Articles | Volume 20, issue 1
https://doi.org/10.5194/hess-20-209-2016
https://doi.org/10.5194/hess-20-209-2016
Research article
 | 
18 Jan 2016
Research article |  | 18 Jan 2016

Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

S. Biskop, F. Maussion, P. Krause, and M. Fink

Related authors

Decadal re-forecasts of glacier climatic mass balance
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387,https://doi.org/10.5194/egusphere-2024-387, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – Towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2562,https://doi.org/10.5194/egusphere-2023-2562, 2024
Short summary
Universal differential equations for glacier ice flow modelling
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023,https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Assessing the glacier projection uncertainties in the Patagonian Andes (40–56° S) from a catchment perspective
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2325,https://doi.org/10.5194/egusphere-2023-2325, 2023
Short summary
Mapping and characteristics of avalanches on mountain glaciers with Sentinel-1
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
EGUsphere, https://doi.org/10.5194/egusphere-2023-2007,https://doi.org/10.5194/egusphere-2023-2007, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024,https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024,https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024,https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, Italy, 1998.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1-12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, 2001.
Biskop, S., Krause, P., Helmschrot, J., Fink, M., and Flügel, W.-A.: Assessment of data uncertainty and plausibility over the Nam Co Region, Tibet, Adv. Geosci., 31, 57–65, https://doi.org/10.5194/adgeo-31-57-2012, 2012.
Blöschl, G. and Montanari, A.: Climate change impacts-throwing the dice?, Hydrol. Process., 24, 374–381, 2010.
Download
Short summary
In this study, the hydrological model J2000g was extended and applied to four selected endorheic lake basins in the southern-central part of the TP aiming to provide a more quantitative understanding of the key factors controlling their water balance. The model results indicated that the relative contribution of glacier runoff to total water inflow (between 14 and 30 %) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas.