stochastic effects of infiltration and precipita-
tion on runoff processes. Based on the above precondition,
the data-driven probabilistic models further simulated the
stochastic runoff production by mapping or calibrating the
difference between observed and predicted probabilistic val-
ues. As a result, the stochastic-conceptual approaches have
formed an effective framework to model rainfall–runoff pro-
cesses (Freeze, 1980), as well as to assess flood forecasting
(Yazdi et al., 2014).

The stochasticity of soil erosion rate which is another pat-
tern of erosion intensity has been investigated by probabilis-
tic and physical models in some studies. The theory-driven
physical models in these studies (Sidorchuk, 2005) integrated
hydrological and mechanical mechanisms of overflow and
soil structure with sediment transpiration processes, stress-
ing the stochastic effect of physical principles on erosion
rate in different spatial scales (Table 1). Sidorchuk (2005) in-
troduced stochastic variables and parameters into probabilis-
tic models by randomizing the physical properties of over-
flow and soil structure. This approach developed the under-
standing of uncertainty of sediment transpiration processes,
causing the randomness simulation to better fit the reality
of stochastic erosion rate (Sidorchuk, 2009). Additionally,
the stochasticity of soil erosion rate also reflected the ero-
sion risk which was assessed by the integration of a theory-
driven empirical model with geostatistics (Jiang et al., 2012;
Wang et al., 2002; Kim et al., 2016). Erosion risk analysis
has generally concentrated on the uncertainty or variability
of soil erosion rate at catchment and regional scales, high-
lighting the impact of the spatiotemporal heterogeneous rain-
fall and other environment conditions on the stochastic ero-
sion rate. In summary, these probabilistic and physical mod-
els constituted a systematical analysis framework closely re-
lated to the principle of water balance and basic hydrological
assumptions. This effectively described the randomness of
soil erosion rate affected by complex hydrological processes
(Bhunya et al., 2007). However, few studies have been made
to analyse the stochasticity of soil erosion events. In particu-
lar, there has been little effort to systematically investigate
how the signal of stochastic rainfall is transmitted to ero-
sion events occurring in different restoration vegetation types
based on observational data rather than on other model as-

sumptions. Yet such event-based investigation deriving from
specific experiment results may be more practically mean-
ingful for understanding the stochastic interaction between
rainfall and erosion events.

Secondly, the probabilistic approaches have also been re-
ported as a crucial tool to describe the stochasticity of fac-
tors affecting soil erosion rate (Table 1). The randomness
of soil water content (Ridolfi et al., 2003), antecedent soil
moisture (Castillo et al., 2003), infiltration rate (Wang and
Tartakovsky, 2011) and soil erodibility (Wang et al., 2001) in
heterogeneous soil types have all been modelled by different
probability distribution functions. The stochasticity of soil
hydrological characteristics related to erosion rate mainly
impacted in various ways the spatiotemporal distribution of
erosion rate, especially at regional or larger spatial scales.
Meanwhile, as the main driving force of soil erosion gener-
ation, the uncertainty of rainfall event to some extent rep-
resents the environment stochasticity (Andrés-Doménech et
al., 2010). Eagleson in 1978 applied probabilistic-trait mod-
els to characterise the stochasticity of rainfall event by us-
ing Poisson and Gamma probability distribution functions.
The stochastic rainfall distribution in different spatiotempo-
ral scales has also been applied to examine the effect of
runoff and sediment yield (Lopes, 1996), to calibrate the
runoff–flood hydrological model (Haberlandt and Radtke,
2014), as well as to evaluate sewer overflow in urban catch-
ment (Andrés-Doménech et al., 2010).

The role of spatial distribution of vegetation in controlling
the soil erosion rate under different spatiotemporal scales has
been well recognized (Wischmeier and Smith, 1978; Puigde-
fábregas, 2005). How the plants reduce soil erosion rate has
also been illuminated and interpreted by various physical and
empirical models (Liu, 2001; Mallick et al., 2014; Prasan-
nakumar et al., 2011). In theory, Puigdefábregas (2005) pro-
posed vegetation-driven spatial heterogeneity (VDSH) to ex-
plain the relationship between vegetation patterns and ero-
sion fluxes, which improves understanding of the hydrolog-
ical function of plants in erosion processes. The trigger–
transfer–reserve–pulse (TTRP) framework proposed by Lud-
wig in 2005 systematically explored the responses and feed-
back between vegetation patches and runoff erosion during
ecohydrological processes. Theoretically, the stochastic sig-
nals of different rainfall events could also be disturbed by the
hydrological function of plants, finally affecting the random-
ness of runoff and sediment events occurring in various veg-
etation types. However, little effort has been made to explore
the effect of different vegetation types on the stochasticity of
soil erosion events. In particular, few approaches have been
used to analyse how the properties of rainfall, soil and vege-
tation impact on the stochastic erosion events through event-
based investigation deriving from observational data rather
than via theory-based models. Actually, logistic regression
modelling (LRM) probably deals with the above problems.
LRM evaluates the causal effects of categorical variables on
dependent variables, and quantifies the probabilistic contri-
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Table 1. Summary of the research on the stochasticity of soil erosion rate and the stochasticity of factors affecting soil erosion rate.

aStochasticity
(uncertainty)

bApproach or method cDriven types Main hydrological behaviours Main influencing factors Spatiotemporal scale Reference

Stochasticity of soil erosion rate

Runoff connectivity Probabilistic model
Conceptual model

1. Data-mapping
2. Theory

Infiltration processes
Precipitation

Topography
Soil depth

Hillslope scale in the USA Janzen and McDonnell (2015)

Runoff processes Probabilistic model
Conceptual model

1. Simulation
2. Theory

Infiltration processes
Precipitation

Topography Janzen and McDonnell (2015)

Runoff production Probabilistic model
Conceptual model

1. Theory
2. Simulation

Runoff absorption
Water storage
Infiltration capacity

Soil moisture
Evaporation recharge

Point and basin scale Moore (2007)

Flood prediction and
runoff

Probabilistic model
Multivariate analysis

1. Simulation
2. Data calibration

Stochastic rainfall process Parameters in rainfall–runoff
model

Multiple catchment scales in
Iran

Yazdi et al. (2014)

Rainfall and runoff pro-
cesses

Probabilistic model
hydrological mechanism

1. Simulation
2. Random event
3. Theory

Soil storage Given climate regime
hydraulic conductivity
landform development

Hillslope scale Freeze (1980)

Erosion rate Probabilistic model
Mechanical mechanism

1. Data calculation
2. Stochastic forcing

Bed shear stress
Critical shear stress

Laboratory scales in the
Netherlands

Prooijen and
Winterwerp (2010)

Erosion rate Physical model
Probabilistic model
Conceptual model

1. Theory
2. Simulation

Simulated near-bed flow Soil structure
Oscillating flow

Sidorchuk (2005)

Erosion risk Empirical model
Geostatistics

1. Data mapping Erosive precipitation Factors in RUSLE Annual and regional scales in
China

Jiang et al. (2012)

Uncertainty of soil loss Empirical model
Geostatistics
Error analysis

1. Simulation
2. Data calibration

Erosive precipitation
Runoff and sediment

Spatiotemporal rainfall
erosivity distribution

Annual time and catchment
scale in the USA

Wang et al., 2002

Uncertainty and variabil-
ity of erosion rate

Empirical model 1. Hypotheses
2. Data calculation

Total rainfall volume and
30 min rainfall intensity

Stochastic environment condi-
tions
Scale effect

Kim et al. (2016)

Stochasticity of factors affecting soil erosion rate

Soil moisture related to
soil erosion

Probabilistic model
Physical model

1. Hypotheses,
2. Simulation
3. Theory

Precipitation
Evapotranspiration

Temporal patterns of rainfall
property

Daily time and hillslope scale
in

Ridolfi et al. (2003)

Antecedent soil moisture
related to soil erosion

Probabilistic model
Physical model

1. Data mapping
2. Theory

Runoff response
Infiltration processes

Daily time and multiple
catchment scales in Spain

Castillo et al. (2003)

Stochastic rainfall related
to flood and runoff

Probabilistic model
Conceptual model

1. Data calibration
2. Random event
3. Hypothesis

Stochastic storm
Runoff and flood

Parameters in Peak flow mod-
els

Hourly–daily time and multi-
ple catchment scales in Ger-
many

Haberlandt and Radtke (2014)

Stochastic rainfall related
to runoff and erosion

Physical model
Empirical model

1. Simulation
2. Data calibration

Overland/channel flow
Erosion transport
Precipitation

Spatiotemporal rainfall distri-
bution

Seasonal and annual time
catchment scale in the USA

Lopes (1996)

Uncertainty of soil erodi-
bility

Empirical model
Geostatistics

1. Simulation
2. Data mapping

Spatiotemporal soil types,
depth and parent material

Regional scales in the USA Wang et al. (2001)

Stochastic rainfall related
to runoff

Probabilistic model
Conceptual model
Physical model

1. Data calibration
2. Theory

Sewer overflows Rainfall depth and duration,
climate conditions

Seasonal and annual time
catchment scales in Spain

Andrés-Doménech et al. (2010)

a The main contents of different studies focusing on the stochasticity (uncertainty) of soil erosion and its influencing factors. b The main statistical methods or different types of mathematical and physical models employed to describe and analyse the stochasticity of soil erosion. c The main
properties of analysis framework in the different studies and the characteristics of data application on the evaluation of stochasticity of soil erosion.

bution of influencing factors on the randomness of respon-
sive random events in terms of an odds ratio (Hosmer et al.,
2013). This can be seen as another probabilistic model to ex-
plore the probability attribution of influencing factors. How-
ever, little literature is available on LRM being used to ex-
plore the probabilistic attribution of stochastic erosion events
under complex environmental conditions.

In this study, we have hypothesized that the uncertainty
of erosive events was also an important property of the soil
erosion phenomenon, and monitored erosion events occur-
ring in three typical restoration vegetation types at runoff
plot scale over five consecutive years’ rainy seasons. We aim
to (1) comprehensively describe the stochasticity of runoff
and sediment events in detail by using probability theory,
and (2) systematically evaluate the effect of the properties
of soil, plant and rainfall on the stochastic erosion events
by employing the LRM approach. The probabilistic descrip-
tion attribution approach constitutes an integrated probabilis-
tic assessment based on event-driven probability theory and
data-driven experimental observation. The investigation of
stochastic soil erosion events by integrated assessment is an
innovative and important complement in understanding soil

erosion from the stochasticity viewpoint, and could also pro-
vide an alternative way to assess the efficacy of ecological
restoration for conserving soil and water resources in a semi-
arid environment.

2 Method

2.1 Definition and classification of random events

Each observed stochastic weather condition with different
durations in the field monitoring period was defined as a ran-
dom experiment. All possible outcomes of a random exper-
iment constituted a sample space (�) defined as a random
observational event (O event, for short). Two mutually ex-
clusive random event types – random rainfall event (I event,
for short) and random non-rainfall event (C event, for short)
– constituted the O event. Precipitation is a necessary condi-
tion of runoff generation, and the random runoff production
event (R event, for short) is a subset of the I event. Simi-
larly, R event is also a necessary condition of random sedi-
ment migration event (S event, for short), which leads to S
event being a subset of R event. As a result, O, C, I, R and
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S events constituted a random events framework (OCIRS) to
reflect the stochasticity of the environment in which soil ero-
sion events occur.

The random event duration in OCIRS is an important prop-
erty of stochastic weather conditions. In particular, the dura-
tion property of I events was closely related to the transmis-
sion of stochastic signals of rainfall into the R and S events.
According to the rainfall duration patterns in China (Wei et
al., 2007), the time interval between two adjacent I events
is set to be more than 6 h, forming the criterion for individ-
ual rainfall classification. Meanwhile, based on the observa-
tion of random events over five consecutive rainy seasons, we
summarised the duration property of all I events and further
classified them into four mutually exclusive I event types:
a random extremely long rainfall event type (Ie event, for
short), a random general long-duration rainfall event type (Il
event, for short), a random spanning rainfall event type (Is
event, for short) whose duration spans two consecutive days,
and a random within rainfall event type (Iw event, for short)
occurring in a day. The C event can also be divided into two
types at the daily scale: the random non-rainfall event type
lasting a whole day (Cd event, for short) and the random non-
rainfall event type whose duration is less than 24 h (Ch event,
for short) which is interrupted by an I event.

Table 2 shows the physical, probabilistic properties and
implications of all random event types in OCIRS. The clas-
sification process of all random event types is illustrated in
Fig. 1a, and a Venn diagram of all random event types in
OCIRS is shown in Fig. 1c. Considering the observed longest
duration of an Ie event approximating 72 h, in Fig. 1b, we
have summarised a series of random event sequences in terms
of different combination patterns of I and C events in every 3
consecutive days during the whole monitoring period.

2.2 Probabilistic description of erosion event

2.2.1 Conditional probability of erosion event

In the sample space �, for any random event type E in
OCIRS, we defined P (E) as the proportion of time that E
occurs in terms of relative frequency:

P (E)= lim
n∞

n(E)
n
= pE,pE ∈ [0,1]. (1)

Theoretically, n(E) is the number of times in n outcomes
of observed random experiment that the event E occurs. Ac-
cording to the law of total probability (Robert et al., 2013),
the probability of R event is defined as

P (R)= P (RI)= P
(

R|∪4
m=1Im

)
P
(
∪

4
m=1Im

)
=

4∑
m=1

P (R|Im)P (Im)= pR. (2)

Im, m= 1, 2, 3 and 4 represent the Ie, Il, Is, and Iw respec-
tively, and P (R|Im) represents the conditional probability

that R event occurs given that the mth I event type has oc-
curred. Similarly, the probability of S event is defined as

P(S)= P(SI)= P
(

S|∪4
m=1Im

)
P
(
∪

4
m=1Im

)
=

∑4
m=1

P(S|Im)P(Im)= pS. (3)

Equations (2) and (3) quantify the stochastic soil erosion
events by using conditional probability.

2.2.2 Probability distribution functions of erosion event

We define X and Y as two discrete random variables, rep-
resenting two real-valued functions defined on the sample
space (�). Let X and Y denote the numbers of times of R
and S event occurrence respectively, and assign the sample
space � to another random variable Z. X(R)= x,Y (S)=
yZ (�)= z,y ≤ x ≤ z. The x, y, and z are integers. The
ranges of X and Y are RX = {all x : x =X(R) ,all R ∈�}
and RY = {all y : y = Y (S) ,allS ∈�}. The probability of xi
or yj numbers of times of R or S events can be quantified by
probability mass function (PMF) as follows:

PMFX (xi)= P[{Ri :X(Ri)= xi,xi ∈ RX}] (4)

PMFY
(
yj
)
= P

[{
Sj : Y

(
Sj
)
= yj ,yj ∈ RY

}]
for i ≥ j. (5)

The PMF in Eqs. (4) and (5) describe the general expression
of probability distribution of all possible numbers of times of
R or S events.

The random variables X and Y obey the binomial distri-
bution with n independent Bernoulli experiments (Robert et
al., 2013). Therefore, the PMF of X and Y can be defined as
follows:

PMFXbin (x)= PXbin (X = x)={(
n
x

)
pxR(1−pR)

n−x x = 0,1,2, . . .,n

0 elsewhere
(6)

PMFYbin (y)= Pybin (Y = y)={(
n
y

)
p
y

S(1−pS)
n−y y = 0,1,2, . . .,n

0 elsewhere,
(7)

where x and y indicate all possible numbers of times of R and
S occurring over n I events. However, when the Bernoulli ex-
periment is performed infinite independent times (n→∞),
the binomial PMF can be transformed into the Poisson PMF
(proved in Appendix A), and finally expressed as follows:

PMFXpoi(x)= PXpoi(X = x)=

{
λxRe
−λR

x!
x = 0,1,2, . . .

0 elsewhere
(8)

PMFYpoi(y)= PYpoi(Y = y)=

{
λ
y
Se
−λS

y!
y = 0,1,2, . . .

0 elsewhere,
(9)

where the parameter λR ≈ npR,λS ≈ npS. Equations (6)–(9)
reflect two PMF models to simulate the probability distribu-
tion of R or S events.
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Figure 1. The OCIRS system: (a) a flow chart to determine random event types in the OCIRS framework; (b) the different combination
patterns of rainfall and non-rainfall events in 3 consecutive days to form ten observed random event sequences in five rainy seasons; (c) Venn
diagram showing the relationship between random event types in the OCIRS framework.

2.3 Probabilistic attribution of erosion events

2.3.1 Bayes model

Based on the Bayes formula theory (Sheldon, 2014), if we
want to evaluate how much the probabilistic contributions of
kth type of random rainfall event on one stochastic runoff or
sediment event which has been generated and observed, the
Bayes model can quantify the results as follows:

P(Ik|R)=
P(IkR)
P(R)

=
P(R|Ik)P(Ik)∑4

m=1P(R|Im)P(Im)
(10)

P(Ik|S)=
P(IkS)
P(S)

=
P(S|Ik)P(Ik)∑4

m=1P(S|Im)P(Im)
. (11)

In fact, the Bayes model provides an important explanation
that how the a priori stochastic information (P(Ik))was mod-
ified by the posterior stochastic information (P(R) or P(S)).
The application of Bayes model in Eqs. (10)–(11) reflects the
feedback of random erosion events on the stochastic rainfall
events. It could also be regarded as one pattern of probabilis-
tic attribution to assess the effect of different random rainfall
events on the uncertainty of soil erosion events without con-
sidering the diversity of restoration vegetation.

