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Dear Dr Andréassian, 

Thank you for providing us with the review of our submitted manuscript to the Hydrology 

and Earth System Sciences Journal entitled "Technical Note: Reducing the spin-up period of 

integrated surface water-groundwater models”, hess-2014-169. We appreciate the reviews 

from Referee#1 and Referee#2 and believe that their comments and suggestions have 

significantly improved our manuscript. In the following, we address specific reviewer 

comments.  

 

Anonymous Referee #1 

 

General comments 

1.This paper focuses on the description and evaluation of a procedure for reducing 

the time of model spin-up, which is a commonly adopted strategy to initialize integrated/ 

coupled hydrological models such as ParFlow.CLM. In my opinion, there is a core issue 

within this paper related to its very basic idea, i.e., the assumption that an equilibrium state 

(achieved over no matter how many years of forcing data) can represent a correct (or even 

reasonable) initial catchment state. Although I acknowledge that this is a common 

assumption, I believe that not only it is not true in general, but the number of cases where this 

could be reasonable is limited, in theory, only to catchments where i) the land use do not 

change over time and ii), most importantly, the inter-annual variability of the weather forcing 

is very small. The latter point is equivalent to the assumption that a single year (or two, 

three) of forcing data can be considered representative of the whole climatic regime of the 

catchment, an hypothesis that is never realistic in practice. Unfortunately for hydrologists, 

catchments are always dynamic systems and never in a state of equilibrium; therefore, I am 

afraid that the whole procedure proposed in the paper is not worth the effort from the very 

beginning. Instead, the only way to achieve a correct or reasonable initial state is to 

use a “warm-up” procedure, where the model must be run using a long enough time series 

of forcing data before the period of interest; the necessary warm-up duration will 

be obviously catchment-specific and can be evaluated by starting the model with two 

or more different initial guesses and checking that after the warm-up all the simulations 

converged to the same final (dynamic) state.  

 

We agree with the reviewer comments regarding the short comings of equilibrium based 

initialization for initializing coupled/integrated hydrologic models. Despite these 

shortcomings this initialization method is commonly used. This technical note provides a 

method for improving the efficiency of this commonly used initialization technique. While in 

the land surface modelling community various experiments have been performed across 

multiple sites and models to assess the impact of initialization approaches and spin-up criteria 

(Yang et al., 1995, Rodell et al., 2005) on simulated response, the issue of model 

initialization has not been fully explored for the coupled or integrated hydrologic models. As 

we stated in our objectives, here the goal was to reduce the spin-up period for equilibrium 

based initializations. The equilibrium based initializations have been used previously for 

exploring land surface-groundwater coupling (Kollet and Maxwell, 2008) and assessing the 

impact of climate change on groundwater-land surface interactions using an integrated 

hydrologic model (Ferguson and Maxwell, 2010). Here, similar to the Project for 

Intercomparison of Land Surface Parameterization Schemes (PILPS), only one year of 

forcing data is used for ParFlow.CLM spin-up. The adjustment method introduced can be 

examined when multiple years of forcing data is used for the warm-up period. We could not 



2 
 

examine the impact of multiple years of forcing on the spin-up time due to the intensive 

computational demand. In Ajami et al. (2014), the impact of different initializations 

approaches as examined in the literature was briefly discussed and we refer the reader to that 

summary. The issue of initialization is very important particularly in coupled or integrated 

hydrologic models and coordinated efforts to perform such experiments across multiple 

models and sites are required in hydrologic modelling community.   

The following point is added to the revised Introduction (Page 2, Lines 30-31 and Page 3, 

Lines 1-2): 

The two most common initialization approaches in coupled or integrated distributed 

hydrologic models are: (1) initial depth to water table is specified at a certain uniform depth 

below the land surface (Kollet and Maxwell, 2008) and the impact of initialization is reduced 

through recursive simulations over either a single or multiple years of forcing data, until 

equilibrium conditions are reached, which are usually related to spin-up criteria based on 

changes in groundwater heads (Refsgaard, 1997) or changes in water and energy balances 

(Kollet and Maxwell, 2008); or (2) the model is initialized from a fully saturated condition 

and simulations are continued until modelled baseflow matches the observations (Jones et al., 

2008). Equilibrium based initializations have been utilized previously for exploring land 

surface-groundwater coupling (Kollet and Maxwell, 2008) and assessing the impact of 

climate change on groundwater-land surface interactions using an integrated hydrologic 

model (Ferguson and Maxwell, 2010).   

 

 

Further, we added application of equilibrium based initialization in the objective section of 

the revised manuscript (Page 3,Lines 19-28): 

 

The objective of the current study is to develop a hybrid spin-up approach that significantly 

reduces the number of years of spin-up required for model state equilibrium. The equilibrium 

based initialization represents a correct initial state for catchments in which the land use does 

not change over time and the inter-annual variability of atmospheric forcing is very small: 

assumptions that are common to most simulation frameworks. This technical note provides a 

method for improving the efficiency of this commonly used initialization technique. The 

performance of the proposed approach in reducing the spin-up period for a catchment scale 

application of the ParFlow.CLM model is evaluated against the standard continuous recursive 

simulation approach that is commonly applied for land surface model spin-up, and referred to 

here as the baseline spin-up approach. 

