Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-5015-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-5015-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment
Jan Schmieder
CORRESPONDING AUTHOR
Institute of Geography, University of Innsbruck, 6020 Innsbruck,
Austria
Florian Hanzer
Institute of Geography, University of Innsbruck, 6020 Innsbruck,
Austria
Thomas Marke
Institute of Geography, University of Innsbruck, 6020 Innsbruck,
Austria
Jakob Garvelmann
Institute of Meteorology and Climate Research – Atmospheric
Environmental Research, Karlsruhe Institute of Technology,
82467 Garmisch-Partenkirchen, Germany
Michael Warscher
Institute of Meteorology and Climate Research – Atmospheric
Environmental Research, Karlsruhe Institute of Technology,
82467 Garmisch-Partenkirchen, Germany
Harald Kunstmann
Institute of Meteorology and Climate Research – Atmospheric
Environmental Research, Karlsruhe Institute of Technology,
82467 Garmisch-Partenkirchen, Germany
Ulrich Strasser
Institute of Geography, University of Innsbruck, 6020 Innsbruck,
Austria
Related authors
No articles found.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-278, https://doi.org/10.5194/hess-2024-278, 2024
Preprint under review for HESS
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Michael Warscher, Thomas Marke, Erwin Rottler, and Ulrich Strasser
Earth Syst. Sci. Data, 16, 3579–3599, https://doi.org/10.5194/essd-16-3579-2024, https://doi.org/10.5194/essd-16-3579-2024, 2024
Short summary
Short summary
Continuous observations of snow and climate at high altitudes are still sparse. We present a unique collection of weather and snow cover data from three automatic weather stations at remote locations in the Ötztal Alps (Austria) that include continuous recordings of snow cover properties. The data are available over multiple winter seasons and enable new insights for snow hydrological research. The data are also used in operational applications, i.e., for avalanche warning and flood forecasting.
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-212, https://doi.org/10.5194/hess-2024-212, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Hydrometeorological forecasting is crucial for managing water resources and mitigating extreme weather impacts, yet current long-term forecast products are often embedded with uncertainties. We develop a deep learning based modelling framework to improve 30-day rainfall and streamflow forecasts by combining advanced neural networks and outputs from physical models. With the forecast error reduced by up to 32%, the framework has the potential to enhance water management and disaster preparedness.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Patrick Olschewski, Qi Sun, Jianhui Wei, Yu Li, Zhan Tian, Laixiang Sun, Joël Arnault, Tanja C. Schober, Brian Böker, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-95, https://doi.org/10.5194/hess-2024-95, 2024
Preprint under review for HESS
Short summary
Short summary
There are indications that typhoon intensities may increase under global warming. However, further research on these projections and their uncertainties is necessary. We study changes in typhoon intensity under SSP5-8.5 for seven events affecting the Pearl River Delta using Pseudo-Global Warming and a storyline approach based on 16 CMIP6 models. Results show intensified wind speed, sea level pressure drop and precipitation levels for six events with amplified increases for individual storylines.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022, https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Short summary
The influence of model resolution and settings on drought reproduction in Germany between 1980–2009 is investigated here. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Gridded observational data sets serve as reference. Regarding the reproduction of drought characteristics, all models perform on a similar level, while for trends, only the modified model produces reliable outputs.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Michael Matiu and Florian Hanzer
Hydrol. Earth Syst. Sci., 26, 3037–3054, https://doi.org/10.5194/hess-26-3037-2022, https://doi.org/10.5194/hess-26-3037-2022, 2022
Short summary
Short summary
Regional climate models not only provide projections on temperature and precipitation, but also on snow. Here, we employed statistical post-processing using satellite observations to reduce bias and uncertainty from model projections of future snow-covered area and duration under different greenhouse gas concentration scenarios for the European Alps. Snow cover area/duration decreased overall in the future, three times more strongly with 4–5° global warming as compared to 1.5–2°.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Michael Warscher, Thomas Marke, and Ulrich Strasser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-68, https://doi.org/10.5194/essd-2021-68, 2021
Revised manuscript not accepted
Short summary
Short summary
Continuous observations of snow and climate in high altitudes are still sparse. We present data from automatic weather and snow stations in the Ötztal Alps (Austria) that include continuous recordings of snow cover properties (snow depth, water equivalent, density, solid and liquid water content, snow temperature profiles, surface temperature, snow drift). The data can be used in different scientific fields, as well as in operational applications, i.e., avalanche warning and flood forecasting.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020, https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary
Short summary
Commercial microwave link (CML) networks can be used to estimate path-averaged rain rates. This study evaluates the ability of convolutional neural networks to distinguish between wet and dry periods in CML time series data and the ability to transfer this detection skill to sensors not used for training. Our data set consists of several months of data from 3904 CMLs covering all of Germany. Compared to a previously used detection method, we could show a significant increase in performance.
