Research article
20 Jul 2016
Research article | 20 Jul 2016
Mapping dominant runoff processes: an evaluation of different approaches
using similarity measures and synthetic runoff simulations
Manuel Antonetti et al.
Related authors
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018,https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016,https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
A Tri-National program for estimating the link between snow resources and hydrological droughts
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015,https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Crash tests for forward-looking flood control in the city of Zürich (Switzerland)
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015,https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
KULTURisk regional risk assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015,https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Related subject area
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020,https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020,https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020,https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020,https://doi.org/10.5194/hess-24-3111-2020, 2020
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020,https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Niger discharge from radar altimetry: bridging gaps between gauge and altimetry time series
Stefan Schröder, Anne Springer, Jürgen Kusche, Bernd Uebbing, Luciana Fenoglio-Marc, Bernd Diekkrüger, and Thomas Poméon
Hydrol. Earth Syst. Sci., 23, 4113–4128, https://doi.org/10.5194/hess-23-4113-2019,https://doi.org/10.5194/hess-23-4113-2019, 2019
Short summary
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019,https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Global sinusoidal seasonality in precipitation isotopes
Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 3423–3436, https://doi.org/10.5194/hess-23-3423-2019,https://doi.org/10.5194/hess-23-3423-2019, 2019
Short summary
Cited articles
Bahremand, A.: HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation, Hydrol. Earth Syst. Sci., 20, 1433–1445, https://doi.org/10.5194/hess-20-1433-2016, 2016.
Beran, M. A.: New Challenges for Regional Approach, in: Regionalization in Hydrology, Proceedings of an international symposium held at Ljubljana, April 1990, edited by: Beran, M. A., Becker, A., and Bonacci, O., IASH publication 191, Wallingford, UK, 1990.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Blöschl, G.: Scaling in hydrology, Hydrol. Process., 15, 709–711, https://doi.org/10.1002/hyp.432, 2001.
Bolliger, T.: Geologie des Kantons Zürich, Stiftung Geologische Karte des Kantons Zürich, Ott Verlag, Thun, 1999.
Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol. Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Dobmann, J.: Hochwasserabschätzung in kleinen Einzugsgebieten der Schweiz. Interpretations- und Praxishilfe, Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, 2010.
Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology, J. Hydrol., 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016.
Flügel, W.-A.: Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrol. Process., 9, 423–436, https://doi.org/10.1002/hyp.3360090313, 1995.
Franks, S. W., Gineste, P., Beven, K. J., and Merot, P.: On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resour. Res., 34, 787–797, https://doi.org/10.1029/97WR03041, 1998.
Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, 2014.
Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H. G.: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrol. Earth Syst. Sci., 15, 3275–3291, https://doi.org/10.5194/hess-15-3275-2011, 2011.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, 2014.
Hagen-Zanker, A.: An improved Fuzzy Kappa statistic that accounts for spatial autocorrelation, Int. J. Geogr. Inf. Sci., 23, 61–73, https://doi.org/10.1080/13658810802570317, 2009.
Hantke, R. E. A.: Geologische Karte des Kantons Zürich und seine Nachbargebiete in 2 Blättern 1:50'000, Kommissionsverlag Lehmann, Zurich, 1967.
Hargrove, W. W., Hoffman, F. M., and Hessburg, P. F.: Mapcurves: a quantitative method for comparing categorical maps, J. Geogr. Syst., 8, 187–208, https://doi.org/10.1007/s10109-006-0025-x, 2006.
Hellebrand, H., Müller, C., Matgen, P., Fenicia, F., and Savenije, H.: A process proof test for model concepts: Modelling the meso-scale, Phys. Chem. Earth, 36, 42–53, https://doi.org/10.1016/j.pce.2010.07.019, 2011.
Hrachowitz, M., Savenije, H. H. G., Bloschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB)-a review, Hydrol. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resour. Res., 50, 7445–7469, https://doi.org/10.1002/2014WR015484, 2014.