2.3.2 Logistic regression model

Firstly, we constructed an event-driven logistic function, and
defined YR and YS as two dichotomous dependent variables.
When we denote YR and YS as 1 or 0, it means that a R and
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Table 2. Definition and explanation of all random events in OCIRS.

Symbol Physical meaning of random event types Probabilistic meaning of random event types Influencing factors and implication

O observation events with time step ranging from 0 to
72 h, including non-rainfall and rainfall events

random events composing the sample space of OCIRS system.
The probability P(O)= 1

indicating the general stochastic weather conditions over rainy
seasons

C non-rainfall events with time step ranging from 0 to
24 h, including sunny or cloudy weather condition at
hour or day scales

random events, the probability of C events is the ratio of num-
bers of C events to O events C⊂O, 0≤P(C)≤ P(O)= 1

implying the extent of evaporation or potential evapotranspira-
tion in weather condition

Cd non-rainfall events with time step being 24 h, including
observed sunny or cloudy at day scale

random events composing the subset of C events,
Cd⊆C, 0≤P(Cd)≤P(C)

implying the duration of evaporation or evapotranspiration at
day scale

Ch non-rainfall events with time step being less than 24 h,
including observed sunny or cloudy at hour scales
which intercepted by rainfall events within a day

random events composing the subset of C events,
the intersection of Ch and Cd is null, Ch⊆C, Cd∪Ch=C,
Cd∩Ch=∅, 0≤P(Ch)≤P(C)

influenced by the frequency of rainfall events generation, and
implying the alternation of sunny and rainy in a day

I an individual rainfall event with different precipitation,
intensity and duration ranging from 0 to 72 h, the time
interval between two I events is more than 6 h

random events, the probability of I event is ratio of numbers of I
events to O events over observation I⊂O, I∪C=O, I∩C=∅,
0≤P(I)≤P(O)= 1

a driven force of soil erosion, which could be intercepted by
vegetation and transformed into throughfall

Ie an extreme longest individual rainfall event whose aver-
age precipitation, intensity and duration were 96.6 mm,
0.022 mm min−1, and 73 h, respectively.

random events composing the subset of I events,
Ie⊆ I, 0≤P(Ie)≤P(I)

rainfall events with low intensity and longest duration, leading
to infiltration–excess runoff generation

Il second longest individual rainfall event type whose
average precipitation, intensity and duration were
47.3 mm, 0.027 mm min−1, and 30 h, respectively.

random events composing the subset of I events,
the intersection of Il and Ie is null, Il⊆ I, Il∩ Ie=∅,
0≤P(Il)≤P(I)

rainfall events with low intensity and long duration, leading to
infiltration–excess runoff generation

Is rainfall event type spanning 2 days whose average
precipitation, intensity and duration were 22.7 mm,
0.042 mm min−1, and 10 h, respectively

random events composing the subset of I events, Is⊆ I,
Is∩ Il∩ Ie=∅, 0≤P(Il)≤P(I)

rainfall events with strongest rainfall intensity in middle dura-
tion, leading to runoff and sediment generation

Iw rainfall event type occurring within a day whose aver-
age precipitation, intensity and duration were 9.8 mm,
0.045 mm min−1, and 5 h, respectively. It usually oc-
curs several times within 1 day.

random events composing the subset of I events, Iw⊆ I,
Iw∩ Is∩ Il∩ Ie=∅, Iw∪ Is∪ Il∪ Ie= I, 0≤P(Iw)≤P(I)

rainfall events with least and shortest precipitation and duration,
which is difficult to trigger soil erosion

R runoff event type occurring on vegetation land type; it
occurs on rainfall processes, and its duration is negligi-
ble

random events responding to I events, R⊂ I, R∩C=∅,
0≤P(R)<P(I)

influenced by rainfall and vegetation properties

S sediment event occurring on vegetation land types, it
occurs on runoff processes, and its duration is negligible

random events responding to R events, S⊂R⊂ I, S∩C=∅,
0≤P(S)≤P(R)<P(I)

driven by R events, and affected by rainfall and vegetation prop-
erties

S event has occurred or not occurred. Given that YR is a di-
chotomous dependent variable of R event in the linear prob-
ability model in can be expressed as follows:

YRi = α+β1x1i +β2x2i + ·· ·+βnxni + ξi

= α+
∑n

n=1
βnxni + ξi . (12)

We then further transform Eq. (12) into the conditional prob-
ability of R event which has occurred in the ith observation
time as follows:

P
(
YRi = 1|∩nn=1xni

)
= P

[(
α+

∑n

n=1
βnxni + ξi

)
≥ 0

]
= P

[
ξi ≤

(
α+

∑n

n=1
βnxni

)]
= F

(
α+

∑n

n=1
βnxni

)
, (13)

where αβ are constants and F
(
α+

∑n
n=1βnxni

)
is the cumu-

lative distribution function of ξi when ξi = α+
∑n
n=1βnxni .

Equations (12) and (13) quantify the stochasticity of YRi de-
pending on the linear combination of n influencing factors
xn and measurement error ξ under i observation times of
stochastic runoff generation.

Secondly, assuming that the probabilistic distribution of ξi
satisfies logistic distribution and P

(
YRi = 1|∩nn=1xni

)
= pi ,

then the LRM expression of YRi = 1 is deduced as follows:

pi = F
(
α+

∑n

n=1
βnxni

)
=

1

1+ e−(α+
∑n
n=1βnxni)

=
eα+

∑n
n=1βnxni

1+ eα+
∑n
n=1βnxni

. (14)

Correspondingly, the LRM of YRi = 0 can be expressed as

P
(
YRi = 0|∩nn=1xni

)
= 1−pi =

1

1+ eα+
∑n
n=1βnxni

. (15)

The ratio of Eq. (14) to (15) is defined as the odds of the R
event:

Odds=
pi

1−pi
=

e
α+

∑n
n=1βnxni

1+eα+
∑n
n=1βnxni

1
1+eα+

∑n
n=1βnxni

= eα+
∑n
n=1βnxni ,

odds ∈ [0,1] . (16)

In this study, odds in Eq. (16) is a probabilistic attribution
index to quantify how much the n influencing factors affect
the generation of the ith stochastic runoff event. Specifically,
when the odds of an influencing factor is greater (less) than 1,
it means that the corresponding influencing factor exerts pos-
itive (negative) effects on the probability of R generation.

Finally, taking the natural logarithms of both sides of
Eq. (16), we transform the odds of stochastic runoff event
into the linear Eq. (17) reflecting the standard expression of
LRM:

ln

[
P
(
YRi = 1|∩nn=1xni

)
P
(
YRi = 0|∩nn=1xni

)]= ln
(

pi

1−pi

)
= α+

∑n

n=1
βnxni . (17)

LRM can be regarded as another probabilistic attribution pat-
tern to evaluate the effect of multiple impacting factors –
such as soil, vegetation and rainfall – on the randomness of
soil erosion events occurring in different restoration vegeta-
tion types.
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3 Experimental design and data analysis

3.1 Study area

The study was implemented in the Yangjuangou Catchment
(36◦42′ N, 109◦31′ E; 2.02 km2), which is located in the typi-
cal hilly-gully region of the Loess Plateau in China (Fig. 2a).
A semi-arid climate in this area is mainly affected by the
North China monsoon. Annual average precipitation reaches
approximately 533 mm, and the rainy season here spans from
June to September (Liu et al., 2012). The Calcaric Cambisol
soil type (FAO-UNESCO, 1974) with weak structure and
higher erodibility in the Loess Plateau is vulnerable to water
erosion. For these reasons, soil and water loss was one of the
most serious environmental problems to degrade the ecosys-
tem in the Loess Plateau before the 1980s (Miao et al., 2010;
Wang et al., 2015). After that, as a crucial soil and water
resource protection project, the Grain-for-Green Project was
widely implemented in the Loess Plateau. A large number of
steeply sloped croplands were abandoned, restored or natu-
rally recovered by local shrub and herbaceous plants (Cao et
al., 2009; Jiao et al., 1999). In the Yangjuangou Catchment,
the main restoration vegetation distributed on hillslopes in-
cludes Robinia pseudoacacia Linn., Lespedeza davurica, As-
picilia fruticosa, Armeniaca sibirica, Spiraea pubescens and
Artemisia copria. All the restoration vegetation was planted
over 20 years ago.

3.2 Design and monitoring

In the Yangjuangou Catchment, systematic long-term field
experiments have been conducted, including the monitoring
of soil erosion (Liu et al., 2012; Zhou et al., 2016), obser-
vation of soil moisture dynamic (Wang et al., 2013; Zhou et
al., 2015) and assessment of soil controlling service in this
typical water-restricted environment (Fu et al., 2011).