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
Short summary
Commercial microwave links (CMLs), which form large parts of the backhaul from the ubiquitous cellular communication networks, can be used to estimate path-integrated rainfall rates. This study presents the processing and evaluation of the largest CML data set to date, covering the whole of Germany with almost 4000 CMLs. The CML-derived rainfall information compares well to a standard precipitation data set from the German Meteorological Service, which combines radar and rain gauge data.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Dominikus Heinzeller, Diarra Dieng, Gerhard Smiatek, Christiana Olusegun, Cornelia Klein, Ilse Hamann, Seyni Salack, Jan Bliefernicht, and Harald Kunstmann
Earth Syst. Sci. Data, 10, 815–835, https://doi.org/10.5194/essd-10-815-2018, https://doi.org/10.5194/essd-10-815-2018, 2018
Short summary
Short summary
Climate change and population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change simulations is provided to support adaptation and mitigation measures. This contribution presents the concept and design of the simulations and provides information on the format and dissemination of the available data.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Short summary
Climate change effects on snow, glaciers, and hydrology are investigated for the Ötztal Alps region (Austria) using a hydroclimatological model driven by climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show declining snow amounts and strongly retreating glaciers with moderate effects on catchment runoff until the mid-21st century, whereas annual runoff volumes decrease strongly towards the end of the century.
Kristian Förster, Florian Hanzer, Elena Stoll, Adam A. Scaife, Craig MacLachlan, Johannes Schöber, Matthias Huttenlau, Stefan Achleitner, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1157–1173, https://doi.org/10.5194/hess-22-1157-2018, https://doi.org/10.5194/hess-22-1157-2018, 2018
Short summary
Short summary
This article presents predictability analyses of snow accumulation for the upcoming winter season. The results achieved using two coupled atmosphere–ocean general circulation models and a water balance model show that the tendency of snow water equivalent anomalies (i.e. the sign of anomalies) is correctly predicted in up to 11 of 13 years. The results suggest that some seasonal predictions may be capable of predicting tendencies of hydrological model storages in parts of Europe.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Caroline Brosy, Karina Krampf, Matthias Zeeman, Benjamin Wolf, Wolfgang Junkermann, Klaus Schäfer, Stefan Emeis, and Harald Kunstmann
Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, https://doi.org/10.5194/amt-10-2773-2017, 2017
Short summary
Short summary
Vertical and horizontal sounding of the planetary boundary layer can be complemented by unmanned aerial vehicles (UAV). Utilizing a multicopter-type UAV spatial sampling of air and simultaneously sensing of meteorological variables is possible for the study of surface exchange processes. During stable atmospheric conditions, vertical methane gradients of about 300 ppb were found. This approach extended the vertical profile height of existing tower-based infrastructure by a factor of five.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Kristian Förster, Felix Oesterle, Florian Hanzer, Johannes Schöber, Matthias Huttenlau, and Ulrich Strasser
Proc. IAHS, 374, 143–150, https://doi.org/10.5194/piahs-374-143-2016, https://doi.org/10.5194/piahs-374-143-2016, 2016
Short summary
Short summary
We present first results of a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps. Meteorological forecasts are obtained from the CFSv2 model which are downscaled to the Alpine Water balance And Runoff Estimation model AWARE. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN. In this way, ensemble simulations of the coupled model are compared to observations.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Kristian Förster, Florian Hanzer, Benjamin Winter, Thomas Marke, and Ulrich Strasser
Geosci. Model Dev., 9, 2315–2333, https://doi.org/10.5194/gmd-9-2315-2016, https://doi.org/10.5194/gmd-9-2315-2016, 2016
Short summary
Short summary
For many applications in geoscientific modelling hourly meteorological time series are required, which generally cover shorter periods of time compared to daily time series. We present an open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST) capable of disaggregating temperature, precipitation, humidity, wind speed, and shortwave radiation (i.e. making 24 out of 1 value). Results indicate a good reconstruction of diurnal features at five sites in different climates.
