Articles | Volume 20, issue 1
Hydrol. Earth Syst. Sci., 20, 209–225, 2016
https://doi.org/10.5194/hess-20-209-2016
Hydrol. Earth Syst. Sci., 20, 209–225, 2016
https://doi.org/10.5194/hess-20-209-2016
Research article
18 Jan 2016
Research article | 18 Jan 2016

Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

S. Biskop et al.

Related authors

Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022,https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Process-based Estimate of Global-mean Sea-level Changes in the Common Era
Gangadharan Nidheesh, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-2,https://doi.org/10.5194/esd-2022-2, 2022
Revised manuscript under review for ESD
Short summary
Space–time variability in soil moisture droughts in the Himalayan region
Santosh Nepal, Saurav Pradhananga, Narayan Kumar Shrestha, Sven Kralisch, Jayandra P. Shrestha, and Manfred Fink
Hydrol. Earth Syst. Sci., 25, 1761–1783, https://doi.org/10.5194/hess-25-1761-2021,https://doi.org/10.5194/hess-25-1761-2021, 2021
Short summary
Lagrangian detection of precipitation moisture sources for an arid region in northeast Greenland: relations to the North Atlantic Oscillation, sea ice cover, and temporal trends from 1979 to 2017
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021,https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019,https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022,https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022,https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022,https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022,https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022,https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, Italy, 1998.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1-12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, 2001.
Biskop, S., Krause, P., Helmschrot, J., Fink, M., and Flügel, W.-A.: Assessment of data uncertainty and plausibility over the Nam Co Region, Tibet, Adv. Geosci., 31, 57–65, https://doi.org/10.5194/adgeo-31-57-2012, 2012.
Blöschl, G. and Montanari, A.: Climate change impacts-throwing the dice?, Hydrol. Process., 24, 374–381, 2010.
Download
Short summary
In this study, the hydrological model J2000g was extended and applied to four selected endorheic lake basins in the southern-central part of the TP aiming to provide a more quantitative understanding of the key factors controlling their water balance. The model results indicated that the relative contribution of glacier runoff to total water inflow (between 14 and 30 %) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas.