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Abstract. Rainfall-induced shallow landslides can lead to
loss of life and significant damage to private and public
properties, transportation systems, etc. Predicting locations
that might be susceptible to shallow landslides is a complex
task and involves many disciplines: hydrology, geotechnical
science, geology, hydrogeology, geomorphology, and statis-
tics. Two main approaches are commonly used: statistical
or physically based models. Reliable model applications in-
volve automatic parameter calibration, objective quantifica-
tion of the quality of susceptibility maps, and model sensitiv-
ity analyses. This paper presents a methodology to systemi-
cally and objectively calibrate, verify, and compare different
models and model performance indicators in order to identify
and select the models whose behavior is the most reliable for
particular case studies.

The procedure was implemented in a package of mod-
els for landslide susceptibility analysis and integrated in the
NewAge-JGrass hydrological model. The package includes
three simplified physically based models for landslide sus-
ceptibility analysis (M1, M2, and M3) and a component for
model verification. It computes eight goodness-of-fit indices
by comparing pixel-by-pixel model results and measurement
data. The integration of the package in NewAge-JGrass uses
other components, such as geographic information system
tools, to manage input–output processes, and automatic cali-
bration algorithms to estimate model parameters.

The system was applied for a case study in Calabria
(Italy) along the Salerno–Reggio Calabria highway, between
Cosenza and Altilia. The area is extensively subject to
rainfall-induced shallow landslides mainly because of its
complex geology and climatology. The analysis was carried

out considering all the combinations of the eight optimized
indices and the three models. Parameter calibration, verifica-
tion, and model performance assessment were performed by
a comparison with a detailed landslide inventory map for the
area. The results showed that the index distance to perfect
classification in the receiver operating characteristic plane
(D2PC) coupled with the model M3 is the best modeling so-
lution for our test case.

1 Introduction

Landslides are one of the most dangerous geohazards world-
wide and constitute a serious menace for public safety lead-
ing to human and economic losses (Park, 2011). Geoenviron-
mental factors such as geology, land use, vegetation, climate,
and increasing population sizes may increase the occurrence
of landslides (Sidle and Ochiai, 2006). Landslide susceptibil-
ity assessments, i.e., the likelihood of a landslide occurring in
an area on the basis of local terrain conditions (Brabb, 1984),
are not only crucial for an accurate landslide hazard quan-
tification but also a fundamental tool for the environmental
preservation and responsible urban planning (Cascini et al.,
2005).

Many methods for landslide susceptibility mapping have
been developed and can be grouped in two main branches:
qualitative and quantitative methods (Glade and Crozier,
2005; Corominas et al., 2014 and references therein).

Qualitative methods, based on field campaigns and ex-
pert knowledge and experience, are subjective but necessary
to validate quantitative method results. Quantitative meth-
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ods include statistical and physically based methods. Statis-
tical methods (e.g., Naranjo et al., 1994; Chung et al., 1995;
Guzzetti et al., 1999; Catani et al., 2005) use different ap-
proaches such as bivariate statistics, multivariate analysis,
discriminant analysis, and the random forests approach to
link instability factors (such as geology, soil, slope, curva-
ture, and aspect) with past and present landslides. Bivariate
statistical methods ignore the interdependence of instabil-
ity factors, whereas multivariate analysis is able to statisti-
cally consider their interactions. Other data-driven methods
for landslide susceptibility analysis include the use of neu-
ral networks (Pradhan, 2011; Conforti et al., 2014), support
vector machines (Pradhan, 2013 and citations therein), and
Bayesian networks (Lee et al., 2002). Deterministic models
(e.g., Montgomery and Dietrich, 1994; Lu and Godt, 2008,
2013; Borga et al., 2002; Simoni et al., 2008; Capparelli and
Versace, 2011) synthesize the interaction between hydrology,
geomorphology, and soil mechanics in order to physically
understand and predict the location and timing that trigger
landslides. These models generally include a hydrological
and a slope stability component. The hydrological compo-
nent simulates infiltration and groundwater flow processes
with different degrees of simplification, from steady state
(e.g., Montgomery and Dietrich, 1994) to transient analyses
(Simoni et al., 2008). The soil stability component simulates
the slope safety factor (FS) defined as the ratio of stabilizing
to destabilizing forces. One of the main advantages of data-
driven methods for landslide susceptibility is that they can be
easily applied in wide areas while deterministic models are in
general applied in local analyses. The latter are more compu-
tationally expensive and require detailed input data and pa-
rameters, which often involve high uncertainty. On the other
hand, data-driven methods assume that landslides are caused
by the same combination of instability factors over the en-
tire study area, whereas deterministic models enable different
triggering mechanisms to be understood and investigated.

The results of a landslide susceptibility analysis strongly
depend on the model hypothesis, parameter values, and pa-
rameter estimation method. Questions regarding the perfor-
mance evaluation of the landslide susceptibility model, the
choice of the most accurate model, and the selection of the
best-performing method for parameter estimation are still
open. Thus, a procedure is needed that facilitates repro-
ducible comparisons between different models and evalua-
tion criteria aimed at the selection of the most accurate mod-
els.

Much effort has been devoted to the crucial problem of
evaluating landslide susceptibility model performance (e.g.,
Dietrich et al., 2001; Frattini et al., 2010; Guzzetti et al.,
2006). Accurate discussions about the most common quan-
titative measures of goodness of fit (GOF) between mea-
sured and modeled data are discussed in Bennet et al. (2013),
Jolliffe and Stephenson (2012), Beguería (2006), and Bren-
ning (2005 and references therein). We have summarized
them in Appendix A. Usually one of these indices is selected

and used as an objective function (OF) in combination with
a calibration algorithm in order to obtain the optimal set of
model parameters. However, in most cases, the selection of
the OF is not justified or compared with other options.