Hümann, M. and Müller, C.: Improving the GIS-DRP approach by means of delineating runoff characteristics with new discharge relevant parameters, ISPRS International Journal of Geo-Information, 2, 27–49, https://doi.org/10.3390/ijgi2010027, 2013.
Jörg-Hess, S., Griessinger, N., and Zappa, M.: Probabilistic Forecasts of Snow Water Equivalent and Runoff in Mountainous Areas, J. Hydrometeorol., 16, 2169–2186, https://doi.org/10.1175/JHM-D-14-0193.1, 2015.
Kienholz, H., Keller, H., Ammann, W., Weingartner, R., Germann, P., Hegg, Ch., Mani, P., and Rickenmann, D.: Zur Sensitivität von Wildbachsystemen, Schlussbericht NFP 31, VDF Hochschulverlag an der ETH Zürich, Zurich, 214 pp., 1998.
Klemeš, V.: Dilettantism in hydrology: Transition or destiny?, Water Resour. Res., 22, 177S–188S, https://doi.org/10.1029/WR022i09Sp0177S, 1986.
Margreth, M., Naef, F., and Scherrer, S.: Weiterentwicklung der Abflussprozesskarte Zürich in den Waldgebieten, Technical Report commissioned by the Office of Waste, Water, Energy and Air (WWEA), Ct. Zurich, 2010.
Markart, G., Kohl, B., Sotier, B., Klebinder, K., Schauer, T., Bunza, G., Pirkl, H., and Stern, R.: A Simple Code of Practice for the Assessment of Surface Runoff Coefficients for Alpine Soil-/Vegetation Units in Torrential Rain (Version 2.0), Department of Natural Hazards, Federal Research and Training Centre for Forest, Natural Hazards and Landscaper (BFW), Innsbruck, 127 pp., https://doi.org/10.13140/RG.2.1.3406.5441, 2011.
Müller, C., Hellebrand, H., Seeger, M., and Schobel, S.: Identification and regionalization of dominant runoff processes – a GIS-based and a statistical approach, Hydrol. Earth Syst. Sci., 13, 779–792, https://doi.org/10.5194/hess-13-779-2009, 2009.
Mosley, M. P.: Delimitation of New Zealand hydrologic regions, J. Hydrol., 49, 173–192, https://doi.org/10.1016/0022-1694(81)90211-0, 1981.
Naef, F., Scherrer, S., Thoma, C., Weiler, W., and Fackel, P.: Die Beurteilung von Einzugsgebieten und ihren Teilflächen nach der Abflussbereitschaft unter Berücksichtigung der landwirtschaftlichen Nutzung – aufgezeigt an drei Einzugsgebieten in Rheinland-Pfalz, Untersuchung im Auftrag des Landesamts für Wasserwirtschaft, Rheinland Pfalz, Report 003, 2000.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., and Saleska, S.: Height Above the Nearest Drainage – a hydrologically relevant new terrain model, J. Hydrol., 404, 13–29, https://doi.org/10.1016/j.jhydrol.2011.03.051, 2011.
Peschke, G., Etzenberg, C., Töpfer, J., Zimmermann, S., and Müller, G.: Runoff generation regionalization: analysis and a possible approach to a solution, IAHS Publ. 254 (Regionalization in Hydrology), 1999.
Peschke, G., Etzenberg, C., Töpfer, J., Zimmermann, S., and Müller, G.: Runoff generation regionalization: analysis and a possible approach to a solution, IAHS Publ. 254 (Regionalization in Hydrology), 147–156, 1999.
Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., and Waterloo, M. J.: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia, Remote Sens. Environ., 112, 3469–3481, https://doi.org/10.1016/j.rse.2008.03.018, 2008.
Ross, B. B., Contractor, D. N., and Shanholtz, V. O.: A finite-element model of overland and channel flow for assessing the hydrologic impact of land-use change, J. Hydrol., 41, 11–30, https://doi.org/10.1016/0022-1694(79)90101-X, 1979.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Scherrer AG: Ermittlung massgebender Hochwasserabflüsse der Reppisch, Technical Report commissioned by AWEL, Ct. Zurich 2006.
