Articles | Volume 20, issue 11
https://doi.org/10.5194/hess-20-4585-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-4585-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluating performance of simplified physically based models for shallow landslide susceptibility
Giuseppe Formetta
CORRESPONDING AUTHOR
University of Calabria Dipartimento di Ingegneria Informatica,
Modellistica, Elettronica e Sistemistica Ponte Pietro Bucci, Cubo 41/b,
87036 Rende, Italy
Giovanna Capparelli
University of Calabria Dipartimento di Ingegneria Informatica,
Modellistica, Elettronica e Sistemistica Ponte Pietro Bucci, Cubo 41/b,
87036 Rende, Italy
Pasquale Versace
University of Calabria Dipartimento di Ingegneria Informatica,
Modellistica, Elettronica e Sistemistica Ponte Pietro Bucci, Cubo 41/b,
87036 Rende, Italy
Related authors
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017, https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary
Short summary
This study documents a state-of-the-art estimation of the water budget (rainfall, evapotranspiration, discharge, and soil and groundwater storage) components for the Upper Blue Nile river. The budget uses various JGrass-NewAGE components, satellite data and all ground measurements available. The analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 %, runoff is 33 %, and storage varies from minus 10 % to plus 17 % of the annual water budget.
Giuseppe Formetta, Marialaura Bancheri, Olaf David, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 20, 4641–4654, https://doi.org/10.5194/hess-20-4641-2016, https://doi.org/10.5194/hess-20-4641-2016, 2016
Short summary
Short summary
Ten algorithms for estimating DL and one for UL are integrated in a new model (LWRB) and connected to hydrological model JGrass-NewAge. The algorithms are tested against energy flux measurements available for 24 sites in North America to assess their reliability. We evaluated the performances of simplified models (SMs) of DL, as presented in literature formulations, and determined by automatic calibration the site-specific parameter sets for SMs of DL to improve model predictions.
G. Formetta, S. K. Kampf, O. David, and R. Rigon
Geosci. Model Dev., 7, 725–736, https://doi.org/10.5194/gmd-7-725-2014, https://doi.org/10.5194/gmd-7-725-2014, 2014
Emanuele Intrieri, Federica Bardi, Riccardo Fanti, Giovanni Gigli, Francesco Fidolini, Nicola Casagli, Sandra Costanzo, Antonio Raffo, Giuseppe Di Massa, Giovanna Capparelli, and Pasquale Versace
Nat. Hazards Earth Syst. Sci., 17, 1713–1723, https://doi.org/10.5194/nhess-17-1713-2017, https://doi.org/10.5194/nhess-17-1713-2017, 2017
Short summary
Short summary
Landslides are a threat not only to people but also to important infrastructure, like highways. Nowadays there are several monitoring systems that are able to detect slope displacements in order to give prompt alarms. On the other hand, such instruments produce a huge amount of information, which is often not totally used and which can also represent an issue for data storage and transmission. In this paper we explain how we dealt with the large quantity of data provided by one of these tools.
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017, https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary
Short summary
This study documents a state-of-the-art estimation of the water budget (rainfall, evapotranspiration, discharge, and soil and groundwater storage) components for the Upper Blue Nile river. The budget uses various JGrass-NewAGE components, satellite data and all ground measurements available. The analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 %, runoff is 33 %, and storage varies from minus 10 % to plus 17 % of the annual water budget.
Davide L. De Luca and Pasquale Versace
Adv. Geosci., 44, 53–60, https://doi.org/10.5194/adgeo-44-53-2017, https://doi.org/10.5194/adgeo-44-53-2017, 2017
Short summary
Short summary
For early warning of disasters induced by precipitation (such as floods and landslides), different kinds of rainfall thresholds are adopted, which vary from each other, on the basis on adopted hypotheses. This work briefly discusses different schemes of rainfall thresholds, focusing attention on landslide prediction, with some applications to a real case study in Calabria region (southern Italy).
Giuseppe Formetta, Marialaura Bancheri, Olaf David, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 20, 4641–4654, https://doi.org/10.5194/hess-20-4641-2016, https://doi.org/10.5194/hess-20-4641-2016, 2016
Short summary
Short summary
Ten algorithms for estimating DL and one for UL are integrated in a new model (LWRB) and connected to hydrological model JGrass-NewAge. The algorithms are tested against energy flux measurements available for 24 sites in North America to assess their reliability. We evaluated the performances of simplified models (SMs) of DL, as presented in literature formulations, and determined by automatic calibration the site-specific parameter sets for SMs of DL to improve model predictions.
G. Capparelli and P. Versace
Hydrol. Earth Syst. Sci., 18, 3225–3237, https://doi.org/10.5194/hess-18-3225-2014, https://doi.org/10.5194/hess-18-3225-2014, 2014
G. Formetta, S. K. Kampf, O. David, and R. Rigon
Geosci. Model Dev., 7, 725–736, https://doi.org/10.5194/gmd-7-725-2014, https://doi.org/10.5194/gmd-7-725-2014, 2014
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Technical Note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Recession discharge from compartmentalized bedrock hillslopes
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Physically based model for gully simulation: application to the Brazilian semiarid region
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Multi-source data assimilation for physically based hydrological modeling of an experimental hillslope
A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem
Reconstructing long-term gully dynamics in Mediterranean agricultural areas
Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory
Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review
Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
Quantification of the influence of preferential flow on slope stability using a numerical modelling approach
Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models
Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale
Analysis of landslide triggering conditions in the Sarno area using a physically based model
The influence of grid resolution on the prediction of natural and road-related shallow landslides
Incipient subsurface heterogeneity and its effect on overland flow generation – insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory
Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA
Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths
Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)
A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution
A paradigm shift in stormflow predictions for active tectonic regions with large-magnitude storms: generalisation of catchment observations by hydraulic sensitivity analysis and insight into soil-layer evolution
Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems
Statistical analysis and modelling of surface runoff from arable fields in central Europe
Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
Characterization of groundwater dynamics in landslides in varved clays
A critical assessment of simple recharge models: application to the UK Chalk
The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale
Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems
Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian highlands
A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide
Scale effect on overland flow connectivity at the plot scale
Physical models for classroom teaching in hydrology
Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China
Effects of peatland drainage management on peak flows
A conceptual model of the hydrological influence of fissures on landslide activity
A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment
A novel explicit approach to model bromide and pesticide transport in connected soil structures
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024, https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Short summary
Antecedent effective precipitation (AEP) plays an important role in debris flow formation, but the relationship between AEP and the debris flow occurrence (Pdf) is still not quantified. We used numerical calculation and the Monte Carlo integration method to solve this issue. The relationship between Pdf and AEP can be described by the piecewise function, and debris flow is a small-probability event comparing to rainfall frequency because the maximum Pdf in Jiangjia Gully is only 15.88 %.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023, https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Short summary
This study shows a methodological approach using machine learning techniques to disentangle the relationships among the variables in a synthetic dataset to identify suitable variables that control the hydrologic response of the slopes. It has been found that not only is the rainfall responsible for the water accumulation in the slope; the ground conditions (soil water content and aquifer water level) also indicate the activation of natural slope drainage mechanisms.
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
EGUsphere, https://doi.org/10.5194/egusphere-2023-659, https://doi.org/10.5194/egusphere-2023-659, 2023
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage-discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023, https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
Short summary
In a localized area with the same vegetation, an overwhelming propensity of shallow landslides on the south-facing slope over the north-facing slope could not be attributed to plant roots. We provide new evidence from the pore water pressure of failing mass, unsaturated hydraulic conductivity, water storage, and drainage and the hillslope stability fluctuation to prove that the infinite slope model may be suitable for elucidating the aspect-dependent landslide distribution in the study area.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng
Hydrol. Earth Syst. Sci., 25, 4473–4494, https://doi.org/10.5194/hess-25-4473-2021, https://doi.org/10.5194/hess-25-4473-2021, 2021
Short summary
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020, https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Short summary
Soil erosion by water has been emphasized as a key problem to be faced in the 21st century. Thus, it is critical to understand land degradation and to answer fundamental questions regarding how and why such processes occur. Here, we present a model for gully erosion (channels carved by rainwater) based on existing equations, and we identify some major variables that influence the initiation and evolution of this process. The successful model can help in planning soil conservation practices.