The wrong classifications in landslide susceptibility anal-
ysis not only risk a loss of life but also have economic conse-
quences. For example, locations classified as stable increase
their economical value because no construction restrictions
will be applied, while the reverse is true for locations classi-
fied as unstable.

In this work, we propose an objective methodology
for environmental model analysis which selects the best-
performing model based on a quantitative comparison and
assessment of model prediction skills. In this paper, the
methodology is applied to assess the performance of sim-
plified landslide susceptibility models. As the procedure is
model independent, it can be used to assess the ability of any
type of environmental model to simulate natural phenomena.

Unlike previous applications, our methodology aims to ob-
jectively

i. select a set of the most appropriate OFs in order to de-
termine the best model parameters;

ii. compare the performance of a model using the parame-
ter sets selected in the previous step in order to identify
the OFs that provide particular and not redundant infor-
mation; and

iii. perform a model parameter sensitivity analysis in order
to understand the relative importance of each parameter
and its influence on the model performance.

The methodology enables the user to

i. identify the most appropriate OFs for estimating the
model parameters and

ii. compare different models in order to select the best one
that estimates the landslide susceptibility of the study
area.

The procedure is implemented in the open-source and
GIS-based hydrological model, denoted as NewAge-JGrass
(Formetta et al., 2014a) which uses the Object Modeling Sys-
tem (OMS, David et al., 2013) modeling framework. OMS is
a Java-based modeling framework which promotes the idea
of programming by components. It provides the model de-
velopers with many features such as multithreading, implicit
parallelism, model interconnection, and a GIS-based system.

The NewAge-JGrass system, Fig. 1, contains mod-
els, automatic calibration algorithms for model param-
eter estimation, and methods for estimating the good-
ness of the model prediction. The open-source GIS uDig
(http://udig.refractions.net/) and the uDig Spatial Toolbox
(Abera et al., 2014, https://code.google.com/p/jgrasstools/
wiki/JGrassTools4udig) are used as a visualization and
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Figure 1. Integration of the landslide susceptibility analysis system in NewAge-JGrass hydrological model.

input–output data management system. The OMS framework
has been previously used as the core for landslide modeling
(Formetta et al., 2015, 2016). These studies deal with real-
time early warning systems for landslide risks and involve
3-D physically based hydrological modeling of very small
catchments (up to around 20 km2). In contrast, the current
application focuses on wider areas of landslide susceptibil-
ity assessments using completely different physically based
models which are presented in the next section.

The methodology presented in this paper for landslide sus-
ceptibility analysis (LSA) represents one model configura-
tion within the more general NewAge-JGrass system. It in-
cludes two new models specifically developed for this pa-
per: mathematical components for landslide susceptibility
mapping and procedures for landslide susceptibility model
verification and selection. The LSA configuration also uses
two models that have already been implemented in NewAge-
JGrass: the geomorphological model setup and the automatic
calibration algorithms for model parameter estimation. All
the models used in the LSA configuration are presented in
Fig. 1, encircled with a dashed red line.

The methodology is presented in Sect. 2. It was set up con-
sidering three different landslide susceptibility models, eight
GOF metrics, and one automatic calibration algorithm. The
flexibility of the system enables more models and GOF met-
rics to be added, and different calibration algorithms can be
used. Thus, different LSA configurations can be created de-
pending on the landslide susceptibility model, the calibra-

tion algorithm, and the GOFs selected by the user. Finally,
Sect. 3 presents a case study of landslide susceptibility map-
ping along the A3 Salerno–Reggio Calabria highway in Cal-
abria, which illustrates the capability of the system.

2 Materials and methods

2.1 Modeling framework

The LSA is implemented in the context of NewAge-JGrass
(Formetta et al., 2014a), an open-source, large-scale hydro-
logical modeling system. It models the whole hydrolog-
ical cycle: water balance, energy balance, snow melting,
etc. (Fig. 1). The system implements hydrological models,
automatic calibration algorithms for model parameter op-
timization and evaluation, and a GIS for input–output vi-
sualization (Formetta et al., 2011, 2014a). NewAge-JGrass
is a component-based model: each hydrological process is
described by a model (energy balance, evapotranspiration,
runoff production in Fig. 1). Each model implements one or
more components (considering, for example, the model evap-
otranspiration in Fig. 1, the user can select between three dif-
ferent components: Penman–Monteith, Priestly–Taylor, and
Fao). In addition, each component can be linked to the oth-
ers and executed at runtime, building a model configuration.
Figure 1 offers a complete picture of the system and the inte-
gration of the new LSA configuration encircled with dashed
red lines. More precisely, the LSA in the current configu-
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ration includes two new models: a landslide susceptibility
model and a verification and selection model. The first in-
cludes three components proposed in Montgomery and Diet-
rich (1994), Park et al. (2013), and Rosso et al. (2006); the
latter includes the three-step verification procedure (3SVP),
presented in Sect. 2. The LSA configuration also includes
another two models previously implemented in the NewAge-
JGrass system:

i. the Horton Machine for geomorphological model setup,
which computes input maps such as slope and total con-
tributing area and displays the model’s results, and

ii. the particle swarm for automatic calibration.

Section 2.1 presents the landslide susceptibility model and
Sect. 2.2 presents the model selection procedure (3SVP).