In this study, we first monitored the soil erosion events oc-
curring in three typical restoration vegetation types (Arme-
niaca sibirica (T1), Spiraea pubescens (T2) and Artemisia
copria (T3)) from the rainy seasons of 2008–2012 (Fig. 2b).
Each restoration vegetation type was designated by three 3 m
by 10 m closed-runoff plots located on southwest-facing hill-
slopes with 26.8 % aspect. The boundaries of each runoff plot
were perpendicularly fenced with impervious polyvinyl chlo-
ride (PVC) sheet of 50 cm depth. Collection troughs and stor-
age buckets were installed at the bottom boundary to collect
the runoff and sediment (Zhou et al., 2016). Under natural
precipitation condition, we recorded the number of times that
stochastic runoff and sediment events occurred in each runoff
plot over the five rainy seasons. Also, we collected runoff and
sediment, separated them and, after settling for 24 h, the sam-
ples were dried at 105◦ over 8 h and weighed.

Figure 2. Study area and experimental design: (a) location of
the Yangjuangou Catchment; (b) three restoration vegetation types
including Armeniaca sibirica (T1), Spiraea pubescens (T2) and
Artemisia copria (T3); (c) the dynamic measurement of soil mois-
ture and data collection to provide the information about average
antecedent soil moisture; (d) the measurement of field-saturated hy-
draulic conductivity to determine the average infiltration capability;
(e) investigation of the morphological properties of restoration veg-
etation by setting quadrats.
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Secondly, we systematically monitored the hydrological
properties of soil in different restoration vegetation types. In
the rainy season of 2010, we began to measure the dynamics
of soil moisture in the study region (Wang et al., 2013). The
real-time dynamic data of soil water content at intervals of
10 min were recorded by S-SMC-M005 soil moisture probes
(Decagon Devices Inc., Pullman, WA, USA), and were col-
lected by HOBO weather station logger (Fig. 2c). These data
provided the information about average antecedent soil mois-
ture (ASM) before every rainfall event occurring in the two
rainy seasons between 2010 and 2012. We further measured
the field-saturated hydraulic conductivity (SHC) in all vege-
tation types by a model 2800 K1 Guelph permeameter (Soil-
moisture Equipment Corp., Santa Barbara, CA, USA) to de-
termine the average infiltration capability of the soil matrix
(Fig. 2d).

Thirdly, we investigated the morphological properties of
different vegetation types in each runoff-plot for 2–3 times
over different periods of rainy season. We measured the av-
erage crown width, height and the thickness of litter layer
in three restoration vegetation types by setting 60× 60 cm
quadrats in each runoff plot (Bonham, 1989) (Fig. 2e).

Finally, two tipping bucket rain gauges were installed out-
side the runoff plots to automatically record the rainfall pro-
cesses over the five rainy seasons with an accuracy of 0.2 mm
precipitation. Table 3 summarises the properties of the four
types of random rainfall event, and the basic characteristic of
soil and vegetation is shown in Table 4.

3.3 Statistics

We employed nonparametric statistical tests – one-way
ANOVA and post hoc LSD – to determine the significant
difference of soil, vegetation and erosive properties in the
three restoration vegetation types. The maximum likelihood
estimator (MLE) and uniformly minimum variance unbiased
estimator (UMVUE) (Robert et al., 2013) were explored to
compare the suitability of the binomial PMF and Poisson
PMF for predicting the uncertainty of runoff and sediment
generation over the long term.

4 Results

4.1 Environmental stochasticity in different rainy
seasons

The probabilistic distribution of random rainfall events (I
events) and random non-rainfall events (C events) forms
the environmental stochasticity which is the background of
stochastic soil erosion generation. Within the OCIRS frame-
work, the stochastic environment at monthly and seasonal
scales over five rainy seasons is described in Fig. 3. For the
rainy seasons of 2008 to 2012, the probability of I event gen-
eration first increased with later monitoring period and then
decreased in the last two rainy seasons. In the rainy season

Table 3. Main characteristics of the four types of random rainfall
event over five rainy seasons.

Rainy Rainfall Average Average Average
season event precipitation intensity duration

types (mm) (mm min−1) (h)

2008 Iw 16.7 0.122 2.3
Is 19.2 0.066 4.8
Il 53.2 0.032 27.7
Ie 96.6 0.022 73.2

2009 Iw 9.0 0.027 5.6
Is 35.4 0.059 10.0
Il 47.9 0.032 24.9
Ie × × ×

2010 Iw 9.0 0.018 8.3
Is 7.6 0.012 10.6
Il × × ×

Ie × × ×

2011 Iw 3.3 0.031 1.8
Is 21.5 0.040 9.0
Il 42.5 0.020 35.4
Ie × × ×

2012 Iw 10.8 0.028 6.4
Is 30.0 0.031 16.1
Il 45.5 0.023 33.0
Ie × × ×

Average Iw 9.8 0.045 4.9
Is 22.7 0.042 10.1
Il 47.3 0.027 30.3
Ie 96.6 0.022 73.2

of 2008, the average probability of I event was lower than
the other four rainy seasons, being less than 15 %. However,
the I event type was most complex in 2008. The random ex-
tremely long rainfall event (Ie event) only appeared in this
rainy season, with the probability reaching 2.5 %. On the
other hand, the average probability of I event was the highest
in the rainy season of 2010, being larger than 18 %. But there
were only two types of I events (Iw and Is events) in this
rainy season. Over the five rainy seasons, the average prob-
ability of Iw (12.3 %) and Ie (0.8 %) event occurrence was
the highest and lowest, respectively. The average probability
of Is (1.7 %) and Il (1.3 %) events ranged between Iw and
Ie. The probability of Cd event was higher than Ch in each
month of rainy season, with average probability being 54.4
and 29.4 %, respectively. As seen in Table 3, the difference
in average precipitation and duration of the four types of I
events was significant. But the average rainfall intensity of
Iw and Is events was nearly twice that of Il and Ie events.
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Table 4. Basic properties of soil, vegetation and erosion in different restoration vegetation types.

Basic properties of different hN Restoration vegetation
vegetation type types

Armeniaca sibirica Spiraea pubescens Artemisia copria
Type 1 (T1) Type 2 (T2) Type 3 (T3)

Topography property

Slope aspect 9 Southwest Southwest Southwest
Slope gradation (%) 9 ≈ 26.8 ≈ 26.8 ≈ 26.8
Slope size for each (m) 9 3× 10 3× 10 3× 10
Soil property
aDBD (g cm3) 30 1.28± 0.08 1.16± 0.12 1.23± 0.10
Clay (%) 30 11.07± 2.43 11.98± 3.05 9.54± 1.48
Silt (%) 30 26.11± 1.50 25.24± 3.84 26.72± 2.87
Sand (%) 30 62.82± 0.94 62.78± 4.51 63.74± 3.24
bTexture type Sandy loam Sandy loam Sandy loam
cSHC (cm min−1) 20 0.46± 0.82(a) 2.22± 0.66(b) 0.50± 0.60(a)
dSOM ( %) 30 1.28± 0.63(a) 0.98± 0.15(b) 0.90± 0.09(b)

Vegetation property

Restoration years 9 20 20 20
Crown diameters (cm) 27 211.6± 15.4(c) 80.5± 4.5(b) 64.1± 6.3(a)
Litter layer (cm) 30 1.2± 0.3(a) 3.4± 1.8(b) 1.8± 0.5(a)
Height (cm) 27 256.3± 11.1(c) 128.3± 8.3(b) 61.8± 1.1(a)
LAI 27 × 2.31 1.78
eAve. coverage (%) 27 85 90 90

Rainfall/erosion property

Times of rainfall events 130
Times of runoff events 30/30/30 45/45/45 45/45/45
Times of sediment events 13/13/13 19/19/19 32/32/32
fAve. runoff depth (cm) 0.012(a) 0.014(a) 0.083(b)
gAve. sediment amount (g) 5.8(a) 6.8(a) 25.7(b)

a Dry bulk density. b Texture type is determined by textural triangle method based on USDA. c Field saturated hydraulic
conductivity, and all the values with same letter in each row indicates non-significant difference at α = 0.05 which is the same as
follow rows. d Soil organic matter. e Average coverage of three restoration vegetation types over five rainy seasons. f Average runoff
depth in restoration types over rainy seasons. g Average sediment yield in restoration types over rainy seasons. h Sample number.

