Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Download
Short summary
Does climate variability necessarily imply hydrological variability? This paper analyses the catchment filtering role by analytically deriving the annual maximum peak flow frequency distribution based on realistic hypotheses about the rainfall process and the rainfall-runoff transformation. Depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant. Results also largely depend on the return period considered.
Articles | Volume 19, issue 1
Hydrol. Earth Syst. Sci., 19, 379–387, 2015
https://doi.org/10.5194/hess-19-379-2015
Hydrol. Earth Syst. Sci., 19, 379–387, 2015
https://doi.org/10.5194/hess-19-379-2015

Research article 21 Jan 2015

Research article | 21 Jan 2015

Climate and hydrological variability: the catchment filtering role

I. Andrés-Doménech et al.

Related authors

A two-parameter design storm for Mediterranean convective rainfall
Rafael García-Bartual and Ignacio Andrés-Doménech
Hydrol. Earth Syst. Sci., 21, 2377–2387, https://doi.org/10.5194/hess-21-2377-2017,https://doi.org/10.5194/hess-21-2377-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020,https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020,https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary

Cited articles

Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009.
Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010.
Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability, J. Water Resour. Pl. Manage., 138, 36–46, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000144, 2012.
Bloeschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010.
Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, https://doi.org/10.1073/pnas.1311920110, 2013.
Publications Copernicus
Download
Short summary
Does climate variability necessarily imply hydrological variability? This paper analyses the catchment filtering role by analytically deriving the annual maximum peak flow frequency distribution based on realistic hypotheses about the rainfall process and the rainfall-runoff transformation. Depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant. Results also largely depend on the return period considered.
Citation