 

2. Another issue of this paper regards the lack of important details, such as (at least) a brief 

description of ParFlow.CLM, and some steps of the procedure that are not described with 

sufficient clarity. See below in the list of specific comments. 

 

A brief description of ParFlow.CLM is added to the revised manuscript. Please see Section 

2.1. Section 2.2 is revised to include further details about the approach. 

 

Specific comments: 

1. Page 6971, line 20: please define “service unit”. 

Definition of a service unit is added in the revised manuscript (Page 3, Lines 8-9).  

(a service unit is equivalent to 1 hour of time used by one processor) 

 

2. Page 6972, section 2.1: despite the title, no description whatsoever of the model is 

provided, but only a description of the two catchments. 
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A brief description of ParFlow.CLM is added at the beginning of section 2.1 as follows: 

ParFlow is a 3D variably saturated groundwater flow model that solves the mixed form of the 

three-dimensional Richards equation for the subsurface (Ashby and Falgout, 1996; Jones and 

Woodward, 2001; Maxwell et al., 2014). ParFlow has a fully integrated overland flow 

simulator (Kollet and Maxwell, 2006) and performs routing of the ponded water on the land 

surface via the kinematic wave equation. The Common Land Model (CLM 3.0) (Dai et al., 

2003) is integrated into ParFlow to simulate water and energy fluxes at the land surface 

(Maxwell and Miller, 2005; Kollet and Maxwell, 2008). ParFlow.CLM versions 605 and 653 

were used for the Skjern River and Baldry simulations respectively, which are described 

below. The terrain following grid of Maxwell (2013) is not implemented in these modelling 

set-ups.  

 

 

3. Page 6975: lines 7-19: this section is rather difficult to follow. Is the DTWT function 

used to re-initialize the model spatially variable or uniform? And the resulting DTWT 

distribution after re-initialization? Also, it is not clear how the “best performing” DTWT 

functions were chosen: what objective function was used to evaluate the best performance, 

root mean square difference, mean absolute error or the semi-variogram? 

 

The DTWT function produces spatially distributed DTWT for re-initialization. The procedure 

for generating spatially distributed DTWT is as follows: 1) develop the DTWT function 

based on percent changes in mean annual DTWT values across the domain for six cycles of 

ParFlow.CLM simulations (global DTWT function), and 2) Implement the DTWT function at 

every grid cell to re-initialize the ParFlow.CLM model. The updated DTWT at every grid cell 

depends on its initial value. To clarify this point, the manuscript is revised as follows (Page 7, 

Lines 28-32): 

 

The empirical DTWT functions calculated above estimate percentage changes in mean 

annual DTWT as a function of simulation year. To predict spatially distributed mean annual 

DTWT from a global DTWT function, the mean annual DTWT from the final cycle of the 

ParFlow.CLM spin-up simulation for every grid cell is used as the initial value to 

successively estimate DTWT distributions as a function of simulation year. These DTWT 

distributions are based on the predicted percent change values from the global DTWT 

function.  

   

Here we are comparing the performance of multiple DTWT functions against the baseline 

simulation using multiple objective functions. As presented in our results a single objective 

function does not constantly perform best for all the cases and each of the objective functions 

provides a summary statistic regarding a certain aspect of the model performance. While 

mean absolute error (MAE) and root mean square difference (RMSD) provide an overall 

average of model error, RMSD is more sensitive to extreme values. Percent bias gives 

information about the average tendency of the model prediction to be larger or smaller than 

the baseline simulation. We revised the manuscript as follows for the Skjern River sub-

catchment section (Section 3.1, Page 10-11):  

 

Optimum parameter values for single and double exponential DTWT functions were obtained 

using nonlinear least squares method. Performance of the single and double exponential 

DTWT functions in predicting 14 years of DTWT were compared against ParFlow.CLM 

baseline spin-up simulations (years 7 through 20) of Ajami et al. (2014) to find the optimum 
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empirical DTWT function for the Skjern River sub-catchment. Post-simulation analysis 

indicates that global DTWT functions based on domain or catchment averaged percentage 

change values are better predictors of DTWT response compared to local DTWT functions 

developed for every grid cell. Instability of local DTWT functions occurs in grid cells where 

percent changes in DTWT oscillate between positive and negative values through initial spin-

up simulations. Spatial distribution of these grid cells are shown in Fig S1.  

 

Calculated RMSD and percent bias relative to the baseline spin-up simulations indicate that 

global double exponential functions using ParFlow.CLM spin-up simulations 2 to 6 provide a 

better fit compared to various single exponential functions obtained from different spin-up 

simulation years (e.g. 2 to 3, 2 to 4, etc.). Because the first six cycles of ParFlow.CLM 

simulations were the same between the baseline spin-up simulations and DTWT distributions 

from DTWT functions presented in Fig 4, comparisons were made with simulations 7 to 20 

of the baseline spin-up approach of Ajami et al. (2014).  

As can be seen from Fig. 4a, the mean annual DTWT over the domain derived from the 

single exponential functions (fitted to percentage change data from simulations 2 to 6) under-

predict the baseline spin-up simulations, due to their consistent small underestimates in 

comparison to double exponential functions fitted to the same data points. Only for the mean 

absolute error (MAE) calculated at each pixel do single exponential functions based on 

simulations 2 to 6 perform slightly better and produce smaller errors on average than the 

double exponential functions (Fig. 4b). It should be noted that the percent bias in mean 

annual DTWT for simulation cycle 20 is -1.6% for the domain based double exponential 

function and -6.2% for the single exponential function, with both functions derived from 

simulation cycles 2 to 6. Therefore, single exponential functions are not further examined in 

re-initializations of the DTWT. In terms of mean DTWT across the domain (Fig. 4a), the 

catchment delineated double exponential DTWT function provides a better prediction and the 

smallest mean bias when compared to the function based on the entire model domain. 

However, Figure 4b indicates that the mean absolute error values are slightly smaller for the 

domain based double exponential function. The higher MAE of the catchment based double 

exponential function is a result of slightly more regions with over and underestimated DTWT 

values that contribute to a good overall mean DTWT (Fig. 4a), but contains more errors 

spatially compared to the domain based double exponential function. 

 

The section is followed by an overall conclusions in the revised manuscript (Page 11, Line 

32):  

In summary, double exponential functions are chosen as they have less bias compared to 

single exponential functions and there is very little difference in terms of MAE amongst 

predictions. The choice is further supported by the RMSD and semi-variograms.  

 

  

4. Page 6976, lines 2-3: why is the pressure head profile in the UZ adjusted with a (basically) 

instantaneous distribution, taken from the last day of the sixth cycle, while the 

re-initialized DTWT is assumed as an annual mean? I see a possible lack of consistency that 

should be discussed. 

 

To clarify this point, the manuscript is revised as follows: 
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Section 2.2. Page 6, Lines 25-28:  

Sensitivity of spin-up functions across multiple criteria and variables showed that the 

estimated spin-up period based on mean annual DTWT were more stable when compared to 

other spin-up criteria, such as changes in the mean DTWT for the last day of recursive 

simulations (Ajami et al., 2014)….     

 

Section 2.2. Page 9, Lines 8-19:  

 

In the adjusted pressure head approach, the hydrostatic equilibrium assumption is used in 

regions between the new DTWT and the initial DTWT. The ParFlow.CLM pressure head 

distribution is adjusted to begin at the new pressure head from the initial WT such that the 

vertical profile is maintained (Fig. 3). This adjustment may represent a lack of consistency in 

the proposed approach as the DTWT function estimates mean annual DTWT, while pressure 

head adjustments in the unsaturated zone are taken from the last day of the sixth cycle of 

ParFlow.CLM. While it is possible to use DTWT values from the last day of simulations to 

develop a DTWT function, estimated DTWT values from such a function exhibit larger 

variability and result in a larger bias. For the Skjern River sub-catchment, percent bias 

between the estimated DTWT values from the DTWT functions and the baseline simulation 

of Ajami et al. (2014) were -4% and -1.6% for the DTWT functions based on the last day and 

mean annual DTWT values respectively. 

 

5. Page 6977, lines 1-17 and Fig. 3: I am quite puzzled by these results. From Fig. 

3a, I would expect that i) the MAE of the Exp2-Catchment curve decreased with time, 

not the contrary, especially after year 14, and ii) the MAE of the two Exp1 curves was 

larger, not smaller, than the Exp2 curves. Have the authors any explanation for this? 

 

Here the MAE is calculated on a pixel basis by computing the average absolute difference 

between the estimated DTWT from the DTWT functions and the baseline spin-up simulation. 

We included the formulas for calculating the objective functions in the revised manuscript to 

clarify this point. Figure 4a shows the mean annual DTWT over the domain and it indicates 

that the Exp2-Catchment function results in the smallest mean bias and the single exponential 

functions have the worst overall mean. Figure 4b shows the MAE calculated at each pixel and 

it indicates that the Exp2-Catchment function has slightly more regions with over and 

underestimated DTWT values resulting in a good overall mean, but contain more errors 

spatially. Meanwhile, the single exponential function estimates result in consistent small 

underestimates which produce slightly smaller errors when averaged spatially but has a worse 

overall mean. 

 

Therefore, i) Figure 4b of the revised manuscript indicates that the performance of DTWT 

functions deteriorate for later time period (simulations 7 through 20) and the MAE increases 

in later simulations. ii) Similarly, average model error on a pixel basis (MAE) is smaller for 

the two single exponential functions than the Exp2 curves as shown in Figure 4b.  