Christian Chwala, Felix Keis, and Harald Kunstmann
Atmos. Meas. Tech., 9, 991–999, https://doi.org/10.5194/amt-9-991-2016, https://doi.org/10.5194/amt-9-991-2016, 2016
Short summary
Short summary
Commercial microwave link (CML) networks, like they are used as backbone for the cell phone network, can be used to derive rainfall information. However, data availability is limited due to the lack of suitable data acquisition systems. We have developed and currently operate a custom data acquisition system for CML networks that is able to acquire the required data for a large number of CMLs in real time. This system is the basis for a future countrywide rainfall product derived from CML data.
T. Marke, E. Mair, K. Förster, F. Hanzer, J. Garvelmann, S. Pohl, M. Warscher, and U. Strasser
Geosci. Model Dev., 9, 633–646, https://doi.org/10.5194/gmd-9-633-2016, https://doi.org/10.5194/gmd-9-633-2016, 2016
Short summary
Short summary
This article describes the extension of the ESCIMO.spread spreadsheet-based point energy balance snow model by (i) an advanced approach for precipitation phase detection, (ii) a concept for cold and liquid water storage consideration and (iii) a canopy sub-model that allows one to quantify the effect of a forest canopy on the meteorological conditions inside the forest as well as the simulation of snow accumulation and ablation inside a forest stand.
D. Heinzeller, M. G. Duda, and H. Kunstmann
Geosci. Model Dev., 9, 77–110, https://doi.org/10.5194/gmd-9-77-2016, https://doi.org/10.5194/gmd-9-77-2016, 2016
Short summary
Short summary
We present an in-depth evaluation of the Model for Prediction Across Scales (MPAS) with regards to technical aspects of performing model runs and scalability for medium-size meshes on several HPCs. We also demonstrate the model performance in terms of its capability to reproduce the dynamics of the West African monsoon and its associated precipitation in a pilot study. Finally, we conduct extreme scaling tests on a global 3km mesh with 65,536,002 horizontal grid cells on up to 458,752 cores.
F. Alshawaf, B. Fersch, S. Hinz, H. Kunstmann, M. Mayer, and F. J. Meyer
Hydrol. Earth Syst. Sci., 19, 4747–4764, https://doi.org/10.5194/hess-19-4747-2015, https://doi.org/10.5194/hess-19-4747-2015, 2015
Short summary
Short summary
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion data from Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite Systems (GNSS), and the Weather Research and Forecasting (WRF) model. The data fusion approach exploits the redundant and complementary spatial properties of all data sets to provide more accurate and high-resolution maps of water vapor. The comparison with maps from MERIS shows rms values of less than 1 mm.
G. Mao, S. Vogl, P. Laux, S. Wagner, and H. Kunstmann
Hydrol. Earth Syst. Sci., 19, 1787–1806, https://doi.org/10.5194/hess-19-1787-2015, https://doi.org/10.5194/hess-19-1787-2015, 2015
A. Wagner, J. Seltmann, and H. Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-1765-2015, https://doi.org/10.5194/hessd-12-1765-2015, 2015
Manuscript not accepted for further review
K. Förster, G. Meon, T. Marke, and U. Strasser
Hydrol. Earth Syst. Sci., 18, 4703–4720, https://doi.org/10.5194/hess-18-4703-2014, https://doi.org/10.5194/hess-18-4703-2014, 2014
Short summary
Short summary
Four snow models of different complexity (temperature-index vs. energy balance models) are compared using observed and dynamically downscaled atmospheric analysis data as input. Biases in simulated precipitation lead to lower model performance. However, simulated meteorological conditions are proven to be a valuable meteorological data source as they provide model input in regions with limited availability of observations and allow the application of energy balance approaches.