Scherrer, S.: Bestimmungsschlüssel zur Identifikation von hochwasserrelevanten Flächen, Report 18/2006 commissioned by LUWG, Mainz, 2006.
Scherrer, S. and Naef, F.: A decision scheme to indicate dominant hydrological flow processes on temperate grassland, Hydrol. Process., 17, 391–401, https://doi.org/10.1002/hyp.1131, 2003.
Schmocker-Fackel, P., Naef, F., and Scherrer, S.: Identifying runoff processes on the plot and catchment scale, Hydrol. Earth Syst. Sci., 11, 891–906, https://doi.org/10.5194/hess-11-891-2007, 2007.
Schwarze, R., Droege, W., and Opherden, K.: Regional analysis and modelling of groundwater runoff components from catchments in hard rock areas, in: Regionalisation in Hydrology, edited by: Diekkrüger, B., Kirkby, M. J., and Schröder, U., IAHS Publication 254. IAHS Press, Wallingford, UK, 221–232, 1999.
Seibert, J. and McDonnell, J. J.: On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resour. Res., 38, 23-21–23-14, https://doi.org/10.1029/2001WR000978, 2002.
Seibert, J. and McGlynn, B.: Landscape element contributions to storm runoff, in: Encyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd., Chichester, 1751–1761, 2006.
Sideris, I. V., Gabella, M., Erdin, R., and Germann, U.: Real-time radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland, Q. J. Roy. Meteorol. Soc., 140, 1097–1111, https://doi.org/10.1002/qj.2188, 2014.
Speich, M. J. R., Bernhard, L., Teuling, A. J., and Zappa, M.: Application of bivariate mapping for hydrological classification and analysis of temporal change and scale effects in Switzerland, J. Hydrol., 523, 804–821, https://doi.org/10.1016/j.jhydrol.2015.01.086, 2015.
Tetzlaff, D., Soulsby, C., Waldron, S., Malcolm, I. A., Bacon, P. J., Dunn, S. M., Lilly, A., and Youngson, A. F.: Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment, Hydrol. Process., 21, 1289–1307, https://doi.org/10.1002/hyp.6309, 2007.
Tilch, N., Uhlenbrook, S., and Leibundgut, C.: Regionalisierungsverfahren zur Ausweisung von Hydrotopen in von periglazialem Hangschutt geprägten Gebieten, Grundwasser, 7, 206–216, https://doi.org/10.1007/s007670200032, 2002.
van Loon, E.: Mapcurves algorithm, available at: https://staff.fnwi.uva.nl/e.e.vanloon/paco.html, last access: July 2016.
Visser, H. and de Nijs, T.: The Map Comparison Kit, Environ. Modell. Softw., 21, 346–358, https://doi.org/10.1016/j.envsoft.2004.11.013, 2006.
Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R.: Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter regionalisation and flood estimation results, J. Hydrol., 377, 208–225, https://doi.org/10.1016/j.jhydrol.2009.08.022, 2009a.
Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools, Environ. Model. Softw., 24, 1209–1222, https://doi.org/10.1016/j.envsoft.2009.04.001, 2009b.
Waldenmeyer, G.: Abflussbildung und Regionalisierung in einem forstlich genutzten Einzugsgebiet (Dürreychtal, Nordschwarzwald), Karlsruher Schriften zur Geographie und Geoökologie, IFGG, Karlsruhe, 2003.
Weiler, M. and McDonnell, J.: Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology, J. Hydrol., 285, 3–18, https://doi.org/10.1016/S0022-1694(03)00271-3, 2004.
Woods, R. A., Sivapalan, M., and Robinson, J. S.: Modeling the spatial variability of subsurface runoff using a topographic index, Water Resour. Res., 33, 1061–1073, https://doi.org/10.1029/97WR00232, 1997.