 

To clarify this point, the manuscript is revised. Please see the response to specific comment 

#3. 
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6. Page 6977, lines 18-29: it is not clear how the semi-variograms were calculated. Was 

the mean annual DTWT used? 

 

Mean annual DTWT at every grid cell was used to calculate semi-variograms. The 

manuscript is revised to describe the procedure. See Page 11, Lines 14-23: 

 

To investigate this result further, three empirical semi-variograms were generated. As the 

impact of an east-west spatial trend in the mean annual DTWT values was evident in the 

semi-variograms, the trend should first be removed from the mean annual DTWT values.  To 

remove the trend, a plane was fitted to the observed mean annual DTWT values, with an 

equation of the form:  

z = ax + by + c                                                                                                                (6) 

where a, b and c are fitted coefficients, x and y are the coordinates of every grid cell, and z is 

the mean annual DTWT. Residuals are computed by subtracting the estimated mean annual 

DTWT from Equation 6 from the observed mean annual DTWT values. Finally, the semi-

variogram of the residuals as a function of distance is calculated. 

 

 

7.Page 6978, lines 20-22: this sentence is not clear, please rephrase.  

The sentences are rephrased in the revised manuscript (Page 12, Lines 23-31 and Page 13, 

Lines 1-6): 

 

While in both re-initializations, DTWT and subsequently groundwater storage volume were 

the same at the start of the simulations, unsaturated zone storage of the hydrostatic 

equilibrium option was drier than the adjusted pressure head option. Additional 

ParFlow.CLM simulations after re-initialization ensured equilibrium of groundwater storage. 

As can be seen from Fig. 6a, hydrostatic re-initialization results in a deeper WT at 

equilibrium (simulation 12) relative to the baseline equilibrium year (simulation 20). Higher 

DTWT values of the hydrostatic option at equilibrium correspond to smaller groundwater 

storage and subsequently larger unsaturated zone storage compared to the baseline spin-up 

(Fig. 5). It should be noted that in ParFlow.CLM, groundwater and unsaturated zone storages 

are not explicitly determined by fixed size compartments and the extent of an unsaturated 

zone is determined by the location of the water table. Percent changes in mean annual 

unsaturated zone storage between the last two years of recursive simulations were 0.1% for 

the hydrostatic equilibrium and 0.3% for the adjusted pressure head re-initializations, 

indicating unsaturated zone equilibrium at different threshold levels.  

 

8. Page 6979, lines 5-9 and Fig. 6: from the figure I cannot see how the adjusted vertical 

pressure distribution produces better results than the hydrostatic profiles, nor I can see 

the bias with the latter. Perhaps, would be a good idea to show the experimental pdf 

(articula) of the differences along with their spatial distribution. 

 

Figure 6a shows that the difference between DTWT distributions from the hydrostatic 

equilibrium option and the baseline simulation is mostly positive, while for the adjusted 

pressure head option the differences in DTWT values are negative in the upper part of the 

catchment. We generated the kernel density plots of the differences; however, the figure was 

not informative especially when the bandwidth was set the same for both density plots. 

Therefore, we only included the spatial distribution of the differences in the revised 

manuscript and changed the colour scheme of the Figure to present this bias. 
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Figure 6. Differences in equilibrium DTWT between ParFlow.CLM simulations after re-

initializations and ParFlow.CLM after 20 years of baseline spin-up simulations in (m), where 

a) is based on hydrostatic pressure distribution above the water table for the initial condition, 

while b) is based on adjusted pressure head distribution above the water table for the Skjern 

River sub-catchment. White regions correspond to gird cells where the differences in 

equilibrium DTWT are less than 0.5. 

 

 

9. Page 6979, line 16: why does the smaller Baldry catchment require more service units 

than the larger Skjern catchment? Is it because the former has a larger grid size due 

to a better DEM resolution? 

 

A major factor in the Baldry catchment requiring more service units is that it required 40% 

longer simulations to reach equilibrium. The total number of service units for one year of 

simulation is larger for the Baldry sub-catchment than the Skjern River sub-catchment despite 

its lower number of computational nodes (467712 nodes in Baldry compared to 909440 in the 

Skjern River sub-catchment). It is difficult to solely attribute the increases in computational 

time to the DEM cell size. Based on our experience, increases in the number of vertical nodes 

result in longer computational time.  Here, the increases in computational time in Baldry are 

due to multiple factors. As indicated in the revised manuscript, two different versions of 

ParFlow have been used for these catchments and we used different options for storing the 

CLM output files (silo versus PFB). For the Skjern River sub-catchment, CLM output files 

were saved as distributed silo files and after every model restart (every 15 days), a one 

processor job was submitted to un-distribute the silo files and save them as PFB files. For the 

Baldry sub-catchment, the PFB option was used and the un-distribution of PFB files was 

performed with the main ParFlow TCL script that uses 64 processors. Therefore, this set-up 

has led to unrealistic increases in service units for the Baldry. Based on the ParFlow user 

forum, it seems that the issue with the un-distributed PFB files can be resolved by using 

different setting when compiling the ParFlow.CLM code.  