2.2 Landslide susceptibility models

The landslide susceptibility models implemented in
NewAge-JGrass and presented in a preliminary application
in Formetta et al. (2014b) consist of the Montgomery and
Dietrich (1994) model (M1), the Park et al. (2013) model
(M2), and the Rosso et al. (2006) model (M3). The three
models are derived from simplifications of the infinite slope
equation (Grahm, 1984; Rosso et al., 2006; Formetta et al.,
2014) for the factor of safety:

FS=
C · (1+ e)

[Gs+ e · Sr+w · e · (1− Sr)] · γw ·H · sinα · cosα

+
[Gs+ e · Sr−w · (1+ e · Sr)]
[Gs+ e · Sr+w · e · (1− Sr)]

·
tanϕ′

tanα
, (1)

where FS (–) is the factor of safety, C = C′+Croot is the sum
of Croot, the root strength (kN m−2), and C′ the effective soil
cohesion (kN m−2), ϕ′ (–) is the internal soil friction angle,
H is the soil depth (m), α (–) is the slope angle, γw (kN m−3)
is the specific weight of water, andw = h/H (–) where h (m)
is the water table height above the failure surface (m),Gs (–)
is the specific gravity of soil, e (–) is the average void ratio,
and Sr (–) is the average degree of saturation.

The model M1 assumes a hydrological steady state, with
flow occurring in the direction parallel to the slope, and ne-
glects cohesion, degree of soil saturation, and void ratio. It
computes w as

w =
h

H
=min

(
Q

T
·

TCA
b · sinα

,1.0
)
, (2)

where T (L2 T−1) is the soil transmissivity defined as the
product of the soil depth and the saturated hydraulic conduc-
tivity and b (L) is the length of the contour line. Substituting
Eq. (2) in Eq. (1), the model is solved for Q/T assuming
FS= 1 and stable and unstable sites are defined using thresh-
old values on log(Q/T ) (Montgomery and Dietrich, 1994).

Unlike M1, the model M2 considers (i) the effect of the
degree of soil saturation (Sr (–)) and void ratio (e (–)) above
the groundwater table and (ii) the stabilizing contribution of
the soil cohesion. The model output is a map of safety factors
(FS) for each pixel of the analyzed area.

The component M3 considers both the effects of rainfall
intensity and duration on the landslide triggering process.
The term w depends on rainfall duration and is obtained by
coupling the conservation of mass of soil water with Darcy’s
law (Rosso et al., 2006), providing

w =



Q

T
·

TCA
b · sinα

·

[
1 − exp

(
e + 1

e · (1 − Sr)
·
t

T
·

TCA
b · sinα

·H

)]
if
t

T
·

TCA
b · sinα

·H ≤−
e · (1 − Sr)

1 + e
· ln
(

1 −
T · b · sinα
TCA ·Q

)
1 if

t

T
·

TCA
b · sinα

·H >−
e · (1 − Sr)

1 + e
· ln
(

1 −
T · b · sinα
TCA ·Q

)
.

(3)

These models are suitable for shallow translational land-
slides controlled by groundwater flow convergence. Shal-
low landslides usually have a very low ratio between the
maximum depth (D) and the length (L) of scar (D/L< 0.1;
Casadei et al., 2003), involve a small volume of the collu-
vial soil mantle, and present a generally translational failure
mechanism (Milledge et al., 2014).

Each component has a user interface which specifies the
input and output. Model inputs are computed in the GIS uDig
integrated in the NewAge-JGrass system by using the Horton
Machine package for terrain analysis (Abera et al., 2014).
Model output maps are directly imported in the GIS and are
available for the user’s visualization.

The models that we implemented present an increasing de-
gree of complexity in terms of the theoretical assumptions for
modeling landslide susceptibility. Moving from M1 to M2,
the soil cohesion and soil properties were considered, and
moving from M2 to M3, rainfall of finite duration was used.

2.3 Automatic calibration and model verification
procedure

In order to assess the models’ performance, we developed a
model that computes the most common indices for assessing
the quality of a landslide susceptibility map.

These indices are based on a pixel-by-pixel comparison
between the observed landslide (OL) and predicted landslide
(PL) maps. They are binary maps with positive pixels cor-
responding to “unstable” ones, and negative pixels that cor-
respond to “stable” ones. Therefore, four types of outcomes
are possible for each cell. A pixel is a true positive (tp) if it
is mapped as “unstable” both in OLs and in PLs, which is
a correct alarm with well-predicted landslides. A pixel is a
true negative (tn) if it is mapped as “stable” both in OLs and
in PLs, which corresponds to a well-predicted, stable area. A
pixel is a false positive (fp) if it is mapped as “unstable” in
PLs, but is “stable” in OLs; that is a false alarm. A pixel is
a false negative (fn) if it is mapped as “stable” in PLs, but
is “unstable” in OLs; that is a missed alarm. The concept
of the receiver operator characteristic (ROC; Goodenough et
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Table 1. Indices of goodness of fit for comparison between actual and predicted landslide.

Name Definition Range Optimal value

Critical success index (CSI) CSI= tp
tp+ fp+ fn [0, 1] 1.0

Equitable success index (ESI) ESI= tp−R
tp+ fp+ fn−R [−1/3, 1] 1.0

R =
(tp+ fn) · (tp+ fp)
tp+ fn+ fp+ tn

Success index (SI) SI= 1
2 ·

(
tp

tp+ fn +
tn

fp+ tn

)
[0, 1] 1.0

Distance to perfect classification (D2PC) D2PC=
√
(1 − TPR)2+FPR2 [0, 1] 0.0

TPR= tp
tp+ fn

FPR= fp
fp+ tn

Average index (AI) AI= 1
4

(
tp

tp+ fn +
tp

tp+ fp +
tn

fp+ tn +
tn

fn+ tn

)
[0, 1] 1.0

True skill statistic (TSS) TSS= (tp · tn)−(fp · fn)
(tp+ fn) · (fp+ tn) [−1, 1] 1.0

Heidke skill score (HSS) HSS= 2 · (tp · tn)−(fp · fn)
(tp+ fn) · (fn+ tn)+ (tp+ fp) · (fp+ tn) [−∞, 1] 1.0

Accuracy (ACC) ACC= (tp+ tn)
(tp+ fn+ fp+ tn) [0, 1] 1.0

al., 1974) graph is based on the values assumed by tp, fp,
and tn. ROCs are used to assess the performance of mod-
els which provides results assigned to one of two classes.
The ROC graph is widely used in many scientific fields, such
as medicine (Goodenough et al., 1974), biometrics (Pepe,
2003), and machine learning (Provost and Fawcett, 2001).
The ROC graph is a Cartesian plane with the FPR on the
x axis and TPR on the y axis. FPR is the ratio between false
positives and the sum of false positives and true negatives,
and TPR is the ratio between true positives and the sum of
true positives and false negatives. They are defined in Ta-
ble 1 and commented on in Appendix A. The performance of
a perfect model corresponds to the point P(0,1) on the ROC
plane. Points that fall on the bisector (black solid line on the
plots) are associated with models that are considered random:
they predict stable or unstable cells with the same rate.