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020, https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
Short summary
Roads in sloping fens constitute a hydraulic barrier for surface and subsurface flow. This can lead to the drying out of downslope areas of the fen as well as gully erosion. By combining fieldwork and numerical models, this study presents an assessment of the hydrogeological impact of three road structures especially designed to limit their impact. The study shows that the impact of roads on the hydrological regime in fens can be significantly reduced by using appropriate engineering measures.
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018, https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Short summary
Soil erosion is a global problem and models identify vulnerable areas for management. One such model is the Revised Universal Soil Loss Equation. We review its different sub-factors and compile studies and equations that modified it for local conditions. The limitations of RUSLE include its data requirements and exclusion of gullying and landslides. Future directions include accounting for these erosion types. This paper serves as a reference for others working with RUSLE and related approaches.
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci., 22, 5759–5779, https://doi.org/10.5194/hess-22-5759-2018, https://doi.org/10.5194/hess-22-5759-2018, 2018
Short summary
Short summary
Predicting floods requires first knowing the amount of water in the valleys, which is complicated because we cannot know for sure how much water there is in the soil. We created a unique system that combines the best methods to estimate these conditions accurately based on the observed water flow in the rivers and on detailed simulations of the valleys. Comparisons with popular methods show that our system can produce realistic predictions efficiently, even for very detailed river networks.
Anna Botto, Enrica Belluco, and Matteo Camporese
Hydrol. Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018, https://doi.org/10.5194/hess-22-4251-2018, 2018
Short summary
Short summary
We present a multivariate application of the ensemble Kalman filter (EnKF) in hydrological modeling of a real-world hillslope test case with dominant unsaturated dynamics and strong nonlinearities. Overall, the EnKF is able to correctly update system state and soil parameters. However, multivariate data assimilation may lead to significant tradeoffs between model predictions of different variables, if the observation data are not high quality or representative.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Antonio Hayas, Tom Vanwalleghem, Ana Laguna, Adolfo Peña, and Juan V. Giráldez
Hydrol. Earth Syst. Sci., 21, 235–249, https://doi.org/10.5194/hess-21-235-2017, https://doi.org/10.5194/hess-21-235-2017, 2017
Short summary
Short summary
Gully erosion is one of the most important erosion processes. In this study, we provide new data on gully dynamics over long timescales with an unprecedented temporal resolution. We apply a new Monte Carlo based method for calculating gully volumes based on orthophotos and, especially, for constraining uncertainties of these estimations. Our results show that gully erosion rates are highly variable from year to year and significantly higher than other erosion processes.