 

We should note that the number of processors for every catchment scale simulation was 

determined by performing parallel efficiency tests.  

 

10. Page 6981, lines 1-2: I do not agree that the proposed procedure “has the potential to 

assist in parameter calibration”. Due to equifinality, if a wrong initial state is used, such 

as the one likely to achieve by assuming equilibrium, a calibration procedure could lead 

to strongly biased parameters. 
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We acknowledge the reviewer concerns here. We are not attempting to address equifinality 

here, we simply present a technique that can make previously used calibration approaches 

more efficient. We have removed this statement in the revised manuscript. It should be noted 

that a period of spin-up has been often implemented during calibration. We revised the 

Summary section as follows (Page 15, Lines 12-16): 

 

Previous efforts in calibrating coupled or integrated hydrologic models required a spin-up 

process after every parameter update (Stisen et al., 2011; Weill et al., 2013). Development of 

a computationally efficient spin-up approach will enable this type of systematic calibration of 

integrated or coupled hydrologic models.  

 

11. Page 6990, Fig. 5: I am surprised that the hydrostatic equilibrium procedure 

underestimates the groundwater storage even from the start of the simulation. If the DTWT at 

re-initialization is the same as for the adjusted pressure profile, how can the Authors 

explain that large bias? 

To address reviewer comment, the manuscript is modified as follows (Page 12, Lines 23-31 

and Page 13, Lines 1-6): 

 

While in both re-initializations, DTWT and subsequently groundwater storage volume were 

the same at the start of the simulations, unsaturated zone storage of the hydrostatic 

equilibrium option was drier than the adjusted pressure head option. Additional 

ParFlow.CLM simulations after re-initialization ensured equilibrium of groundwater storage. 

As can be seen from Fig. 6a, hydrostatic re-initialization results in a deeper WT at 

equilibrium (simulation 12) relative to the baseline equilibrium year (simulation 20). Higher 

DTWT values of the hydrostatic option at equilibrium correspond to smaller groundwater 

storage and subsequently larger unsaturated zone storage compared to the baseline spin-up 

(Fig. 5). It should be noted that in ParFlow.CLM, groundwater and unsaturated zone storages 

are not explicitly determined by fixed size compartments and the extent of an unsaturated 

zone is determined by the location of the water table. Percent changes in mean annual 

unsaturated zone storage between the last two years of recursive simulations were 0.1% for 

the hydrostatic equilibrium and 0.3% for the adjusted pressure head re-initializations, 

indicating unsaturated zone equilibrium at different threshold levels.  

 

 

Figure 5b shows time series of groundwater storage for the equilibrium year for three cases, 

baseline simulation, adjusted pressure head and hydrostatic options. The equilibrium year 

corresponds to simulation cycles of 10, 12 and 20 for the adjusted pressure head, hydrostatic 

equilibrium, and baseline simulations, respectively. Figure 5b caption is revised to clarify 

this: 

 

Figure 5. Comparison of a) unsaturated and b) groundwater storages of ParFlow.CLM 

equilibrium year using the hybrid and baseline spin-up approaches (Ajami et al., 2014). The 

equilibrium year corresponds to simulation cycles of 10, 12 and 20 for the adjusted pressure 

head, hydrostatic equilibrium, and baseline simulations, respectively. The dynamics of 

groundwater and unsaturated zone storages are closely reproduced by the adjusted pressure 

head distribution approach relative to the baseline spin-up approach for the Skjern River sub-

catchment. 
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12. Page 6992, Fig. 7: there seems to be a spatial pattern, with streaks of DTWT 

overestimation in the south of the catchment. How can this be explained? 

 

The contours of DTWT overestimation occurred along the direction of flow lines from high 

elevation areas in the catchment toward the catchment outlet. As indicated in the manuscript, 

the performance of global DTWT functions were deteriorated in high elevation areas. The 

Figure caption is revised as follows: 

 

Figure 7. Differences in equilibrium DTWT of Baldry ParFlow.CLM simulations after re-

initialization with the adjusted pressure head distribution above the water table and 

ParFlow.CLM after 28 years of baseline spin-up simulations in (m). The contours of DTWT 

overestimation are along the direction of flow lines from high elevation areas toward the 

catchment outlet. 

 

Technical corrections 

1. Page 6970, lines 18-19: change the sentence to “The issue of model initialization 

is important for hydrologic predictions as the initial state has a major impact on the 

catchment’s model response”. 

It is revised.  

 

2. Page 6979, line 21: correct “particular”. 

It is corrected.  

 

3. Page 6974, line 17: DTWT was 3 m only for the Skjern catchment. 

Initial DTWT for the Baldry sub-catchment is included in the revised manuscript.  