4.2 Stochasticity of soil erosion events

4.2.1 Probability of erosion events in vegetation types

The stochasticity of erosion events was quantified by the
probability of runoff and sediment generation in three
restoration vegetation types (T1, T2 and T3) at monthly and
rainy season scales (Fig. 4). Over the five rainy seasons, the
probability of soil erosion occurring in all vegetation types
generally decreased with later monitoring period, and then
increased in 2012. At the early period of erosion monitor-
ing (2008), the randomness of erosion events is similar, and
the probability of R and S events ranged from 6 to 13 % and
from 3 to 13 % respectively. After that, from the rainy sea-
sons of 2009 to 2011, the highest probabilities of erosion
events in each vegetation type all concentrated in the July
and August of each season. Regarding runoff production, the

average probability of R event in T1 (3.78 %) was less than
that for T2 (5.60 %) and T3 (5.58 %) under the same precipi-
tation condition. With respect to sediment yield, the average
probability of S event in T1 (1.65 %) was also the lowest in
all restoration vegetation types. In particular, in the last two
rainy seasons, there was no S event occurring in T1, but the
average probability of S event in T2 and T3 reached 1.83 and
3.36 % respectively in the corresponding rainy seasons. Con-
sequently, affected by the same stochastic signal of rainfall
events, T1 and T3 have the lowest and highest probability of
erosion event generation over the five rainy seasons respec-
tively.
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Figure 3. The probability distribution of different random rainfall event types (Iw, Is, Il and Ie) and random non-rainfall event types (Ch and
Cd) at monthly and seasonal scales from the rainy seasons of 2008 to 2012.

4.2.2 Probabilistic distribution of erosion events in
vegetation types

More detailed stochastic information of erosion events in dif-
ferent vegetation types was simulated by binomial and Pois-
son PMFs at monthly scale. We also compared the frequency
distributions of different numbers of observed erosion events
with the corresponding simulated results by the two PMFs in
Fig. 5. Firstly, as to the detailed stochastic information of R
events, the two PMFs generally provided a better simulation
to the observations in T1 than in T2 and T3. When comparing

the simulated and observed values, the binomial PMF sup-
plied better simulation to the observed numbers of time of
R events with larger frequency (such as 2–4 times) than did
the Poisson PMF. However, the Poisson PMF simulated the
observed numbers of time of R events with lower frequency
(such as 6–8 times) better than the binomial PMF. Secondly,
in relation to the detailed stochastic information of S event,
the two PMFs provided better simulation to the observations
in T3 than in T1 and T2. In particular, when the number of
times of S event generation reaches two in T1 and T2, the
corresponding simulated probability values were all nearly
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Figure 4. The probability distribution of random runoff and sediment events occurring in three restoration vegetation types at monthly and
seasonal scales from the rainy seasons of 2008 to 2012; the Arabic numbers and letter “T” on the abscissa indicate the month and season
respectively (also in the following figures).

two times larger than the observed frequencies, reflecting the
greatest simulation error of the two PMFs. Moreover, with
the restoration vegetation types changing from T1 to T3,
both the simulated and observed numbers of time of R and
S events with largest probability or frequency increased in
consistently. In summary, comparing the observed frequency
of numbers of erosion events, both PMFs showed good simu-
lation ability to detail the stochasticity of runoff and sediment
events at the monthly scale.

4.3 Stochastic attribution of soil erosion events

4.3.1 Effect evaluation of stochastic erosion events by
Bayes model

The Bayes model was applied to analyse the effect of random
rainfall events (including Iw, Is, Il and Ie) on stochastic ero-
sion events in different restoration vegetation types. Specif-
ically, the Bayes model evaluated the different probabilistic
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Figure 5. The comparison between simulation of stochasticity of runoff and sediment events by binomial and Poisson PMFs and the observed
frequencies of numbers of times of soil erosion events in three restoration vegetation types; Exp_B and Exp_P indicate the simulated values
in binomial and Poisson PMF respectively; the histogram shows the observed values.

contributions of four types of I events on one observed ero-
sion event stochastically generated in specific vegetation type
at monthly and rainy seasonal scales (Fig. 6). In the rainy
season of 2008, the types of I events driving one stochas-
tic erosion event was more complex than in the other rainy
seasons. In contrast, only one stochastic soil erosion occur-
rence in three vegetation types was attributed to Iw and Is
events in the rainy season of 2010. In the other three rainy
seasons, when one R or S event stochastically generated in
T1, the main contributing I event types concentrated on Is
and Il events, which have relatively higher precipitation and
longer duration, respectively. On the other hand, if one R or
S event occurred in T2 or T3 randomly, the main contribut-
ing I event type was the Iw event which, however, had no
contribution to S event occurring in T1.

In general, over five rainy seasons, the composition of I
event driving one R event was more complex than that driv-
ing one S event. The relatively longer-duration rainfall events

(Il and Ie) became the main probabilistic contributors of one
stochastic erosion event occurring in T1, and the relatively
stronger-intensity rainfall events (Iw and Is) mainly caused
one random erosion event occurring in T2 and T3.

4.3.2 Effect evaluation of stochastic erosion events by
LRM

According to the results of significant difference analysis in
Table 4, we defined the properties of soil and plant as ordi-
nal variables, and classified them into four grades (Table 5).
Meanwhile, based on previous studies (Liu et al., 2012; Wei
et al., 2007) and rainfall properties in this study area, we
further subdivided all precipitation and rainfall intensity into
four grades with different scores.

First, the intensity of positive and negative effects of a sin-
gle influencing factor on the probability of runoff and sedi-
ment generation in all restoration vegetation types was quan-
tified in terms of odds ratio of erosion events by LRM (Ta-
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Figure 6. The distribution of probabilistic contribution of four random rainfall event types on any one runoff or sediment event stochastically
occurring in three restoration vegetation types at monthly and seasonal scales from rainy season of 2008 to 2012.

ble 6). In the LRM, the highest and lowest odd ratios ap-
peared in rainfall intensity ordinal variable (INT) and aver-
age crown width ordinal variable (CRO). An increasing INT
and CRO (from middle to extreme grade) significantly in-
creased and decreased the odds ratio of erosion events, re-
spectively. This means that INT and CRO have two of the
most important roles in improving and restraining the proba-
bility of stochastic erosion generation in all restoration veg-
etation types. Additionally, the increasing of antecedent soil
moisture ordinal variable (ASM) and the SHC ordinal vari-
able (from middle to high grade) in the LRM also signif-

icantly increased and decreased the odds ratio of R and S
events, respectively. However, the average thickness of litter
layers (TLL) ordinal variable did not have significant effect
on the odds ratio of erosion events. Tables S1 and S2 in the
Supplement systematically describe the processes of LRM to
evaluate the effect of single factors on the odds ratio of ero-
sion event.

Secondly, we applied LRM to evaluate the interactive ef-
fects of multiple influencing factors on the odds ratio of R
and S events in all restoration vegetation types (Table 7). Re-
garding the interactive effect of two soil hydrological proper-
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ties, the interaction between low grade of SHC and increas-
ing grade of ASM significantly raised the odds ratio of ero-
sion events – the odds ratio of R and S events affected by
the interactive effects of low-grade SHC and extreme-grade
ASM were respectively 7.02 and 1.82 times larger than the
interactive effects of low-grade SHC and low-grade ASM.
Similarly, regarding the effect of two vegetation properties,
the interactive effect of low-grade CRO and increasing-grade
TLL reduces the odds ratio of erosion events – the odds ra-
tio of R and S events influenced by the interaction between
low-grade CRO and high-grade TLL were respectively only
0.12 and 0.33 times larger than the interactive effects of low-
grade CRO and low-grade TLL. Additionally, with respect to
the interaction between soil and plant properties, the inter-
active effect of low-grade CRO and increasing-grade ASM
properties also significantly raised the odds ratio of erosion
events. The processes of LRM used to evaluate the interac-
tive effect of multiple factors on odds ratio of erosion event
are detailed in Supplement Tables S3–S5.

5 Discussion

5.1 The integrated probabilistic assessment of erosion
stochasticity

The probabilistic attribution and description of stochastic
erosion events constituted the framework of integrated prob-
abilistic assessment (IPA).

First, as one pattern of probabilistic attribution in the IPA,
the Bayes model supplies a supplementary view and algo-
rithm about how to evaluate the feedback of a result which
had stochastically occurred on all possible reasons (Wei and
Zhang, 2013). Under the conditions of insufficient informa-
tion about an occurred result, the Bayes model can determine
which reasons have relatively greater probability to trigger
the occurrence of the result through some prior information.
Specific to this study, the Bayes model was used to evalu-
ate the probabilistic contribution of four types of I events
on one stochastic R (P(Ik|R)) and S (P(Ik|S)) event gen-
erated in each restoration vegetation type. Although there
was no further specific information about a stochastic soil
erosion event, the prior information (P(R|Im)P(S|Im)P(Im))
can provide assistance for us to assess the feedback of
the stochasticity of soil erosion on different random rain-
fall events by the Bayes model. Meanwhile, (P(Ik|R)) and
(P(Ik|S)) also reflect the different probability threshold val-
ues of four rainfall event types triggering soil erosion. The
Bayes model integrated with total probability theory to sys-
tematically quantify the interactive relationship between the
stochasticity of precipitation and soil erosion, forming a rel-
atively simple and practical risk assessment of soil erosion
event occurring in complex restoration vegetation conditions.