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, https://doi.org/10.5194/hess-17-4869-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Instruments and observation techniques
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Climatology of snow depth and water equivalent measurements in the Italian Alps (1967–2020)
Contribution of rock glacier discharge to late summer and fall streamflow in the Uinta Mountains, Utah, USA
Monitoring snowpack outflow volumes and their isotopic composition to better understand streamflow generation during rain-on-snow events
Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia
Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions
Dye tracing to determine flow properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden
Soil erosion by snow gliding – a first quantification attempt in a subalpine area in Switzerland
Spatial distribution of stable water isotopes in alpine snow cover
From observation to the quantification of snow processes with a time-lapse camera network
Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy)
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024, https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Short summary
Observations and simulations from an exceptionally low-snow and warm winter, which may become the new norm in the boreal forest of eastern Canada, show an earlier and slower snowmelt, reduced soil temperature, stronger vertical temperature gradients in the snowpack, and a significantly lower spring streamflow. The magnitude of these effects is either amplified or reduced with regard to the complex structure of the canopy.
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024, https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
Short summary
We studied temporal trends and variability of snow depth and snow water equivalent (SWE) in six regions of the Italian Alps. We applied different statistical analyses to a dataset of homogeneous and continuous measurements of snow depth and SWE, temporally spanning from 1967 to 2020, and discussed the results with meteo-climatic data. Our results quantify the decrease of SWE in the study area, confirming the impacts of climate modifications on the cryosphere in the Alps.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Andrea Rücker, Stefan Boss, James W. Kirchner, and Jana von Freyberg
Hydrol. Earth Syst. Sci., 23, 2983–3005, https://doi.org/10.5194/hess-23-2983-2019, https://doi.org/10.5194/hess-23-2983-2019, 2019
Short summary
Short summary
To better understand how rain-on-snow (ROS) events affect snowpack outflow volumes and streamflow generation, we measured snowpack outflow volumes and isotopic composition during 10 ROS events with automated snowmelt lysimeters at three locations in a pre-Alpine catchment. We quantified the spatio-temporal variability of snowpack outflow and its relative contribution to streamflow, and identified rainfall characteristics and initial snow depth as major controls on snow hydrological processes.
Enrique Morán-Tejeda, Jorge Luis Ceballos, Katherine Peña, Jorge Lorenzo-Lacruz, and Juan Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 5445–5461, https://doi.org/10.5194/hess-22-5445-2018, https://doi.org/10.5194/hess-22-5445-2018, 2018
Short summary
Short summary
We studied the recent evolution of a small glacier in the Colombian Andes that is close to extinction, focusing on the water release from the glacier. For this we used hydro-climatological data collected at the the glacier surroundings at an hourly resolution. Our results indicate that water from glacier melt increased as a consequence of accelerated glacier retreat, but up to a certain point (mid-2016) it started to decrease, with glacier melt becoming decreasingly important.
Roman Juras, Sebastian Würzer, Jirka Pavlásek, Tomáš Vitvar, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, https://doi.org/10.5194/hess-21-4973-2017, 2017
Short summary
Short summary
This research investigates the rainwater dynamics in the snowpack under artificial rain-on-snow events. Deuterium-enriched water was sprayed on the isolated snowpack and rainwater was further identified in the runoff. We found that runoff from cold snowpack was created faster than from the ripe snowpack. Runoff from the cold snowpack also contained more rainwater compared to the ripe snowpack. These results are valuable for further snowpack runoff forecasting.