 

4. Page 6977, line 20: change “semi-variance” to “semi-variogram”. 

It is modified.  

 

 

 

References: 

Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglietti (2005), Evaluation of 10 methods 

for initializing a land surface model, J. Hydrometeorol., 6(2), 146-155. 

 

Yang, Z. L., R. E. Dickinson, A. Henderson-Sellers, and A. J. Pitman (1995), Preliminary 

study of spin-up processes in land surface models with the first stage data of Project for 

Intercomparison of Land Surface Parameterization Schemes Phase 1(a), J. Geophys. Res., 

100(D8), 16553-16578. 
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Anonymous Referee #2 

The technical note presents a methodology to nudge the predicted groundwater table 

depth, thereby reducing the number of years required for spin-up of integrated 

surfacewater-groundwater model Parflow.CLM, based on subsurface storage spin-up 

criteria. The methodology however does not reduce the real computation time of the 

model itself, but only reduces the number of years of recursive runs required to initialize 

the model based on the spin-up criteria. Also, it does not distinguish between 

the computation time required for each year of spin-up on whether it decreases or it 

is constant. Although the problem size used in this study cannot be considered to be 

computationally intensive, which is also a relative term, the idea presented does show 

some potential to reduce the spin-up period to generate initial soil moisture data. In 

general, the manuscript is very well written, but at the same time, there are some short 

comings in the paper that needs to be addressed. There are several instances where 

the content of the paper is intangible, and inadequacy in experiment designs for the 

proposed methodology. In addition, the figure quality are very poor in terms of the size 

of figure, fonts and scale, rendering them unreadable.  

 

We agree with the reviewer that the methodology does not decrease the computational time 

and it only reduces the spin-up period. As the reviewer suggested we changed spin-up time to 

spin-up period to clarify this point in the revised manuscript. We do not have the exact record 

of the computational time for each year of simulation during the spin-up, but our observations 

show no significant decrease in computational time as system equilibrates. We have 

significantly revised the manuscript to clearly describe the methodology and highlight the 

limitations of our approach.  

 

We checked the quality of all the figures and improved them where possible. 

 

Specific comments: 

1.Benchmark the term “computationally intensive”, which is loosely used throughout 

the manuscript. Eg., in comparisons to : : :. 

We revised the manuscript as follows (Page 3, Lines 10-17): 

The challenge lies in designing methodologies to reduce spin-up period in computationally 

intensive integrated hydrologic models such as ParFlow.CLM (Ashby and Falgout, 1996; 

Jones and Woodward, 2001; Kollet and Maxwell, 2006) when initialization from equilibrium 

states is required for transient simulations. In integrated hydrologic models like ParFlow, 

numerical solution of the Richards equation in 3D increases computational time (Kim et al., 

1997; Maxwell et al., 2014) in comparison to approaches that use a 1D Richards equation for 

the vadoze zone and a 2D groundwater flow formulation for simulating subsurface flow.  

 

2.The title “Reducing the spin-up time” appears to be misleading in the sense, whether 

it is reducing the computation time itself or the number of iterative years required, it 

needs to be cleared. Eg. “Reducing the spin-up period”... 

 

In the revised manuscript, we changed spin-up time to spin-up period throughout the text. 

 

3.Model description is absent. Which version of the model is being used here, is it the 

terrain following co-ordinate system or the older version? Are the catchments delineated 
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for the simulation or a box domain is used? This needs to be all clarified. If the terrain 

following co-ordinate is used, the number of vertical levels can be reduced. In addition, the 

real computation time can also be reduced using delineated catchments. 

We included a brief description of the ParFlow.CLM as well as the version numbers in the 

revised manuscript. The terrain following coordinate system was not used in our simulations.   

We used the box domain in our simulations to reduce the impact of boundary conditions on 

catchment scale fluxes.  

 

A brief description of ParFlow.CLM is added at the beginning of section 2.1 as follows: 

ParFlow is a 3D variably saturated groundwater flow model that solves the mixed form of the 

three-dimensional Richards equation for the subsurface (Ashby and Falgout, 1996; Jones and 

Woodward, 2001; Maxwell et al., 2014). ParFlow has a fully integrated overland flow 

simulator (Kollet and Maxwell, 2006) and performs routing of the ponded water on the land 

surface via the kinematic wave equation. The Common Land Model (CLM 3.0) (Dai et al., 

2003) is integrated into ParFlow to simulate water and energy fluxes at the land surface 

(Maxwell and Miller, 2005; Kollet and Maxwell, 2008). ParFlow.CLM versions 605 and 653 

were used for the Skjern River and Baldry simulations respectively, which are described 

below. The terrain following grid of Maxwell (2013) is not implemented in these modelling 

set-ups.  