Carlotta Scudeler, Luke Pangle, Damiano Pasetto, Guo-Yue Niu, Till Volkmann, Claudio Paniconi, Mario Putti, and Peter Troch
Hydrol. Earth Syst. Sci., 20, 4061–4078, https://doi.org/10.5194/hess-20-4061-2016, https://doi.org/10.5194/hess-20-4061-2016, 2016
Short summary
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
G. Capparelli and P. Versace
Hydrol. Earth Syst. Sci., 18, 3225–3237, https://doi.org/10.5194/hess-18-3225-2014, https://doi.org/10.5194/hess-18-3225-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
G.-Y. Niu, D. Pasetto, C. Scudeler, C. Paniconi, M. Putti, P. A. Troch, S. B. DeLong, K. Dontsova, L. Pangle, D. D. Breshears, J. Chorover, T. E. Huxman, J. Pelletier, S. R. Saleska, and X. Zeng
Hydrol. Earth Syst. Sci., 18, 1873–1883, https://doi.org/10.5194/hess-18-1873-2014, https://doi.org/10.5194/hess-18-1873-2014, 2014
J. Tao and A. P. Barros
Hydrol. Earth Syst. Sci., 18, 367–388, https://doi.org/10.5194/hess-18-367-2014, https://doi.org/10.5194/hess-18-367-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
A. Richard, S. Galle, M. Descloitres, J.-M. Cohard, J.-P. Vandervaere, L. Séguis, and C. Peugeot
Hydrol. Earth Syst. Sci., 17, 5079–5096, https://doi.org/10.5194/hess-17-5079-2013, https://doi.org/10.5194/hess-17-5079-2013, 2013
S. R. Lutz, H. J. van Meerveld, M. J. Waterloo, H. P. Broers, and B. M. van Breukelen
Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, https://doi.org/10.5194/hess-17-4505-2013, 2013
Makoto Tani
Hydrol. Earth Syst. Sci., 17, 4453–4470, https://doi.org/10.5194/hess-17-4453-2013, https://doi.org/10.5194/hess-17-4453-2013, 2013
M. N. Papa, V. Medina, F. Ciervo, and A. Bateman
Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, https://doi.org/10.5194/hess-17-4095-2013, 2013
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
R. Greco, L. Comegna, E. Damiano, A. Guida, L. Olivares, and L. Picarelli
Hydrol. Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-4001-2013, https://doi.org/10.5194/hess-17-4001-2013, 2013
C. Lepore, E. Arnone, L. V. Noto, G. Sivandran, and R. L. Bras
Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, https://doi.org/10.5194/hess-17-3371-2013, 2013
J. E. van der Spek, T. A. Bogaard, and M. Bakker
Hydrol. Earth Syst. Sci., 17, 2171–2183, https://doi.org/10.5194/hess-17-2171-2013, https://doi.org/10.5194/hess-17-2171-2013, 2013
A. M. Ireson and A. P. Butler
Hydrol. Earth Syst. Sci., 17, 2083–2096, https://doi.org/10.5194/hess-17-2083-2013, https://doi.org/10.5194/hess-17-2083-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
G. Martelloni, S. Segoni, D. Lagomarsino, R. Fanti, and F. Catani
Hydrol. Earth Syst. Sci., 17, 1229–1240, https://doi.org/10.5194/hess-17-1229-2013, https://doi.org/10.5194/hess-17-1229-2013, 2013
C. D. Guzman, S. A. Tilahun, A. D. Zegeye, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 17, 1067–1077, https://doi.org/10.5194/hess-17-1067-2013, https://doi.org/10.5194/hess-17-1067-2013, 2013
D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 17, 947–959, https://doi.org/10.5194/hess-17-947-2013, https://doi.org/10.5194/hess-17-947-2013, 2013
A. Peñuela, M. Javaux, and C. L. Bielders
Hydrol. Earth Syst. Sci., 17, 87–101, https://doi.org/10.5194/hess-17-87-2013, https://doi.org/10.5194/hess-17-87-2013, 2013
A. Rodhe
Hydrol. Earth Syst. Sci., 16, 3075–3082, https://doi.org/10.5194/hess-16-3075-2012, https://doi.org/10.5194/hess-16-3075-2012, 2012
G. Y. Gao, B. J. Fu, Y. H. Lü, Y. Liu, S. Wang, and J. Zhou
Hydrol. Earth Syst. Sci., 16, 2347–2364, https://doi.org/10.5194/hess-16-2347-2012, https://doi.org/10.5194/hess-16-2347-2012, 2012
C. E. Ballard, N. McIntyre, and H. S. Wheater
Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, https://doi.org/10.5194/hess-16-2299-2012, 2012
D. M. Krzeminska, T. A. Bogaard, Th. W. J. van Asch, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 16, 1561–1576, https://doi.org/10.5194/hess-16-1561-2012, https://doi.org/10.5194/hess-16-1561-2012, 2012
T. Maurer, A. Schneider, and H. H. Gerke
Hydrol. Earth Syst. Sci., 15, 3617–3638, https://doi.org/10.5194/hess-15-3617-2011, https://doi.org/10.5194/hess-15-3617-2011, 2011
J. Klaus and E. Zehe
Hydrol. Earth Syst. Sci., 15, 2127–2144, https://doi.org/10.5194/hess-15-2127-2011, https://doi.org/10.5194/hess-15-2127-2011, 2011
Cited articles
Abera W., Antonello, A., Franceschi, S., Formetta, G., and Rigon, R.: The uDig Spatial Toolbox for hydro-geomorphic analysis, Geomorphology, 4, 1–19, available at: http://www.geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.4.1_GISToolbox.pdf (last access: 12 November 2016), 2014.