Secondly, as a pattern of probabilistic description in the
IPA, the binomial and Poisson PMFs are two crucial prob-
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Table 6. Logistic regression model to analyse the single effect of rainfall, plant and soil ordinal variable on the erosion events pres-
ence/absence in all restoration vegetation types.

Grade PREC INT ASM SHC CRO TLL
levels (low) (low) (low) (low) (low) (low)

Odds ratio of all random runoff events

Extreme a
×

NS b90.91∗∗∗ c2.19∗ Null Null Null
High ×

NS 32.26∗∗∗ 2.01∗ d0.85∗ e7.53× 10−3∗∗ f
×

NS

Middle ×
NS 2.09∗ 1.59∗ Null 7.17× 10−2∗∗ Null

Odds ratio of all random sediment events

Extreme 142.85∗∗∗ 166.67∗∗∗ 15.40∗ Null Null Null
High 16.95∗∗ 125.00∗∗∗ 13.79∗∗ 0.78∗ 6.27× 10−3∗∗

×
NS

Middle 6.09∗∗ 34.48∗∗∗ 6.36∗ Null 2.55× 10−2∗∗ Null

a Taking the low grade of PREC ordinal variable as reference, the odds ratio of all random runoff event in
extreme grade of PREC is not significantly larger than that of low grade of PREC. b Taking the low grade of INT
ordinal variable as reference, the odds ratio of all random runoff events in extreme grade of INT is 90.91 times
significantly larger than that of low grade of INT, under the controlled PREC condition with P ≤ 0.001. c Taking
the low grade of ASM ordinal variable as reference, the odds ratio of all random runoff events in extreme grade of
ASM is 2.19 times significantly larger than that of low grade of ASM, under the controlled PREC and INT
condition with P ≤ 0.1. d Taking the low grade of SHC ordinal variable as reference, the odds ratio of all random
runoff events in high grade of SHC is 0.85 times significantly larger than that of low grade of SHC, under the
controlled PREC, INT and ASM condition with P ≤ 0.1. e Taking the low grade of CRO ordinal variable as
reference, the odds ratio of all random runoff events in high grade of CRO is 7.53× 10−3 larger than that of low
grade of CRO, under the controlled PREC, INT, ASM and SHC condition with P ≤ 0.01. f Taking the low grade
of TLL ordinal variable as reference, the odds ratio of all random runoff events in high grade of TLL is not
significantly larger than that of low grade of TLL, under the controlled PREC, INT, ASM, SHC and CRO
condition. (the Wald test statistic is applied to test the significance of odds ratio: ∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01,
∗P ≤ 0.1; NS: not significant; ×NS: the nonsignificant value cannot be estimated).

Table 7. Logistic regression model to analyse the interactive effect of rainfall, plant and soil ordinal variables on the erosion events pres-
ence/absence in all restoration vegetation types.

Grade levels Reference of Soil_ASM Plant_TLL

grade levels ASM ASM ASM ASM TLL TLL
(low) (middle) (high) (extreme) (low) (high)

Odds ratio of all random runoff events

Soil_SHC SHC (low) Ref. a2.23NS 3.19NS 7.02∗ Null Null
Plant_TLL TLL (Low) Ref. 2.23NS 3.19NS 7.02∗ Null Null
Plant_CRO CRO (low) Ref. b64.34∗ 70.77∗ 486.43∗∗ Ref. c0.12∗∗∗

CRO (middle) Ref. ×
NS 2.32NS 22.49∗ Null Null

CRO (high) Ref Null Null Null Null Null

Odds ratio of all sediment runoff events

Soil_SHC SHC (low) Ref. ×
NS 1.22NS 1.82NS Null Null

Plant_TLL TLL (low) Ref. ×
NS 1.22NS 1.82NS Null Null

Plant_CRO CRO (low) Ref. ×
NS

×
NS

×
NS Ref. 0.33∗∗

CRO (middle) Ref. ×
NS

×
NS

×
NS Null Null

CRO (high) Ref Null Null Null Null Null

a Taking the interactive effect of low grade of SHC and low grade of ASM as reference, the odds ratio of all random runoff
events affected by the interactive effect of low grade of SHC and middle grade of ASM is 2.23 times larger than the interactive
effect of low-grade SHC and low-grade ASM under controlled rainfall conditions. b Taking the interactive effect of low grade
of CRO and low grade of ASM as reference, the odds ratio of all random runoff events affected by the interactive effect of
low-grade CRO and middle-grade ASM is 64.34 times significantly larger than that interactive effect of low grade of CRO and
low grade of ASM under controlled rainfall conditions, with P ≤ 0.1. c Taking the interactive effect of low grade of CRO and
low grade of TLL as reference, the odds ratio of all random runoff events affected by the interactive effect of low grade of CRO
and high grade of TLL is 0.12 times significantly larger than that interactive effect of low grade of CRO and low grade of TLL,
with P ≤ 0.001. (the Wald test statistic is applied to test the significance of odds ratio: ∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01, ∗P ≤ 0.1;
NS: not significant, ×NS: the nonsignificant value cannot be estimated).
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abilistic functions to characterise many random hydrologi-
cal phenomena and to model their ecohydrological effects in
natural condition (Eagleson, 1978; Rodriguez-Iturbe et al.,
1999, 2001). In this study, the two PMFs were found to give
good simulations of the frequency of times of soil erosion
events in three restoration vegetation types. However, it is
necessary and meaningful for the reliability and accuracy of
the IPA to assume whether the two PMFs can both stably and
reasonably simulate the erosion stochasticity at closed-runoff
plot over a longer monitoring period. Therefore, based on the
above assumption, two important point estimation methods
– the maximum likelihood estimator (MLE) and uniformly
minimum variance unbiased estimator (UMVUE) (Robert et
al., 2013) – were applied to evaluate the stability of erosion
stochasticity estimation by means of analysing the unbiased-
ness and consistency of pR, pS, λR and λS. Taking parameter
analysis of random runoff event for example, we defined Xi
as the number of times R event occurred in some specific
restoration vegetation type in the ith rainy season (i = 1, 2,
3, 4 and 5). The five independent and identical (iid) random
variables satisfy the same and mutually independent bino-
mial or Poisson PMFs as follows:

X1,X2, . . .,X5
iid
−→ binomial(pR )or X1,X2, . . .,

X5
iid
−→ Poisson(λR) . (18)

Considering longer monitoring periods, we supposed that the
numbers of corresponding I events (n) and rainy seasons (i)
would approach infinity (n, i→∞), and Eq. (18) can be
transformed as follows:

X1,X2, . . .,Xi
iid
−→ binomial(p) or X1,X2, . . .,

Xi
iid
−→ Poisson(λ) . (19)

We take MLE and UMVUE methods to search for the best
reasonable population estimators p̂ and λ̂ to approximate the
unknown p and λ in Eq. (19), and finally obtain more com-
prehensive stochastic information about the randomness of R
event over i rainy seasons. Appendix B shows that the best
estimator p̂ in binomial PMF is the unbiasedness and consis-
tency of the MLE of p. However, as shown in Appendix C,
the best estimator λ̂ in the Poisson PMF has more reliabil-
ity as it has not only the unbiasedness and consistency of the
MLE of λ, but also the UMVUE of MLE. The UMVUE in
the Poisson PMF implies that the lowest variance unbiased
estimator can cause the Poisson PMF to more steadily and
accurately simulate the stochasticity of soil erosion events
over long-term observations than the binomial PMF.

Thirdly, besides having better simulation of the stochas-
tic soil erosion events at larger temporal scale, the Poisson
PMF is also more suitable for simulating the randomness of
S event in the closed-design plot system than the binomial
PMF.

Following the hypothesis of Boix-Fayos et al. (2006), the
closed runoff-plot design forms an obstruction to prevent

the transportable material from entering the close monitor-
ing system, which, in particular, leads the transport-limited
erosion pattern to gradually transform into a detachment-
limited pattern in the closed plot over time (Boix-Fayos et
al., 2007; Cammerraat, 2002). Consequently, with the ex-
tension of monitoring period, this closed-runoff plot design
would make it more and more difficult for the sediment to
migrate out of the plot, which also reduces the probability of
observed S events under the same precipitation condition. In
fact, the effect of closed-runoff plot on stochastic sediment
event is also implied by the algorithm of the Poisson PMF.
Specifically, in order to satisfy that λ= np in the Poisson
PMF is an unknown constant, the extension of monitoring
period could lead the numbers of times of I events (n) to ap-
proach infinity, and then the probability (p) of R or S event
generation would have to approach zero. The above infer-
ence coincides with the assumption about the decreasing of
sediment generation in the closed-plot system, and further
shows that the Poisson PMF is more reliable to simulate the
stochastic erosion events at longer temporal scale.