 

Section 2.1.1 is revised as follows (Page 4, Lines 28-29 and Page 5, Lines 1-2): 

To reduce the impact of boundary conditions on catchment scale fluxes, the computational 

domain is extended beyond the delineated catchment boundary. As such, the ParFlow.CLM 

model domain covered a 28 km by 20 km area that encompasses the Skjern River sub-

catchment (Fig. 2). 

 

Section 2.1.2 is revised as follows (Page 5, Lines 24-25): 

The ParFlow.CLM model of the site was set up over a 2.9 by 2.9 km area encompassing the 

Baldry sub-catchment (Fig. 2) in order to reduce the impact of boundary conditions on 

catchment scale fluxes. 

 

4.In both studies, spatially uniform atmospheric forcing is used, could this be possibly 

one of the reason why the domain mean DTWT function performs well for the relatively 

flat topography used in this study. How will it effect the empirical DTWT functions, 

if spatially varying forcing is used? A case study with relatively larger extent, and 

spatially varying forcing should be presented to prove the presented methodology for 

its suitability in other applications. 

 

We agree with the reviewer comments regarding examining the performance of DTWT 

functions across sites with steep topography, larger extent and spatially varying forcing. 

However, performing additional experiments requires huge computational demand and it is 

beyond the scope of this Technical Note. We revised the summary section to include this 

point (Page 15, Lines 20-21): 

 

In addition, the role of topography and spatially distributed forcing should be further 

examined. 

 

5.Pg. 6977, Ln 1-17, This paragraph is very confusing, show the formulation of calculation 

of MAE and RMSD in terms of the grid points, and then proceed to discussion, 

else the figure says otherwise. What does the mean DTWT in y-axis refer to, is it the 
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domain mean or catchment mean? Fig. 3B is addressed before discussion about Fig. 

3 itself. 

We included the formula for calculating the objective functions in the methodology section 

(Page *, Lines 6-15):  

Root mean square difference (RMSD), mean absolute error (MAE) and bias were computed 

to find the best performing DTWT function. These objective functions are calculated as 

follows:  
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where N is the number of grid cells in the domain, B is the mean annual DTWT from the 

baseline simulation of Ajami et al. (2014) for every grid cell, and M is the estimated mean 

annual DTWT at a grid cell obtained from a DTWT function.  

We revised the Results section. Y-axis refers to the domain mean. We revised section 3.1 as 

follows: 

Optimum parameter values for single and double exponential DTWT functions were obtained 

using nonlinear least squares method. Performance of the single and double exponential 

DTWT functions in predicting 14 years of DTWT were compared against ParFlow.CLM 

baseline spin-up simulations (years 7 through 20) of Ajami et al. (2014) to find the optimum 

empirical DTWT function for the Skjern River sub-catchment. Post-simulation analysis 

indicates that global DTWT functions based on domain or catchment averaged percentage 

change values are better predictors of DTWT response compared to local DTWT functions 

developed for every grid cell. Instability of local DTWT functions occurs in grid cells where 

percent changes in DTWT oscillate between positive and negative values through initial spin-

up simulations. Spatial distribution of these grid cells are shown in Fig S1.  

 

Calculated RMSD and percent bias relative to the baseline spin-up simulations indicate that 

global double exponential functions using ParFlow.CLM spin-up simulations 2 to 6 provide a 

better fit compared to various single exponential functions obtained from different spin-up 

simulation years (e.g. 2 to 3, 2 to 4, etc.). Because the first six cycles of ParFlow.CLM 

simulations were the same between the baseline spin-up simulations and DTWT distributions 
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from DTWT functions presented in Fig 4, comparisons were made with simulations 7 to 20 

of the baseline spin-up approach of Ajami et al. (2014).  

As can be seen from Fig. 4a, the mean annual DTWT over the domain derived from the 

single exponential functions (fitted to percentage change data from simulations 2 to 6) under-

predict the baseline spin-up simulations, due to their consistent small underestimates in 

comparison to double exponential functions fitted to the same data points. Only for the mean 

absolute error (MAE) calculated at each pixel do single exponential functions based on 

simulations 2 to 6 perform slightly better and produce smaller errors on average than the 

double exponential functions (Fig. 4b). It should be noted that the percent bias in mean 

annual DTWT for simulation cycle 20 is -1.6% for the domain based double exponential 

function and -6.2% for the single exponential function, with both functions derived from 

simulation cycles 2 to 6. Therefore, single exponential functions are not further examined in 

re-initializations of the DTWT. In terms of mean DTWT across the domain (Fig. 4a), the 

catchment delineated double exponential DTWT function provides a better prediction and the 

smallest mean bias when compared to the function based on the entire model domain. 

However, Figure 4b indicates that the mean absolute error values are slightly smaller for the 

domain based double exponential function. The higher MAE of the catchment based double 

exponential function is a result of slightly more regions with over and underestimated DTWT 

values that contribute to a good overall mean DTWT (Fig. 4a), but contains more errors 

spatially compared to the domain based double exponential function. 

 

Minor Comments: 

1.Ln 6970, Ln. 24 : Rephrase. 