Beguería, S.: Validation and evaluation of predictive models in hazard assessment and risk management, Nat. Hazards, 37, 315–329, 2006.
Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T., Norton, J. P., Perrin, C., and Pierce, S. A.: Characterising performance of environmental models, Environ. Modell. Softw., 40, 1–20, 2013.
Borga, M., Dalla Fontana, G., and Cazorzi, F.: Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, J. Hydrol., 268, 56–71, 2002.
Brabb, E. E.: Innovative approaches to landslide hazard and risk mapping, Proceedings of the 4th International Symposium on Landslides, 16–21 September, Toronto, Ontario, Canada, Canadian Geotechnical Society, Toronto, Ontario, Canada, 1, 307–324, 1984.
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.
Capparelli, G. and Versace, P.: FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfall, Landslides, 8, 67–79, 2011.
Capparelli, G., Iaquinta, P., Iovine, G. G. R., Terranova, O. G., and Versace, P.: Modelling the rainfall-induced mobilization of a large slope movement in northern Calabria, Nat. Hazards, 61, 247–256, 2012.
Carrara, A. and Merenda, L.: Landslide inventory in Northern Calabria, Southern Italy, Geol. Soc. Am. Bull., 87, 1153–1162, 1976.
Casadei, M., Dietrich, W. E., and Miller, N. L.: Testing a model for predicting the timing and location of shallow landslide initiation in soil mantled landscapes, Earth Surf. Process. Landf., 28, 925–950, 2003.
Cascini, L., Bonnard, C., Corominas, J., Jibson, R., and Montero-Olarte, J.: Landslide hazard and risk zoning for urban planning and development, Landslide Risk Management, Taylor and Francis, London, 199–235, 2005.
Catani, F., Casagli, N., Ermini, L., Righini, G., and Menduni, G.: Landslide hazard and risk mapping at catchment scale in the Arno River basin, Landslides, 2, 329–342, 2005.
Chung, C.-J. F., Fabbri, A. G., and van Westen, C. J.: Multivariate regression analysis for landslide hazard zonation, edited by: Carrara, A. and Guzzetti, F., Geographical Information Systems in assessing natural hazards, Kluwer Academic Publishers, Dordrecht, 5, 107–134, 1995.
Colella, A., De Boer, P. L., and Nio, S. D.: Sedimentology of a marine intermontane Pleistocene Gilbert-type fan-delta complex in the Crati Basin, Calabria, southern Italy, Sedimentology, 34, 721–736, 1987.
Conforti, M., Aucelli, P. P. C., Robustelli, G., and Scarciglia, F.: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo Stream catchment (Northern Calabria, Italy), Nat. Hazards, 56, 881–898, 2011.
Conforti, M., Pascale, S., Robustelli, G., and Sdao, F.: Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy), Catena, 113, 236–250, 2014.
Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., and Pitilakis, K.: Recommendations for the quantitative analysis of landslide risk, Bull. Eng. Geol. Environ., 73, 209–263, 2014.