5.2 The effect of influencing factors on erosion
stochasticity

The effects of rainfall, soil and vegetation properties on ero-
sion stochasticity in different restoration vegetation types
were evaluated by LRM. This integrated stochastic rainfall
events with their precipitation and intensity grades, and con-
nected the ecohydrological functions of soil and plant with
their classified hydrological and morphological features.

Just as in previous studies (Verheyen and Hermy, 2001a,
b; Verheyen et al., 2003), LRM in this study explored the
relative importance of morphological features disturbing the
transmission of stochastic signal of I events into R and S
events in different restoration vegetation types. These distur-
bances are closed related to the complex hydrological func-
tions owned by different morphological structures, which fi-
nally affect the whole processes of runoff production and
sediment yield (Bautista et al., 2007; Puigdefábregas, 2005).

First, many previous field experiments and mechanism
models have shown that canopy structure has capacity for in-
tercepting precipitation. This specific hydrological function
can prevent rainfall from directly forming overland flow or
splashing soil surface particles (Liu, 2001; Mohammad and
Adam, 2010; Morgan, 2001; Wang et al., 2012). The precip-
itation retention by canopy structure has been regarded as an
indispensable positive factor to reduce the soil erosion rate.
Meanwhile, as a crucial complement to understanding the
hydrological function of canopy structure, the result of LRM
in this study indicated that the higher-grade canopy structure
was a most important morphological feature to reduce the
odds ratio of random soil events in all restoration vegetation
types. This result suggests that larger canopy diameter would
have relatively stronger capacity for disturbing the transmis-
sion processes of stochastic signal of rainfall on the soil sur-
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face than other morphological properties. From the perspec-
tive of erosion stochasticity, the higher-grade canopy struc-
ture could finally be attributed to the lower probability of R
and S event generation. Therefore, the diversity of canopy
structures in different vegetation types could play a key role
in reducing both the intensity and probability of soil erosion
generation.

Secondly, many studies have also discovered that denser
root system distribution in the soil matrix improves the over-
land reinfiltration (Gyssels et al., 2005). This reinfiltration
process is an effective way to recharge soil water stores when
the overland flow starts to occur in hillslopes, which is also
an indispensable contributing factor to reduce the unit area
runoff production (Moreno-de las Heras et al., 2009, 2010).
In this study, the potential reinfiltration capacity of the soil
matrix could be positively affected by the saturated hydraulic
soil conductivity (SHC) index. Figure 7 indicates the dis-
tribution patterns of root system in three restoration vege-
tation types. Meanwhile, the result of LRM also implied that
the grade of SHC could negatively affect the odds ratio of
stochastic erosion event, which improved the understanding
of the hydrological function of plant root distribution from
the viewpoint of erosion randomness. This suggests that the
denser root system creates more macropores in the subsur-
face to provide more probability of reinfiltration of overland
flow. This disturbance of overland flow by SHC can reduce
the probability of erosion event generation.

Thirdly, the litter layer was shown to play multiple roles in
conserving the rainfall, by improving infiltration of through-
fall, as well as cushioning the splashing of raindrops (Gyssels
et al., 2005; Munoz-Robles et al., 2011; Geißler et al., 2012).
Therefore, the thicker litter layer in T2 (Fig. 7) probably has
stronger capacity for conserving and infiltrating throughfall,
as well as inhibiting splash erosion than that of other restora-
tion vegetation types (Woods and Balfour, 2010). Although
the result of LRM indicated that there was no significant
correlation between the TLL and the odds ratio of soil ero-
sion (Table 6), the interactive effect of TLL and CRO sig-
nificantly affects the odds ratio of stochastic erosion events
(Table 7). The interaction result implied that, under the rel-
ative low-grade CRO condition, the higher-grade TLL could
have stronger disturbance on the transmission of stochastic
signals of rainfall to improve the throughfall absorption to
reduce the probability of splash or sheet erosion occurrence.

Additionally, Table 7 explored more interactive effects
of the soil and plant properties on the odds ratio of ran-
dom runoff and sediment event. These explorations sug-
gested that the interactions between soil and vegetation prop-
erties formed more complex hydrological functions to affect
the stochastic soil erosion event during ecohydrological pro-
cesses in semi-arid environment (Ludwig et al., 2005).

Although the hydrological traits of vegetation played core
roles in reducing the soil erosion depending on the mechan-
ical properties of their morphological structures (Zhu et al.,
2015), the LRM analysis in this study further illuminated that

these hydrological-trait morphological structures of vegeta-
tion may also play an important role in affecting the stochas-
ticity of soil erosion. Actually, the different stochasticity of
soil erosion in three restoration vegetation types reflected
the different extent of disturbance of vegetation type on the
transmission of stochastic signals of rainfall into soil–plant
systems. Therefore, the relatively smaller canopy structure,
thinner litter layer and shallower root system in T3 have rela-
tively weaker capacity to disturb the stochastic signal of rain-
fall than that of T1 and T2 with obvious hydrological-trait
morphological structures (Fig. 7). The effect of diverse mor-
phological structures on stochasticity of soil erosion was a
meaningful complement to studying the hydrological func-
tions of restoration vegetation types in semi-arid environ-
ment.

5.3 The implication of integrated probabilistic
assessment

The IPA is an important complement to expand on the
understanding of hydrological function existing in vegeta-
tion types. The hydrological-trait of morphological structures
owned by different plants is closely related to the function of
vegetation-driven spatial heterogeneity (VDSH) in affecting
the intensity of erosion events. The VDSH theory (Puigde-
fábregas, 2005) can be regarded as a clear and concise sum-
mary to emphasise the dominant role of vegetation in re-
structuring soil erosion processes. It reflects the effect of spa-
tial distribution patterns of vegetation on their corresponding
hydrological functions in controlling erosion rate in patch,
stand and even at regional . Therefore, VDSH theory has
provided an innovative view to investigating the soil erosion
and other ecohydrological phenomena affected by vegetation
(Sanchez and Puigdefábregas, 1994; Puigdefábregas, 1998;
Boer and Puigdefábregas, 2005). In the study, depending on
the long-term experimental data and fundamental probabil-
ity theories, the IPA concentrated on the hydrological func-
tion of VDSH in affecting the randomness of erosion events
rather than the erosion rate. This can enrich the comprehen-
sion of the hydrological function of vegetation morphologi-
cal structure in soil erosion phenomena, and also be an effec-
tive complement to the application of VDSH theory in inter-
preting stochastic erosion events.

Additionally, in our study, the IPA also provides a new
framework for practitioners to develop restoration strategies
focused on controlling the risk of erosion generation rather
than only on reducing erosion rate. The framework contains
three stages: construction of stochastic environment, descrip-
tion of random erosion events, and evaluation of probabilistic
attribution (Fig. 8).

The first stage in the framework aims to build a unified
platform to describe the stochasticity of different hydrolog-
ical phenomena closely related to the erosion event. This
stage generally investigates the stochastic background under
which soil erosion occurs, which is also an indispensable pre-
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Figure 7. Morphological properties of three restoration vegetation types including the thickness of litter layer and the distribution of root
system. The dashed lines indicate the diameter and depth of soil samples, approximately 10 and 30 cm respectively.

condition for quantifying the probability of R and S in stage
II. The second stage is designed to construct a phased ad-
justment of monitoring processes based on the principle of
Bayes theory as well as on the parameter analysis of bino-
mial and Poisson models. In this phased-adjustment moni-
toring, the Bayes, binomial and Poisson models were applied
to simulate the randomness of erosion events in short-term,
mid-term and long-term monitoring stages, respectively. This
model-driven monitoring approach can be regarded as a more
reasonable method to explore the complexity of stochastic
erosion events in larger temporal scales, but also provide a
new perspective for researchers to more effectively evaluate
the stochasticity of erosion events in stage III. The objective
of stage III is to assess the probabilistic attribution of rain-
fall, soil and vegetation properties on erosion event genera-
tion. This probabilistic attribution evaluation by LRM could
develop the restoration strategies for more effectively select-
ing vegetation types with stronger capacity for reducing the
erosion risk, and finally improve the management of soil and
water conservation in a semi-arid environment.

As a result, this stochasticity-based restoration strategy
was developed by a combination of experimental data with

multiple probabilistic theories to deal with the soil ero-
sion randomness under complex stochastic environment. It
is different from the trait-based restoration scheme derived
from the functional diversity of vegetation community to re-
duce the soil erosion rate (Zhu et al., 2015; Baetas et al.,
2009). Meanwhile, with increased monitoring duration, more
stochastic information of erosion events could be added into
the IPA framework. This addition could finally fulfil the
self-renewal and self-adjustment of the IPA to improve the
restoration strategy for selecting more reasonable vegetation
types with stronger capacity for controlling erosion risk in
the long term. Therefore, the IPA framework containing three
stages could translate the event-driven erosion stochasticity
into restoration strategies concentrating on erosion random-
ness, which may be a helpful complement for restoration
management in a semi-arid environment.
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Figure 8. The framework of integrated probabilistic assessment for
soil erosion monitoring and restoration strategies.