Eight GOF indices for the quantification of model perfor-
mance were implemented in the system. Table 1 shows their
definition, range, and optimal values. A more comprehensive
description of the indices is provided in Appendix A.

Automatic calibration algorithms implemented in
NewAge-JGrass as OMS components can be used in order to
tune the model parameters to reproduce the actual landslides.
This is possible because each model is an OMS component
and can be linked to the calibration algorithms as it is,
without rewriting or modifying its code. Three calibration
algorithms are embedded in the system core: Luca (Hay et
al., 2006), a step-wise algorithm based on shuffled complex
evolution (Duan et al., 1992); particle swarm optimization
(PSO), a genetic model presented in Kennedy and Eber-
hart (1995); and DREAM (Vrugt et al., 2008), an acronym

for differential evolution adaptive metropolis. In the actual
configuration, we used a PSO algorithm to estimate optimal
values of the model parameters.

During the calibration procedure, the selected algorithm
compares the model output in terms of a binary map (stable
or unstable pixel) with the actual landslide, thus optimizing
a selected objective function (OF). The model parameter set
for which the OF assumes its best value is the optimization
procedure output. The eight GOF indices presented in Ta-
ble 1 were used in turn as OFs and, consequently, eight opti-
mal parameters sets were provided as the calibration output
(one for each optimized OF). This means that a GOF index
selected in Table 1 becomes an OF when it is used as an ob-
jective function of the automatic calibration algorithm.

In order to quantitatively analyze the model performance,
we implemented a three-step verification procedure (3SVP).
Firstly, we evaluated the performance of each OF index for
each model. We presented the results in the ROC plane
in order to assess what the OF index(es) was (were), and
whose optimization provided the best model performance.
Secondly, we verified whether each OF metric had its own
information content or whether it provided information anal-
ogous to other metrics (and thus not essential).

Lastly, for each model, the sensitivity of each optimal pa-
rameter set was tested by perturbing optimal parameters and
by evaluating their effects on the GOF.

2.4 Site description

The test site was located in Calabria, Italy, along the Salerno–
Reggio Calabria highway between Cosenza and Altilia mu-
nicipalities, in the southern part of the Crati basin (Fig. 2).
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Figure 2. Test site. (a) Digital elevation model (DEM) (m),
(b) slope (–) expressed as tangent of the angle, (c) total contributing
area (TCA) expressed as number of draining cells, and (d) map of
actual landslides.

The mean annual precipitation is about 1200 mm, distributed
over approximately 100 rainy days, with a mean annual tem-
perature of 16 ◦C. Rainfall peaks occur from October to
March, when mass wasting and severe water erosion pro-
cesses are triggered (Capparelli et al., 2012; Conforti et al.,
2011; Iovine et al., 2010).

In the study area, the topographic elevation has an aver-
age value of around 450 m a.s.l., with a maximum value of
730 m a.s.l. Slopes, computed from the 10 m resolution digi-
tal elevation model, range from 0 to 55◦, while the average is
about 26◦.

The Crati Basin is a Pleistocene–Holocene extensional
basin filled with clastic marine and fluvial deposits (Vezzani,
1968; Colella et al., 1987; Fabbricatore et al., 2014). The
stratigraphic succession of the Crati Basin can be simply di-

vided into two sedimentary units as suggested by Lanzafame
and Tortorici (1984). The first unit is a Lower Pliocene suc-
cession of conglomerates and sandstones passing upward
into a silty clay (Lanzafame and Tortorici, 1986) second unit.
This is a series of clayey deposits grading upward into sand-
stones and conglomerates which refer to Emilian and Sicil-
ian, respectively (Lanzafame and Tortorici, 1986), as also
suggested by data provided by Young and Colella (1988).

In the study area, the second unit outcrops. A topsoil of
about 1.5–2.0 m lies on sandy–gravelly and sandy deposits,
which are generally well-stratified. Soils range from Alfisols
(i.e., highly mature soils) to Inceptisols and Entisols (i.e.,
poorly developed soils). Due to the combination of such cli-
matic, geostructural, and geomorphological features, the test
site is one of the most landslide-prone areas in Calabria (Con-
forti et al., 2014; Carrara and Merenda, 1976; Iovine et al.,
2006).

Mass movements were analyzed from 2006 to 2013 by in-
tegrating aerial photography interpretation acquired in 2006,
1 : 5000 scale topographic map analysis, and an extensive
field survey.

All the data were digitized and stored in a GIS database
(Conforti et al., 2014) and the result was the map of occurred
landslides, presented in Fig. 2d. Digital elevation model,
slope, and total contributing area (TCA) maps are presented
in Fig. 2a, b, and c, respectively. In order to perform model
calibration and verification, the data set of occurred land-
slides was divided in two parts one used for calibration (lo-
cated at bottom of Fig. 2d) and one for validation (located in
the upper part of Fig. 2d). The landslide inventory map refers
only to the initiation area of the landslides. This leads to a
fair comparison with the landslide models that provide only
the triggering point and does not include a run-out model for
landslide propagation.