David, O., Ascough II, J. C., Lloyd, W., Green, T. R., Rojas, K. W., Leavesley, G. H., and Ahuja, L. R.: A software engineering perspective on environmental modeling framework design: The Object Modeling System, Environ. Modell. Softw., 39, 201–213, 2013.
Dietrich, W. E., Bellugi, D., and Real De Asua, R.: Validation of the Shallow Landslide Model, SHALSTAB, for Forest Management, in: Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas, edited by: Wigmosta, M. S. and Burges, S. J., American Geophysical Union, Washington, D. C., 1, 195–227, https://doi.org/10.1029/WS002p0195, 2001.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, 1992.
Fabbricatore, D., Robustelli, G., and Muto, F.: Facies analysis and depositional architecture of shelf-type deltas in the Crati Basin (Calabrian Arc, south Italy), Boll. Soc. Geol. It., 133, 131–148 2014.
Formetta, G., Mantilla, R., Franceschi, S., Antonello, A., and Rigon, R.: The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing, Geosci. Model Dev., 4, 943–955, https://doi.org/10.5194/gmd-4-943-2011, 2011.
Formetta, G., Antonello, A., Franceschi, S., David, O., and Rigon, R.: Hydrological modelling with components: A GIS-based open-source framework, Environ. Modell. Softw., 55, 190–200, 2014a.
Formetta, G., Capparelli, G., Rigon, R., and Versace, P.: Physically based landslide susceptibility models with different degree of complexity: calibration and verification. International Environmental Modelling and Software Society (iEMSs), 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, 15–19 June, USA, edited by: Ames, D. P., Quinn, N. W. T., and Rizzoli, A. E., http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_157.pdf (last access: 12 November 2015), 2014b.
Formetta, G., Capparelli, G., and Versace, P.: Modelling rainfall induced shallow landslides in the Landslide Early Warning Integrated System project, Slopes and Geohazards, 1747–1752, available at: http://www.icevirtuallibrary.com/doi/abs/10.1680/ecsmge.60678.vol4.260 (last access: 12 November 2015), 2015.
Formetta, G., Simoni, S., Godt, J. W., Lu, N., and Rigon, R.: Geomorphological control on variably saturated hillslope hydrology and slope instability, Water Resour. Res., 52, 4590–4607, 2016.
Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating the performance of landslide susceptibility models, Eng. Geol., 111, 62–72, 2010.
Glade, T. and Crozier, M. J.: A review of scale dependency in landslide hazard and risk analysis, Landsl. Hazard Risk, 3, 75–138, 2005.
Goodenough, D. J., Rossmann, K., and Lusted, L. B.: Radiographic applications of receiver operating characteristic (ROC) analysis, Radiology, 110, 89–95, 1974.
Grahm, J.: Methods of slope stability analysis, in: Slope instability, edited by: Brunsden, D. and Prior, D. B., Wiley, New York, 171–215, 1984.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, 1999.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.: Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166–184, 2006.
Hay, L. E., Leavesley, G. H., Clark, M. P., Markstrom, S. L., Viger, R. J., and Umemoto, M.: Step-Wise, Multiple-Objective Calibration of a Hydrologic Model for a Snowmelt-Dominated Basin, J. Am. Water Resour. Assoc., 42, 877–890, 2006.
Huang, J.-C., Kao, S.-J., Hsu, M.-L., and Liu, Y.-A.: Influence of Specific Contributing Area algorithms on slope failure prediction in landslide modeling, Nat. Hazards Earth Syst. Sci., 7, 781–792, https://doi.org/10.5194/nhess-7-781-2007, 2007.
Iovine, G., Petrucci, O., Rizzo, V., nad Tansi, C.: The March 7th 2005 Cavallerizzo (Cerzeto) landslide in Calabria – Southern Italy. Engineering geology for tomorrow's cities – the 10th IAEG congress, Nottingham (UK), The Geological Society of London, Paper number 785, 2006.
