Articles | Volume 19, issue 8
https://doi.org/10.5194/hess-19-3489-2015
https://doi.org/10.5194/hess-19-3489-2015
Research article
 | 
10 Aug 2015
Research article |  | 10 Aug 2015

Characterization of precipitation product errors across the United States using multiplicative triple collocation

S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen

Related authors

Land–atmosphere interactions in the tropics – a review
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019,https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Global downscaling of remotely sensed soil moisture using neural networks
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018,https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018,https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017,https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
ASSESSING URBAN DROUGHTS IN A SMART CITY FRAMEWORK
R. Obringer, X. Zhang, K. Mallick, S. H. Alemohammad, and D. Niyogi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 747–751, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016,https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, 2016

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023,https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Alban de Lavenne, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-58,https://doi.org/10.5194/hess-2023-58, 2023
Revised manuscript accepted for HESS
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary

Cited articles

Alemohammad, S. H., Entekhabi, D., and McLaughlin, D. B.: Evaluation of Long-Term SSM/I-Based Precipitation Records over Land, J. Hydrometeorol., 15, 2012–2029, https://doi.org/10.1175/JHM-D-13-0171.1, 2014.
Alemohammad, S. H., McLaughlin, D. B., and Entekhabi, D.: Quantifying Precipitation Uncertainty for Land Data Assimilation Applications, Mon. Weather Rev., 143, 3276–3299, https://doi.org/10.1175/MWR-D-14-00337.1, 2015.
Anagnostou, E., Maggioni, V., Nikolopoulos, E., Meskele, T., Hossain, F., and Papadopoulos, A.: Benchmarking High-Resolution Global Satellite Rainfall Products to Radar and Rain-Gauge Rainfall Estimates, IEEE T. Geosci. Remote, 48, 1667–1683, https://doi.org/10.1109/TGRS.2009.2034736, 2010.
Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C., Yilmaz, M. T., Mecikalski, J., and Schultz, L.: Towards an integrated soil moisture drought monitor for East Africa, Hydrol. Earth Syst. Sci., 16, 2893–2913, https://doi.org/10.5194/hess-16-2893-2012, 2012.
Arkin, P. and Janowiak, J.: Global Precipitation Index (GPI), Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), http://disc.sci.gsfc.nasa.gov/precipitation/data-holdings/access/data_access_nonjs.shtml, last access: August 2015.
Download
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.