Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 18, issue 12
Hydrol. Earth Syst. Sci., 18, 5169–5179, 2014
https://doi.org/10.5194/hess-18-5169-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 18, 5169–5179, 2014
https://doi.org/10.5194/hess-18-5169-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Technical note 12 Dec 2014

Technical note | 12 Dec 2014

Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

H. Ajami et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (27 Oct 2014) by Vazken Andréassian
AR by Hoori Ajami on behalf of the Authors (31 Oct 2014)  Author's response    Manuscript
ED: Publish as is (06 Nov 2014) by Vazken Andréassian
Publications Copernicus
Download
Short summary
A new hybrid approach was developed to reduce the computational burden of the spin-up procedure by using a combination of model simulations and an empirical depth-to-water table function. Results illustrate that the hybrid approach reduced the spin-up period required for an integrated groundwater--surface water--land surface model (ParFlow.CLM) by up to 50%. The methodology is applicable to other coupled or integrated modeling frameworks when initialization from an equilibrium state is required.
A new hybrid approach was developed to reduce the computational burden of the spin-up procedure...
Citation