Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2929-2016
https://doi.org/10.5194/hess-20-2929-2016
Research article
 | 
20 Jul 2016
Research article |  | 20 Jul 2016

Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations

Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa

Related authors

How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425–4447, https://doi.org/10.5194/hess-22-4425-2018,https://doi.org/10.5194/hess-22-4425-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024,https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
HESS Opinions: The sword of Damocles of the impossible flood
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024,https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
The influence of human activities on streamflow reductions during the megadrought in central Chile
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024,https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024,https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary

Cited articles

Bahremand, A.: HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation, Hydrol. Earth Syst. Sci., 20, 1433–1445, https://doi.org/10.5194/hess-20-1433-2016, 2016.
Beran, M. A.: New Challenges for Regional Approach, in: Regionalization in Hydrology, Proceedings of an international symposium held at Ljubljana, April 1990, edited by: Beran, M. A., Becker, A., and Bonacci, O., IASH publication 191, Wallingford, UK, 1990.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Blöschl, G.: Scaling in hydrology, Hydrol. Process., 15, 709–711, https://doi.org/10.1002/hyp.432, 2001.
Bolliger, T.: Geologie des Kantons Zürich, Stiftung Geologische Karte des Kantons Zürich, Ott Verlag, Thun, 1999.
Download
Short summary
We evaluated three automatic mapping approaches of dominant runoff processes (DRPs) with different complexity using similarity measures and synthetic runoff simulations. The most complex DRP maps were the most similar to the reference maps. Runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and rather coarse simplifications in the mapping criteria. It would thus be worthwhile trying to obtain DRP maps that are as realistic as possible.