C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist
Hydrol. Earth Syst. Sci., 19, 2701–2715, https://doi.org/10.5194/hess-19-2701-2015, https://doi.org/10.5194/hess-19-2701-2015, 2015
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, A. Walter, and C. Alewell
Hydrol. Earth Syst. Sci., 18, 3763–3775, https://doi.org/10.5194/hess-18-3763-2014, https://doi.org/10.5194/hess-18-3763-2014, 2014
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
E. Ceaglio, K. Meusburger, M. Freppaz, E. Zanini, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 517–528, https://doi.org/10.5194/hess-16-517-2012, https://doi.org/10.5194/hess-16-517-2012, 2012
Cited articles
Ahluwalia, R. S., Rai, S. P., Jain, S. K., Kumar, B., and Dobhal, D. P.: Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India, Ann. Glaciol., 54, 299–304, https://doi.org/10.3189/2013AoG62A133, 2013.
APCC: Austrian Assessment Report (AAR14). Summary for Policymakers (SPM), Austrian Panel on Climate Change, Vienna, Austria, 2014.
Árnason, B., Buason, T., Martinec, J., and Theodorson, P.: Movement of water through snowpack traced by deuterium and tritium, in: The role of snow and ice in hydrology, Proc. Banff Symp., edited by: UNESCO-WMO-IAHS, IAHS Publ. No. 107, 1973.
Beaulieu, M., Schreier, H., and Jost, G.: A shifting hydrological regime: a field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia, Hydrol. Process., 26, 2672–2682, https://doi.org/10.1002/hyp.9404, 2012.
Behrens, H., Moser, H., Oerter, H., Rauert, W., Stichler, W., and Ambach, W.: Models for the runoff from a glaciated catchment area using measurements of environmental isotope contents, Isotope Hydrology Vol. ll, W-05, Proceedings of a Symposium, Neuherberg, 19–23 June 1978, IAEA, Vienna, IAEA-SM-228/41, 2, 829–846, 1978.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall-runoff models, Water Resour. Res., 47, W02515, https://doi.org/10.1029/2010WR009547, 2011.
Bishop, K.: Episodic increase in stream acidity, catchment flow pathways and hydrograph separation, PhD thesis, University of Cambridge, 246 pp., 1991.
Bishop, K., Seibert, J., Nyberg, L., and Rodhe, A.: Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times, Hydrol. Process., 25, 3950–3959, https://doi.org/10.1002/hyp.8355, 2011.
Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from air temperature, West Greenland, in: Glacier Fluctuations and Climatic Change, Glaciology and Quaternary Geology, edited by: Oerlemans, J., Kluwer Academic Publisher, Dordrecht, 1989.
Buttle, J. M.: Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins, Prog. Phys. Geog., 18, 16–41, https://doi.org/10.1177/030913339401800102, 1994.
Capell, R., Tetzlaff, D., and Soulsby, C.: Can time domain and source area tracers reduce uncertainty in rainfall-runoff models in larger heterogeneous catchments?, Water Resour. Res., 48, W09544, https://doi.org/10.1029/2011WR011543, 2012.
Carey, S. K. and Quinton, W. L.: Evaluating snowmelt rnoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data, Nord. Hydrol., 35, 309–324, 2004.
Clark, I. D. and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis Publishers, Ney York, 342 pp., 1997.
CLC: Corine Land Cover 2006 raster data, European Environment Agency. The European Topic Centre on Land Use and Spatial Information, available at: http://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (last access: 10 December 2015), 2006.
Cooper, L. W.: Isotopic fractionation in snow cover, in: Isotope tracers in catchment hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier Science, Amsterdam, Netherlands, 119–136, 2006.
Corripio, J. G.: Vectorial algebra algorithms for calculating terrain parameters from DEMs and the position of the sun for solar radiation modelling in mountainous terrain, Int. J. Geogr. Inf. Sci., 17, 1–23, 2003.
Dahlke, H. E. and Lyon, S. W.: Early melt season snowpack isotopic evolution in the Tarfala valley, northern Sweden, Ann. Glaciol., 54, 149–156, https://doi.org/10.3189/2013AoG62A232, 2013.
Dietermann, N. and Weiler, M.: Spatial distribution of stable water isotopes in alpine snow cover, Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, 2013.
Dinçer, T., Payne, B. R., Florkowski, T., Martinec, J., and Tongiorgi, E.: Snowmelt runoff from measurements of tritium and oxygen-18, Water Resour. Res., 6, 110–124, https://doi.org/10.1029/WR006i001p00110, 1970.