3 Results and discussion

The LSA presented in the paper was applied to the Salerno–
Reggio Calabria highway, between Cosenza and Altilia
(southern Italy). Section 3.1 describes the model parameter
calibration and the model verification procedure, Sect. 3.2
presents the model performance correlation assessment,
Sect. 3.3 presents the robustness analysis of the GOF indices
used, and lastly, Sect. 3.4 presents the computation of the
susceptibility map.

3.1 Model calibration and verification

The three models presented in Sect. 2 were used to predict
the landslide susceptibility for the study area. Model param-
eters were optimized using each GOF index presented in Ta-
ble 1 in order to fit landslides of the calibration group. Table 2
presents the list of parameters that will be optimized, speci-
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Table 2. Optimized models’ parameter values.

Model parameters Constant Range
value value

Soil depth (m) – [0.8, 5.0]
Transmissivity (m2 d1) – [10, 150]
Soil/water density ratio – [1.8, 2.8]
Friction angle (◦) – [11, 40]
Rainfall (mm d−1) – [50, 300]
Soil cohesion (kPa) – [0, 50]
Degree of saturation (–) 0.5 –
Soil porosity (–) 0.5 –
Rainfall duration (d) – [0.1, 3.0]

fying their initial range of variation, and the parameters kept
constant during the simulation and their value.

The component PSO provides eight best parameter sets,
one for each optimized GOF indices. Values for each model
(M1, M2, and M3) are presented in Table 3. Optimal pa-
rameter sets differ slightly among the models and among
the optimized GOF indices for a given model. In addition,
a compensation effect between the parameter values is evi-
dent. High values of friction angle are related to low cohe-
sion values; high values of critical rainfall are related to high
values of soil resistance parameters. For the model M1, the
transmissivity value (74 m2 d−1) optimizing ACC is much
lower than the transmissivity values obtained by optimizing
the other indices (around 140 m2 d−1). Similar behavior was
observed for the optimal rainfall value of 148 mm d−1 op-
timizing ACC, and around 70 mm d−1 optimizing the other
indices. For the model M2, the optimal transmissivity and
rainfall values optimizing CSI (10 m2 d1 and 95 mm d−1) are
much lower than the values obtained by optimizing the other
indices (around 50 and 250 mm d−1 on average). For the
model M3, on the other hand, optimal parameters present the
same order of magnitude for all the optimized indices. This
suggests that the variability of the optimal parameter values
for models M1 and M2 could be due to the compensation
of the effects of important physical processes neglected by
those models.

Executing the models using the set of eight optimal param-
eters, true positive rates and false positive rates are computed
by comparing the model output and actual landslides for both
the calibration and verification data sets. The results are pre-
sented in Table 4 for all three models (M1, M2, and M3).
These points were reported in the ROC plane to visualize the
effects of the optimized objective function on model perfor-
mance in a unique graph. This procedure was repeated for the
three models. ROC planes, considering all the GOF indices
and all three models, are included in Appendix B both for the
calibration and verification period. For models M2 and M3,
it is clear that ACC, HSS, and CSI performed the worst. This
is also true for model M1, although, unlike M2 and M3, there

is no clear separation between the performance provided by
ACC, HSS, and CSI and the remaining indices.

Among the results provided in Table 4, we focused on the
GOF indices whose optimization satisfies the following con-
dition: FPR < 0.4 and TPR > 0.7. This choice was made in
order to focus comments on the results exclusively for the
GOF indices which provide acceptable model results and in
order to heighten the readability of graphs.

Figure 3 presents three ROC planes, one for each model,
with the optimized GOF indices that provide FPR < 0.4 and
TPR > 0.7. The results presented in Fig. 3 and Table 4 show
that

i. the optimization of AI, D2PC, SI, and TSS achieves the
best model performance in the ROC plane, which is ver-
ified for all three models;

ii. performance increase as model complexity increases:
moving from M1 to M3, points in the ROC plane ap-
proach the perfect point (TPR= 1, FPR= 0);

iii. by increasing the model complexity, good model results
are achieved, not only in the calibration but also in the
validation data set. In fact, moving from M1 to M2 soil
cohesion and soil properties were considered, and mov-
ing from M2 to M3 rainfall of a finite duration was used.

The first step of the 3SVP procedure highlights that the opti-
mization of AI, D2PC, SI, and TSS provides the best perfor-
mance irrespectively of the model used.

Finally, it is important to consider the limitations of the
models used for the current applications. Models M1 and M2
are not able to mimic the transient nature of precipitation and
infiltration processes, and only M3 is able to account for the
combined effect of storm duration and intensity in the trig-
gering mechanism. In addition, in this study we neglected
effects such as spatial rainfall variability, roads, and other en-
gineering works.

3.2 Correlation assessment of the model performance

The second step in the procedure is to verify the informa-
tion content of each optimized OF, checking whether it is the
same as other metrics or it is a particular feature of the opti-
mized OF.

Executing a model using one of the eight parameter sets
(assuming, for example, the one obtained by optimizing CSI)
enables all the remaining GOF indices to be computed, which
we indicate as CSICSI, ACCCSI, HSSCSI, TSSCSI, AICSI,
SICSI, D2PCCSI, and ESICSI for both the calibration and the
verification data sets. Let us denote this vector with the name
MPCSI: the model performance (MP) vector computed us-
ing the parameter set that optimizes CSI. MPCSI has 16 ele-
ments: 8 for the calibration and 8 for the validation data set.
Repeating the same procedure for all eight GOF indices gives
MPACC, MPESI, MPSI, MPD2PC, MPTSS, MPAI, and MPHS.
Figure 4 presents the correlation plots (Murdoch and Chow,
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Figure 3. Models’ performance results in the ROC plane for M1, M2, and M3. Only GOF indices whose optimization provides FPR < 0.4
and TPR > 0.7 were reported.