Iovine, G. G. R., Lollino, P., Gariano, S. L., and Terranova, O. G.: Coupling limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy), Nat. Hazards Earth Syst. Sci., 10, 2341–2354, https://doi.org/10.5194/nhess-10-2341-2010, 2010.
Jolliffe, I. T. and Stephenson, D. B. (Eds.): Forecast verification: a practitioner's guide in atmospheric science, University of Exeter, UK, John Wiley & Sons, 292 pp., 2012.
Kennedy, J. and Eberhart, R.: Particle swarm optimization. Neural Networks, Proceedings, IEEE International Conference, Vol. 4. Perth, WA, IEEE, 1942–1948, 1995.
Lanzafame, G. and Tortorici, L.: La tettonica recente del Fiume Crati (Calabria), Geogr. Fis. Din. Quat., 4, 11–21, 1984.
Lee, S., Choi, J., and Min, K.: Landslide susceptibility analysis and verification using the Bayesian probability model, Environ. Geol., 43, 120–131, 2002.
Lu, N. and Godt, J.: Infinite slope stability under steady unsaturated seepage conditions, Water Resour. Res., 44, W11404, https://doi.org/10.1029/2008WR006976, 2008.
Lu, N. and Godt, J. W.: Hillslope hydrology and stability, Cambridge University Press, 458 pp., 2013.
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich, W. E.: A multidimensional stability model for predicting shallow landslide size and shape across landscapes, J. Geophys. Res.-Earth, 119, 2481–2504, 2014.
Montgomery, D. R. and Dietrich, W. E.: A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, 1994.
Murdoch, D. J. and Chow, E. D.: A graphical display of large correlation matrices, Am. Stat., 50, 178–180, 1996.
Naranjo, J. L., van Westen, C. J., and Soeters, R.: Evaluating the use of training areas in bivariate statistical landslide hazard analysis: a case study in Colombia, ITC Journal, 3, 292–300, 1994.
Park, N. W.: Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis, Environ. Earth Sci., 62, 367–376, 2011.
Park, H. J., Lee, J. H., and Woo, I.: Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach, Eng. Geol., 161, 1–15, 2013.
Pepe, M. S.: The Statistical Evaluation of Medical Tests for Classification and Prediction, Oxford University Press, New York, 320 pp., 2003.
Pradhan, B.: An assessment of the use of an advanced neural network model with five different training strategies for the preparation of landslide susceptibility maps, J. Data Sci., 9, 65–81, 2011.
Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comp. Geosci., 51, 350–365, 2013.
Provost, F. and Fawcett, T.: Robust classification for imprecise environments, Mach. Learn., 42, 203–231, 2001.
Rosso, R., Rulli, M. C., and Vannucchi, G.: A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, https://doi.org/10.1029/2005WR004369, 2006.
Sidle, R. C. and Ochiai, H.: Landslides: processes, prediction, and land use, Vol. 18, Washington D.C., USA, American Geophysical Union, 312 pp., 2006.
Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R.: Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Process., 22, 532–545, 2008.
Vezzani L.: I terreni plio-pleistocenici del basso Crati (Cosenza), Atti dell'Accademia Gioenia di Scienze Naturali di Catania, 6, 28–84, 1968.
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson, B. A.: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, https://doi.org/10.1029/2007WR006720, 2008.
Young, J. and Colella, A.: Calcarenous nannofossils from the Crati Basin, in: Fan Deltas-Excursion Guidebook, edited by: Colella A., Università della Calabria, Cosenza, Italy, 79–96, 1988.
Short summary
This paper focuses on performance evaluation of simplified, physically based landslide susceptibility models. It presents a new methodology to systemically and objectively calibrate, verify, and compare different models and models performances indicators in order to individuate and select the models whose behavior is more reliable for a certain case study. The procedure was implemented in a package for landslide susceptibility analysis and integrated the open-source hydrological model NewAge.
This paper focuses on performance evaluation of simplified, physically based landslide...