6 Conclusion

In this study, we applied an integrated probabilistic assess-
ment (IPA) to describe, simulate and evaluate the stochastic-
ity of soil erosion in three restoration vegetation types in the
Loess Plateau of China, and draw the following conclusions.

In the IPA, the OCIRS was an innovative event-driven
system to standardise the definition of hydrological ran-
dom events, which is also a foundation for quantifying the
stochasticity of soil erosion events under complex environ-
mental conditions.

Both binomial and Poisson PMFs in the IPA can simulate
the probability distribution of the numbers of runoff and sed-
iment events in all restoration vegetation types. However, the
Poisson PMF more effectively simulated the stochasticity of
soil erosion at larger temporal scales.

The difference of morphological structures in restoration
vegetation types is the main source of different stochastic-
ity of soil erosion from T1 to T3 under the same rainfall

condition. Larger canopy, thicker litter layer and denser root
distribution could more effectively affect the transmission of
stochastic signal of rainfall into soil erosion.

The IPA is an important complement to developing
restoration strategies to improve the understanding of
stochasticity of erosion generation rather than only of the in-
tensity of erosion event. It could also be meaningful to re-
searchers and practitioners to evaluate the efficacy of soil
control practices in a semi-arid environment.

Data availability. All the data used in this study are available on
request, and they can be accessed by contacting the corresponding
author.
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Appendix A: The transformation from binomial to
Poisson PMF

Let p = λ
n

, then
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In Eq. (A1), when n→∞, and x, λ is finite and constant,
then

lim
n∞

(
1−

1
n

)
= . . .= lim
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(
1−

x− 1
n

)
= lim
n∞

(
1−

λ

n

)−x
= 1 (A2)

and

lim
n∞

(
1+
−λ

n

)n
= e−λ (A3)

and in accordance with Eqs. (A2) and (A3), Eq. (A1) can be
transformed as

lim
n∞

[
n!

x!(n− x) !
·

(
λ

n

)x
·

(
1−

λ

n

)n−x]
=
λxe−λ

x!
x = 0,1,2, . . . (A4)

or

PMFXbin (x)
n→∞
−−−→

λxe−λ

x!
= PMFXpoi (x) . (A5)

Appendix B: Parameter estimation of p in Poisson PMF

B1 Derivatization of the MLE p̂

Let the random sample X1, X2, . . .,Xi
iid
−→ PMFXbin(p) and

assume the binomial distribution as

P(X = xi)=
(
m

xi

)
pxi (1−p)m−xi . (B1)

The likelihood function L(p) is a joint binomial PDF with
parameter p as follows:

L(p)= fX (X1, . . .,Xn,p)=

n∏
i=1

(
m

xi

)
p
∑n
i=1Xi

(1−p)(mn−
∑n
i=1Xi ). (B2)

By taking logs on both sides of Eq. (B2),

lnL(p)= ln

(
n∏
i=1

(
m

xi

))
+

∑n

i=1
Xi lnp+

(
mn−

∑n

i=1
Xi

)
ln(1−p) (B3)

and differentiating with respect to p in lnL(P ) and letting
the result be zero,

∂ lnL(p)
∂p

=

∑n
i=1Xi

p
−

(
mn−

∑n
i=1Xi

)
(1−p)

= 0. (B4)

For solution p̂ =
∑n
i=1Xi
mn

, let m= nH⇒ p̂ = X
n

.

Therefore, p̂ = X
n

is the MLE of population parameter p
in the binomial PMF model.

B2 Discussion of the unbiasedness and consistency of p̂

Let Ep
(
p̂
)

be the expectation of MLE p̂ when population
parameter p is true in random sample which is X1, X2, . . .,

Xi
iid
−→ PMFXbin(p), then

Ep
(
p̂
)
= EP

(
X/n

)
=

1
n2

∑n

i=1
EP(Xi)=

1
n2 n

2p = p (B5)

which shows that MLE p̂ = X
n

is an unbiased estimator for
p. Furthermore, let Varp

(
p̂
)

be the variance of p̂ when pop-
ulation p is true:

Varp
(
p̂
)
= Varp

(∑n

i=1
Xi/n

2
)
=

1
n4

∑n

i=1

Varp (Xi)=
p(1−p)
n2 . (B6)

As the n approaches infinity,

lim
n∞Varp

(
p̂
)
=

(
p(1−p)
n2 .

)
= 0 (B7)

Equations (B5)–(B7) satisfy the theme of the weak law of
larger number, which leads the p̂ = X

n
to probabilistic con-

vergence to population parameter p:

lim
n∞P

(∣∣p̂−p∣∣≥ ε)= 0, for all ε > 0. (B8)

Consequently, the unbiased MLE p̂ = X
n

is consistent for p.

Appendix C: Parameter estimation of λ in Poisson PMF

C1 Derivatization of the MLE λ̂

Let the random sample X1, X2, . . ., Xi
iid
−→ PMFXpoi(λ), and

assume the Poisson distribution as

PMFXpoi (xi)=
λxi e−λ

xi !
(C1)

The likelihood function L(λ) is joint PDF with parameter λ
as follows:

L(λ)= fX (X1, . . .,Xn,λ)= f (X1,λ)× . . .× f (Xn,λ)

=

n∏
i=1

λxi e−λ

xi !
. (C2)
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Taking logs on L(λ) in Eq. (B4) and differentiating loga-
rithm function with respect to λ:

∂ lnL(λ)
∂λ

=

∂(
n∏
i=1

λxi e−λ

xi !
)

∂λ
=−n

λ
∑n
i=1Xi

(x1x2. . .xn) !
e−nλ

+

∑n
i=1Xiλ

(−1+
∑n
i=1Xi)

(x1x2. . .xn) !
. (C3)

Letting Eq. (C3) equal zero has solution

λ̂=
1
n

∑n

i=1
Xi =X. (C4)

Therefore, λ̂=X is the MLE of population parameter λ in
the Poisson PMF model.

C2 Discussion of the unbiasedness and consistency of λ̂

Let Eλ
(
λ̂
)

be the expectation of MLE λ̂ when population

parameter λ is true in random sample X1, X2, . . ., Xi
iid
−→

PMFXpoi(λ), then

Eλ

(
λ̂
)
= Eλ

(
X
)
=

1
n2

∑n

i=1
Eλ(Xi)=

1
n
nλ= λ, (C5)

which shows that MLE λ̂=X is an unbiased estimator for
λ. Meanwhile, let Varλ

(
λ̂
)

be the variance of MLE λ̂ when
population parameter λ is true:

Varλ
(
λ̂
)
= Varλ (X)= Varλ

(∑n

i=1
Xi/n

2
)

=
1
n4

∑n

i=1
Varλ (Xi)=

λ

n
(C6)

and

lim
n∞Varλ

(
λ̂
)
=

(
λ

n

)
= 0. (C7)

According to the weak law of large numbers (Eqs. B7, B8,
C1), the unbiased MLE λ̂=X probabilistically converges to
λ:

lim
n∞P

(∣∣∣λ̂− λ∣∣∣≥ ε)= 0, for all ε > 0. (C8)

Therefore, MLE λ̂=X is consistent for population parame-
ter λ.

C3 Determination of UMVUE λ̂ of population
parameter

Firstly, MLE λ̂=X is an unbiased estimator of parameter
λ which is the precondition of UMVUE determination. Sec-
ondly, by using Cramer–Rao lower bound to check whether
the unbiased MLE was UMVUE or not. Then we have:

lnfX (X,λ)=− lnx! + x lnλ− λ (C9)
∂(lnfX (X,λ))

∂λ
=
x

λ
− 1 (C10)

and

∂2 lnfX(X,λ)
∂λ2 =

∂
(
x
λ
− 1

)
λ

=−
x

λ2 (C11)

Accordingly the expectation of Eq. (C11) when the popula-
tion parameter λ is true:

Eλ

[
∂2 lnfX(X,λ)

∂λ2

]
= Eλ

(
−
X

λ2

)
=−

1
λ2Eλ (X)

=−
λ

λ2 =−
1
λ

(C12)

So the Cramer–Rao lower bound (CRLB) is

CRLB=
1

−nEλ

[
∂2 lnfX(X,λ)

∂λ2

] = 1

−n · (− 1
λ
)
=
λ

n

= Varλ
(
λ̂
)
= Varλ

(
X
)

(C13)

Consequently, MLE λ̂=X is UMVUE of population param-
eter λ.
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