1996) between all MP vectors, for each model M1, M2 or
M3. The matrix is symmetric with an ellipse at the intersec-
tion of row i and column j . The color is the absolute value
of the correlation coefficient between the MPi and MPj vec-
tors. The eccentricity of the ellipse is scaled according to the
correlation value: the more prominent it is, the less correlated
are the vectors. If the ellipse leans towards the right, the cor-
relation is positive; if it leans to the left, it is negative.

All indices present a positive correlation with each other,
irrespectively of the model used. In addition, strong corre-
lations between the MP vectors of AI, D2PC, SI, and TSS
are evident in Fig. 4. This confirms that an optimization of
AI, D2PC, SI, and TSS provides similar model performance,
irrespectively of the model used. On the other hand, the re-
maining GOF indices give quite different information from
the previous four indices; however, their performance was
worse in the first step of the analysis. Thus, in the case study,
using one of the four best GOFs is sufficient for the parame-
ter estimation.

3.3 Model sensitivity assessment

In this step, we focused on models M2 and M3 and per-
formed a parameter sensitivity analysis. Let us consider
model M2 and the optimal parameter set computed by opti-
mizing the critical success index (CSI). Also, considering the

cohesion model parameter, the procedure evolves according
to the following steps:

– The starting parameter values are the optimal values de-
rived from the optimization of the CSI index.

– All the parameters except the analyzed parameter (co-
hesion) were kept constant and equal to the optimal pa-
rameter set.

– A total of 1000 random values of the analyzed parame-
ter (cohesion) were selected from a uniform distribution
with the lower and upper bound defined in Table 1. With
this procedure, 1000 model parameter sets were defined
and used to execute the model.

– A total of 1000 values of the selected GOF index (CSI),
computed by comparing model outputs with the mea-
sured data, were used to compute a boxplot of the pa-
rameter C and optimized index CSI.

The procedure was repeated for each parameter and for each
optimized index. Results are presented in Figs. 5 and 6 for
models M2 and M3, respectively.

Each column in the figures represents one optimized in-
dex and has a number of boxplots equal to the number of
model parameters (five for M2 and six for M3). Each box-
plot represents the range of variation of the optimized index
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Table 3. Optimal parameter sets output of the optimization procedure of each GOF index in turn. Results are presented for each model (M1,
M2, and M3).

Model: M1

Optimized index AI HSS TSS D2PC SI ESI CSI ACC
Soil depth (m) 1.32 1.85 1.44 2.80 1.36 2.62 2.42 2.01
Transmissivity (m2 d1) 140.24 146.31 142.68 137.10 147.69 144.66 136.73 74.74
Soil/water density ratio (–) 2.61 2.56 2.77 2.71 2.78 2.79 2.63 2.72
Friction angle (◦) 24.20 32.40 22.50 23.10 22.40 29.50 29.50 38.30
Rainfall (mm d−1) 85.38 53.30 71.36 50.00 52.69 69.19 61.35 141.80

Model: M2

Optimized index AI HSS TSS D2PC SI ESI CSI ACC
Transmissivity (m2 d1) 65.43 33.22 80.45 38.22 84.54 33.24 10.70 55.76
Cohesion (kPa) 25.17 49.63 49.42 16.94 30.01 41.24 44.58 46.85
Friction angle (◦) 29.51 38.38 20.01 32.30 24.57 33.78 35.68 34.96
Rainfall (mm d−1) 236.14 293.44 270.42 153.61 294.70 298.44 95.35 299.01
Soil/water density ratio (–) 2.11 2.40 2.06 2.44 2.77 2.17 2.55 2.19
Soil depth (m) 2.35 1.68 2.38 2.44 2.74 1.12 1.37 1.12

Model: M3

Optimized index AI HSS TSS D2PC SI ESI CSI ACC
Transmissivity (m2 d1) 30.95 26.55 47.03 36.31 57.28 25.84 31.60 48.71
Cohesion (kPa) 36.88 44.33 28.51 31.60 45.46 41.80 32.05 37.09
Friction angle (◦) 19.55 36.44 27.80 29.70 21.46 33.27 36.47 38.50
Rainfall (mm d−1) 248.77 230.08 258.82 201.71 299.90 291.32 273.03 193.02
Soil/water density ratio (–) 2.40 2.57 2.08 2.80 2.65 2.63 2.61 2.44
Soil depth (m) 1.84 1.42 2.23 2.92 2.85 1.17 1.13 1.15
Rainfall duration (d) 0.12 1.78 1.24 1.96 1.24 0.39 1.30 1.98

Table 4. Results in term of true-positive rate (TPR) and false-
positive rate (FPR), for each model (M1, M2, and M3), for each
optimized GOF index and for both calibration (CAL) and verifica-
tion (VAL) data set.

Model: M1 Model: M2 Model: M3

Period Optim. FPR TPR FPR TPR FPR TPR
index

CAL ACC 0.04 0.12 0.03 0.12 0.03 0.13
CAL AI 0.29 0.70 0.35 0.79 0.38 0.82
CAL CSI 0.17 0.48 0.10 0.36 0.09 0.32
CAL D2PC 0.32 0.72 0.32 0.76 0.32 0.75
CAL ESI 0.17 0.48 0.43 0.82 0.09 0.36
CAL HSS 0.12 0.35 0.09 0.35 0.09 0.35
CAL SI 0.34 0.74 0.39 0.85 0.39 0.86
CAL TSS 0.34 0.73 0.39 0.83 0.37 0.82
VAL ACC 0.05 0.12 0.03 0.12 0.03 0.10
VAL AI 0.26 0.56 0.31 0.69 0.34 0.72
VAL CSI 0.17 0.39 0.09 0.31 0.08 0.29
VAL D2PC 0.29 0.59 0.28 0.67 0.28 0.66
VAL ESI 0.17 0.39 0.41 0.76 0.09 0.30
VAL HSS 0.12 0.30 0.09 0.30 0.09 0.30
VAL SI 0.30 0.61 0.37 0.75 0.39 0.76
VAL TSS 0.30 0.62 0.35 0.74 0.34 0.71