Engel, M., Penna, D., Bertoldi, G., Dell'Agnese, A., Soulsby, C., and Comiti, F.: Identifying run-off contributions during melt-induced run-off events in a glacierized alpine catchment, Hydrol. Process., 30, 343–364, https://doi.org/10.1002/hyp.10577, 2016.
Feng, X., Taylor, S., Renshaw, C. E., and Kirchner, J. W.: Isotopic evolution of snowmelt 1. A physically based one-dimensional model, Water Resour. Res., 38, 35-31–35-38, https://doi.org/10.1029/2001WR000814, 2002.
Genereux, D.: Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915–919, https://doi.org/10.1029/98WR00010, 1998.
Greuell, W., Knap, W. H., and Smeets, P. C.: Elevational changes in meteorological variables along a midlatitude glacier during summer, J. Geophys. Res.-Atmos., 102, 25941–25954, https://doi.org/10.1029/97JD02083, 1997.
Gruber, S.: A mass-conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models, Water Resour. Res., 43, W06412, https://doi.org/10.1029/2006WR004868, 2007.
Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (Graubünden), Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 1975.
Hanzer, F., Marke, T., and Strasser, U.: Distributed, explicit modeling of technical snow production for a ski area in the Schladming region (Austrian Alps), Cold Reg. Sci. Technol., 108, 113–124, https://doi.org/10.1016/j.coldregions.2014.08.003, 2014.
Hanzer, F., Helfricht, K., Marke, T., and Strasser, U.: Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments, The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, 2016.
Helfricht, K.: Analysis of the spatial and temporal variation of seasonal snow accumulation in Alpine catchments using airborne laser scanning. Basic research for the adaptation of spatially distributed hydrological models to mountain regions, PhD, University of Innsbruck, Innsbruck, 134 pp., 2014.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Hooper, R. P. and Shoemaker, C. A.: A Comparison of Chemical and Isotopic Hydrograph Separation, Water Resour. Res., 22, 1444–1454, https://doi.org/10.1029/WR022i010p01444, 1986.
Huth, A. K., Leydecker, A., Sickman, J. O., and Bales, R. C.: A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California, Hydrol. Process., 18, 1721–1733, https://doi.org/10.1002/hyp.1414, 2004.
IPCC: Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kindom and New York, NY, USA, 2013.
Klaus, J. and McDonnell, J. J.: Hydrograph separation using stable isotopes: Review and evaluation, J. Hydrol., 505, 47–64, https://doi.org/10.1016/j.jhydrol.2013.09.006, 2013.
Laudon, H., Hemond, H. F., Krouse, R., and Bishop, K. H.: Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation, Water Resour. Res., 38, 40-41–40-10, https://doi.org/10.1029/2002WR001510, 2002.
Laudon, H., Seibert, J., Köhler, S., and Bishop, K.: Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff, Water Resour. Res., 40, W03102, https://doi.org/10.1029/2003WR002455, 2004.
Laudon, H., Sjöblom, V., Buffam, I., Seibert, J., and Mörth, M.: The role of catchment scale and landscape characteristics for runoff generation of boreal streams, J. Hydrol., 344, 198–209, https://doi.org/10.1016/j.jhydrol.2007.07.010, 2007.
Lee, J., Feng, X., Faiia, A. M., Posmentier, E. S., Kirchner, J. W., Osterhuber, R., and Taylor, S.: Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice, Chem. Geol., 270, 126–134, https://doi.org/10.1016/j.chemgeo.2009.11.011, 2010.
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System (SnowModel), J. Hydrometeorol., 7, 1259–1276, https://doi.org/10.1175/JHM548.1, 2006.
Liu, F., Williams, M. W., and Caine, N.: Source waters and flow paths in an alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, 1–16, https://doi.org/10.1029/2004WR003076, 2004.
Lundquist, J. D. and Cayan, D. R.: Seasonal and Spatial Patterns in Diurnal Cycles in Streamflow in the Western United States, J. Hydrometeorol., 3, 591–603, https://doi.org/10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2, 2002.
