Articles | Volume 20, issue 4
Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016
Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016
Research article
08 Apr 2016
Research article | 08 Apr 2016

Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman–Scott weather generator

Hjalte Jomo Danielsen Sørup et al.

Related authors

Data-driven distinction between convective, frontal and mixed extreme rainfall events in radar data
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss.,,, 2020
Preprint withdrawn
Short summary
Explorative Analysis of Long Time Series of Very High Resolution Spatial Rainfall
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss.,,, 2018
Revised manuscript not accepted
Short summary
Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes
Hjalte Jomo Danielsen Sørup, Stylianos Georgiadis, Ida Bülow Gregersen, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 21, 345–355,,, 2017
Short summary
On the importance of observational data properties when assessing regional climate model performance of extreme precipitation
M. A. Sunyer, H. J. D. Sørup, O. B. Christensen, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 17, 4323–4337,,, 2013

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Stochastic approaches
Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 26, 1631–1658,,, 2022
Short summary
The role of storm scale, position and movement in controlling urban flood response
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436,,, 2018
Short summary
Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series
Søren Thorndahl, Aske Korup Andersen, and Anders Badsberg Larsen
Hydrol. Earth Syst. Sci., 21, 4433–4448,,, 2017
Short summary
Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013,,, 2017
Short summary
Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572,,, 2017
Short summary

Cited articles

Arnbjerg-Nielsen, K. and Onof, C.: Quantification of anticipated future changes in high resolution design rainfall for urban areas, Atmos. Res., 2, 350–363,, 2009.
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Gregersen, I. B., Madsen, H., Nguyen, V.-T.-V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28,, 2013.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,, 2013.
Berndtsson, R. and Niemczynowicz, J.: Spatial and temporal scales in rainfall analysis: Some aspects and future perspectives, J. Hydrol., 100, 293–313,, 1988.
Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., and O'Connel, P. E.: RainSim: a spatial temporal stochastic rainfall modelling system, Environ. Model. Softw., 23, 1356–1369,, 2008.
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.