The rows for which the condition FPR < 0.4 and TPR > 0.7 is verified are shown in
bold.

due to a particular change in the model parameters. The nar-
rower the boxplot for a given optimized index, the less sen-
sitive the model is to that parameter. For both M2 and M3,
the parameter set obtained by optimizing AI and SI shows
the least sensitive behavior for almost all the parameters. In
this case, a model parameter perturbation has little impact
on the model’s performance. However, the models with pa-
rameters obtained by optimizing ACC, TSS, and D2PC are
the most sensitive to the parameter variations and this is re-
flected in much more evident changes in model performance.
Finally, it is important to consider that the methodology used
for evaluating the parameter sensitivity is based on chang-
ing the parameters one at a time. Although this procedure
facilitates an intercomparison of the results (because the pa-
rameter sensitivity is computed with reference to the optimal
parameter set), it is does not take into account simultaneous
variations or interactions between parameters.

3.4 Model selections and susceptibility maps

The selection of the most appropriate model for computing
landslide susceptibility maps is based on what we learn from
the previous steps. In the first step, we learn that (i) the opti-
mization of AI, D2PC, SI, and TSS outperforms the remain-
ing indices and (ii) models M2 and M3 provide more accu-
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Figure 4. Correlation plot between models’ performance (MP) vectors computed by optimizing all GOF indices in turn. Results are reported
for each model: M1, M2, and M3.

Figure 5. Model M2 parameters sensitivity analysis.

rate results than M1. The second step suggests that overall the
model results obtained by optimizing AI, D2PC, SI, and TSS
are similar each other. Lastly, the third step shows that the
model performance derived from the optimization of AI and
SI is less sensitive to input variations than D2PC and TSS.
This could be due to the formulation of AI and SI which

Figure 6. Model M3 parameters sensitivity analysis.

gives much more weight to the true negative compared to
D2PC and TSS.

For our application, the model M3 with parameters ob-
tained by optimizing D2PC was the most sensitive to the pa-
rameter variation, avoiding an “insensitive” or flat response
by changing the parameter values. A more sensitive coupled
model optimal parameter set will in fact accommodate any
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Figure 7. Landslide susceptibility maps using model M3 and the
parameter set obtained by optimizing D2PC.

parameters, input data, or measured data variations respond-
ing to these changes with a variation in model performance.

We thus used the combination of model M3 with parame-
ters obtained by optimizing D2PC in order to compute the fi-
nal susceptibility maps in Fig. 7. Categories of landslide sus-
ceptibility from Class 1 to 5 are assigned from low to high
according to FS values (e.g., Huang et al., 2007): Class 1
(FS≤ 1.0), Class 2 (1.0 < FS < 1.2), Class 3 (1.2 < FS < 1.5),
Class 4 (1.5 < FS < 2.0),and Class 5 (FS≥ 2).

4 Conclusions

We have presented a procedure to quantitatively calibrate,
evaluate, and compare the performance of environmental
models. The procedure was applied for the analysis of three
landslide susceptibility models. It is made up of three steps:

i. model parameter calibration, optimizing different GOF
indices, and model evaluation in the ROC plane;

ii. computation of the degree of similarities between differ-
ent model performance obtained by optimizing all the
considered GOF indices;

iii. evaluation of model sensitivity to parameter variations.

The first step identifies the more appropriate OFs for the
model parameter optimization. The second step verifies the
information content of each optimized OF, checking whether
it is analogous to other metrics or peculiar to the optimized
OF. Finally, the last step quantifies the relative influence of
each model parameter on the model performance.

The procedure was conceived as a model configuration of
the hydrological system NewAge-JGrass. It integrates

i. three simplified, physically based landslide susceptibil-
ity models;

ii. a package for model evaluations based on pixel-by-pixel
comparison of modeled and actual landslide maps;

iii. model parameter calibration algorithms, and

iv. the integration with the uDig open-source geographic
information system for model input–output map man-
agement.

The system is open-source and available at (https://github.
com/formeppe). It is integrated according to the OMS stan-
dards, which enables the user to easily integrate a generic
landslide susceptibility model and use the complete frame-
work presented in the paper, thus avoiding having to rewrite
programming code.

The procedure was applied in a test case on the Salerno–
Reggio Calabria highway and led to the following conclu-
sions:

1. the OFs AI, D2PC, SI, and TSS coupled with the models
M2 and M3 provided the best performance among the
eights metrics used in the calibration;

2. the four selected OFs provided quite similar model per-
formance in terms of MP vectors, i.e., one of them
would be sufficient for the model application;

3. M3 showed the best performance by optimizing the
D2PC index. In fact, M3 responded to parameter varia-
tions with changes in model performance.

In our application, effective precipitation was calibrated
because we were performing a landslide susceptibility analy-
sis and it was useful for demonstrating the method. However,
we are aware that for operational landslide early warning sys-
tems, rainfall constitutes a fundamental input of the predic-
tive process. In addition, the analysis would profit from data
on the rainfall that triggered the landslides; however, such
data are currently not available for the study area.

We believe that our system would be useful for decision
makers who deal with risk management assessments. It could
be improved by adding new landslide susceptibility models
or different types of model selection procedures.

5 Data availability

Data for this paper are available from the corresponding au-
thor upon request.
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Appendix A: Measures of goodness of fit between
measured and modeled data

A1 Critical success index (CSI)

CSI, Eq. (A1), is the number of correct detected landslide
pixels (tp), divided by the sum of tp, fn, and fp. CSI is also
named threat score. It ranges between 0 and 1 and its best
value is 1. It penalizes both fn and fp.