Lundquist, J. D., Dettinger, M. D., and Cayan, D. R.: Snow-fed streamflow timing at different basin scales: Case study of the Tuolumne River above Hetch Hetchy, Yosemite, California, Water Resour. Res., 41, W07005, https://doi.org/10.1029/2004WR003933, 2005.
Marke, T.: Development and Application of a Model Interface to couple Regional Climate Models with Land Surface Models for Climate Change Risk Assessment in the Upper Danube Watershed, Dissertation der Fakultät für Geowissenschaften, Digitale Hochschulschriften der LMU München, München, 2008.
Marke, T., Strasser, U., Hanzer, F., Stötter, J., Wilcke, R. A. I., and Gobiet, A.: Scenarios of Future Snow Conditions in Styria (Austrian Alps), J. Hydrometeorol., 16, 261–277, https://doi.org/10.1175/JHM-D-14-0035.1, 2015.
Martinec, J., Siegenthaler, U., Oeschger, H., and Tongiorgi, E.: New insights into the run-off mechanism by environmental isotopes, in: Isotope techniques in groundwater hydrology, Proceedings of an International Symposium, IAEA, Vienna, Austria, 1974.
Mast, A. M., Kendall, K., Campbell, D. H., Clow, D. W., and Back, J.: Determination of hydrologic pathways in an alpine-subalpine basin using isotopic and chemical tracers, Loch Vale Watershed, Colorado, USA, in: Biogeochemistry of Seasonally Snow-Covered Catchments, edited by: Tonnessen, K., William, M., and Tranter, M., Int. Assoc. of Hydrol. Sci. Proc., Boulder, Colorado, 1995.
Maulé, C. P. and Stein, J.: Hydrologic Flow Path Definition and Partitioning of Spring Meltwater, Water Resour. Res., 26, 2959–2970, https://doi.org/10.1029/WR026i012p02959, 1990.
Moore, R. D.: Tracing runoff sources with deuterium and oxygen-88 during spring melt in a headwater catchment, southern Laurentians, Quebec, J. Hydrol., 112, 135–148, https://doi.org/10.1016/0022-1694(89)90185-6, 1989.
Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland, J. Glaciol., 51, 573–587, 2005.
Penna, D., Engel, M., Mao, L., Dell'Agnese, A., Bertoldi, G., and Comiti, F.: Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment, Hydrol. Earth Syst. Sci., 18, 5271–5288, https://doi.org/10.5194/hess-18-5271-2014, 2014.
Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., and Borga, M.: Hydrological response of an Alpine catchment to rainfall and snowmelt events, J. Hydrol., 537, 382–397, https://doi.org/10.1016/j.jhydrol.2016.03.040, 2016.
Petrone, K., Buffam, I., and Laudon, H.: Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservative and reactive tracer approach, Water Resour. Res., 43, 1–13, https://doi.org/10.1029/2006WR005286, 2007.
Pinder, G. F. and Jones, J. F.: Determination of the ground-water component of peak discharge from the chemistry of total runoff, Water Resour. Res., 5, 438–445, https://doi.org/10.1029/WR005i002p00438, 1969.
Pomeroy, J. W., Toth, B., Granger, R. J., Hedstrom, N. R., and Essery, R. L. H.: Variation in Surface Energetics during Snowmelt in a Subarctic Mountain Catchment, J. Hydrometeorol., 4, 702–719, https://doi.org/10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2, 2003.
Rohrer, M. B.: Die Schneedecke im Schweizer Alpenraum und ihre Modellierung, PhD thesis, Swiss Federal Institute of Technology in Zurich, Switzerland, 178 pp., 1992.
Schuler, T.: Investigation of water drainage through an alpine glacier by tracer experiments and numerical modeling, PhD thesis, Swiss Federal Institute of Technology in Zurich, Switzerland, 140 pp., 2002.
Shanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M., and McDonnell, J. J.: Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA, Hydrol. Process., 16, 589–609, https://doi.org/10.1002/hyp.312, 2002.
Sklash, M. G. and Farvolden, R. N.: The role of groundwater in storm runoff, J. Hydrol., 43, 45–65, https://doi.org/10.1016/0022-1694(79)90164-1, 1979.
Sklash, M. G., Farvolden, R. N., and Fritz, P.: A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer, Can. J. Earth Sci., 13, 271–283, https://doi.org/10.1139/e76-029, 1976.
Stichler, W.: Snowcover and Snowmelt Processes Studied by Means of Environmental Isotopes, in: Seasonal Snowcovers: Physics, Chemistry, Hydrology, edited by: Jones, H. G. and Orville-Thomas, W. J., D. Reidel Publishing Company, Dordrecht, Holland, 673–726, 1987.
Strasser, U.: Modelling of the mountain snow cover in the Berchtesgaden National Park, Research Rep. 55, Berchtesgaden, 2008.
Strasser, U., Corripio, J., Pellicciotti, F., Burlando, P., Brock, B., and Funk, M.: Spatial and temporal variability of meteorological variables at Haut Glacier d'Arolla (Switzerland) during the ablation season 2001: Measurements and simulations, J. Geophys. Res.-Atmos., 109, D03103, https://doi.org/10.1029/2003JD003973, 2004.
Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W.: Is snow sublimation important in the alpine water balance?, The Cryosphere, 2, 53–66, https://doi.org/10.5194/tc-2-53-2008, 2008.
Strasser, U., Warscher, M., and Liston, G. E.: Modeling Snow–Canopy Processes on an Idealized Mountain, J. Hydrometeorol., 12, 663–677, https://doi.org/10.1175/2011JHM1344.1, 2011.
Sueker, J. K., Ryan, J. N., Kendall, C., and Jarrett, R. D.: Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado, Water Resour. Res., 36, 63–75, https://doi.org/10.1029/1999WR900296, 2000.
Taylor, S., Feng, X., Kirchner, J. W., Osterhuber, R., Klaue, B., and Renshaw, C. E.: Isotopic evolution of a seasonal snowpack and its melt, Water Resour. Res., 37, 759–769, https://doi.org/10.1029/2000WR900341, 2001.
Taylor, S., Feng, X., Williams, M., and McNamara, J.: How isotopic fractionation of snowmelt affects hydrograph separation, Hydrol. Process., 16, 3683–3690, https://doi.org/10.1002/hyp.1232, 2002.
Uhlenbrook, S. and Leibundgut, C.: Process-oriented catchment modelling and multiple-response validation, Hydrol. Process., 16, 423–440, https://doi.org/10.1002/hyp.330, 2002.
Unnikrishna, P. V., McDonnell, J. J., and Kendall, C.: Isotope variations ni a Sierra Nevada snowpack and their relation to meltwater, J. Hydrol., 260, 38–57, 2002.
Warscher, M., Strasser, U., Kraller, G., Marke, T., Franz, H., and Kunstmann, H.: Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps, Water Resour. Res., 49, 2619–2637, https://doi.org/10.1002/wrcr.20219, 2013.
Weingartner, R. and Aschwanden, H.: Discharge regime – the basis for the estimation of average flows, in: Hydrological Atlas of Switzerland, Plate 5.2, Bern, 1992.
Williams, M. W., Seibold, C., and Chowanski, K.: Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado, Biogeochemistry, 95, 77–94, https://doi.org/10.1007/s10533-009-9288-x, 2009.
Zappa, M.: Objective quantitative spatial verification of distributed snow cover simulations – an experiment for the whole of Switzerland, Hydrolog. Sci. J., 53, 179–191, https://doi.org/10.1623/hysj.53.1.179, 2008.
Zhou, S., Nakawo, M., Hashimoto, S., and Sakai, A.: The effect of refreezing on the isotopic composition of melting snowpack, Hydrol. Process., 22, 873–882, https://doi.org/10.1002/hyp.6662, 2008.
Short summary
We present novel research on the spatiotemporal variability of snowmelt isotopic content in a high-elevation catchment with complex terrain
to improve the isotope-based hydrograph separation method. A modelling approach was used to weight the plot-scale snowmelt isotopic content
with melt rates for the north- and south-facing slope. The investigations showed that it is important to sample at least north- and south-facing slopes,
because of distinct isotopic differences between both slopes.
We present novel research on the spatiotemporal variability of snowmelt isotopic content in a...