CSI=
tp

tp+ fp+ fn
. (A1)

A2 Equitable success index (ESI)

ESI, Eq. (A2), contrarily to CSI, is able to take into account
the true positives associated with random chance (R). ESI
ranges between −1/3 and 1. A value of 1 indicates a perfect
score.

ESI=
tp−R

tp+ fp+ fn−R
, (A2)

R =
(tp+ fn) · (tp+ fp)
tp+ fn+ fp+ tn

. (A3)

A3 Success index (SI)

SI, Eq. (A4), equally weighs the true positive rate (TPR)
(Eq. A5) and specificity, defined as 1 minus the false posi-
tive rate (FPR), Eq. (A6). SI varies between 0 and 1 and its
best value is 1. SI is also named modified success rate.

SI=
1
2
·

(
tp

tp + fn
+

tn
fp + tn

)
=

1
2
· (TPR + specificity) , (A4)

TPR=
tp

tp + fn
, (A5)

FPR=
fp

fp + tn
. (A6)

A4 Distance to perfect classification (D2PC)

D2PC is defined in Eq. (A7). It measures the distance in the
plane FPR–TPR between an ideal perfect point of coordi-
nates (0, 1) and the point of the tested model (FPR, TPR).
D2PC ranges 0–1 and its best value is 0.

D2PC=
√
(1−TPR)2+FPR2. (A7)

A5 Average index (AI)

AI, Eq. (A8), is the average value between four different in-
dices:

i. TPR,

ii. precision,

iii. the ratio between successfully predicted stable pixels
(tn) and the total number of actual stable pixels (fp plus
tn), and

iv. the ratio between successfully predicted stable pixels
(tn) and the number of simulated stable cells (fn+ tn).

AI=
1
4

(
tp

tp + fn
+

tp
tp + fp

+
tn

fp + tn
+

tn
fn + tn

)
(A8)

A6 Heidke skill score (HSS)

The fundamental idea of a generic skill score measure is to
quantify the model performance with respect to a set of con-
trols or reference models. Given a measure of model accu-
racyMa, the skill score formulation is expressed in Eq. (A9):

SS=
Ma−Mc

Mopt−Mc
, (A9)

where Mc is the control or reference model accuracy and
Mopt is the perfect model accuracy.

SS assumes positive and negative values: if the tested
model is perfect, Ma=Mopt and SS= 1; if the tested model
is equal to the control model, then Ma=Mc and SS= 0.

The marginal probability of a predicted unstable pixel
is (tp+ fp) / n where n is the total number of pixels
(n= tp+ fn+ fp+ tn). The marginal probability of a land-
slide unstable pixel is (tp+ fn) / n.

The probability of a correct “yes” forecast by chance is P1
= (tp+ fp) (tp+ fn) / n2. The probability of a correct “no”
forecast by chance is P2= (tn+ fp) (tn+ fn) / n2.

In the HSS, Eq. (A10), the control model is a model that
forecasts by chance: Mc=P1+P2, the measure of accuracy
is the ACC defined in Eq. (A11), and Mopt= 1.

HSS=
2 · (tp · tn)− (fp · fn)

(tp+ fn) · (fn+ tn)+ (tp+ fp) · (fp+ tn)
, (A10)

ACC=
tp+ tn

tp+ fn+ fp+ tn
. (A11)

The range of the HSS is −∞ to 1. Negative values indicate
that the model provides no better results of a random model,
0 means no model skill, and a perfect model obtains a HSS
of 1. HSS is also named Cohen’s kappa.

A7 True skill statistic (TSS)

TSS, Eq. (A12), is the difference between the hit rate and
the false alarm rate. It is also named Hanssen–Kuiper’s skill
score and Pierce’s skill score. It ranges between −1 and 1
and its best value is 1. A TSS equal to −1 indicates that the
model provides no better results than a random model. A TSS
equal to 0 indicates an indiscriminate model.

TSS measures the ability of the model to distinguish be-
tween landslide and non-landslide pixels. If the number of tn
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is large, the false alarm value is relatively overwhelmed. If
tn is large, as in landslide maps, FPR tends to zero and TSS
tends to TPR. A problem of TSS is that it treats the hit rate
and the false alarm rate equally, irrespective of their likely
differing consequences.

TSS=
(tp · tn)− (fp · fn)
(tp + fn) · (fp + tn)

= TPR−FPR (A12)

TSS is similar to Heidke, except the constraint on the refer-
ence forecasts is that they are constrained to be unbiased.
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Appendix B

Figure B1. Models’ performance results in the ROC plane for M1.

Figure B2. Models’ performance results in the ROC plane for M2.
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Figure B3. Models’ performance results in the ROC plane for M3.
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Appendix C: Acronyms

3SVP Three-step verification procedure
AI Average index
CSI Critical success index
D2PC Distance to perfect classification
ESI Equitable success index
fn False negative
fp False positive
FPR False positive rate
FS Factor of safety
GIS Geographic informatics system
GOF Goodness-of-fit indices
HSS Heidke skill score
LSA Landslide susceptibility analysis
M1 Model for landslide susceptibility analysis proposed in Montgomery and Dietrich (1994)
M2 Model for landslide susceptibility analysis proposed in Park et al. (2013)
M3 Model for landslide susceptibility analysis proposed in Rosso et al. (2006)
MP Model performance vector
OF Objective function
OL Observed landslide map
OMS Object modeling system
PL Predicted landslide map
PSO Particle swarm optimization
ROC Receiver operating characteristic
SI Success index
TCA Total contributing area
tn True negative
tp True positive
TPR True positive rate
TSS True skill statistic
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