We rephrased the sentence in the revised manuscript (Page 2, Lines 12-14): 

 

Since information on the spatial pattern of water table and soil moisture distributions is 

generally unavailable, various approaches have been developed to determine the initial 

DTWT variation. 

 

2.Pg. 6971, Ln 23: spin-up period 

It is revised. 

 

3.Pg. 6971, Ln 27: number of years of spin-up required for 

The sentence is revised (Page 3, Lines 19-20): 

The objective of the current study is to develop a hybrid spin-up approach that significantly 

reduces the number of years of spin-up required for model state equilibrium. 

 

4.Pg. 6972, Ln 4: Confusing statement, Fig. 1 mentions 3 stages, but the paragraph 

begins with two stages. 

The sentence is modified (Page 4, Lines 2-3): 

The hybrid approach consists of three main stages: a two-stage model simulation step and an 

intermediate state-updating step using the DTWT function.  

 

5.Pg. 6972, Ln 7: “against the equilibrated initial condition for the subcatchment of 

: : :.., using the ParFlow.CLM model.” 
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It is revised. See Page 4, Lines 4-7: 

The utility of the proposed scheme is compared against the equilibrated initial condition for a 

sub-catchment of the Skjern River basin in Denmark, using the ParFlow.CLM model as 

developed by Ajami et al. (2014) that employed a traditional baseline spin-up approach. 

 

6.Pg. 6972, Ln 20: Mention grid point numbers. Also mention the annual precipitation 

received and min-max annual temperatures in the text. 

This section is revised as follows: 

The modelling grid had a horizontal resolution of 500 m and a vertical discretization of 0.5 

m. Catchment topography was determined via a 500 m digital elevation model (DEM) and 

the bottom elevation of the domain was a uniform -75 m, resulting in a 56   40   406 

dimension grid… 

  

Page 5, Lines 11-12: 

In 2003, annual precipitation was 801.6 mm and minimum and maximum daily air 

temperature were 261.2 K and 295.2 K respectively. 

 

7.Pg. 6973, Ln 24: Also mention the annual precipitation received and min-max annual 

temperatures in the text. Why 400m deep layer here? 

The annual precipitation and min-max annual temperature is added for the Baldry sub-

catchment in the revised manuscript (Page 6, Lines 7-8): 

In 2004, annual precipitation was 674.8 mm, and minmum and maximum daily air 

temeprature were 277 K and 305.5 K respectively.  

 

The subsurface thickness was not 400 m. The bottom elevation of the domain was 400m. The 

manuscript is revised as follows (Page 5, Lines 27-28): 

The bottom elevation of the modelling grid was a uniform 400 m resulting in a subsurface 

thickness of 43 to 101 m across the computational domain.  

 

8.Pg. 6974, Ln 4: Does these function depend on the initial condition of prescribed 

groundwater table depth ? 

 

The coefficients and shape of these functions depends on the initial condition of prescribed 

groundwater table depth. The sentence is revised as follows (Page 6, Lines 15-21): 

 

Analysis of ParFlow.CLM spin-up behavior using the baseline spin-up approach for the sub-

catchment of the Skjern River identified that percentage changes in subsurface storages and 

DTWT had the form of an exponential decay for a model initialized from a uniform 3 m 

DTWT (Ajami et al., 2014). Due to spatial adjustment of the water table during the spin-up, 

groundwater levels declined near the catchment divide and reached the land surface along the 

channel network causing an overall decline in mean annual DTWT relative to the initial 

condition. 

 

9.Pg. 6975, Ln7-14: Paragraph not comprehensible. Rephrase. 

The paragraph is revised (Page 7, Lines 28-32, and Page 8, Lines 1-6): 

 

The empirical DTWT functions calculated above estimate percentage changes in mean 

annual DTWT as a function of simulation year. To predict spatially distributed mean annual 

DTWT from a global DTWT function, the mean annual DTWT from the final cycle of the 

ParFlow.CLM spin-up simulation for every grid cell is used as the initial value to 
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successively estimate DTWT distributions as a function of simulation year. These DTWT 

distributions are based on the predicted percent change values from the global DTWT 

function. Sensitivity of DTWT functions to the number of ParFlow.CLM cycles was also 

examined by developing a number of DTWT functions using data from 2 to 6 cycles of 

ParFlow.CLM. To assess the performance of these DTWT functions, estimated mean annual 

DTWT from the DTWT functions were compared against mean annual DTWT from the 

ParFlow.CLM model of Ajami et al. (2014) that had been spun-up for 20 years.   

 

10.Pg.6975, Ln 19: predicted for : : :... 

It is revised. 

 

11.Pg. 6976, Ln 20: It has be to discussed clearly, whether the computation domain 

consists of delineated catchment or a rectangular domain in the experiment description 

itself. 

This point is clarified in the revised manuscript. The computational domain consists of the 

rectangular domain which includes the delineated catchment.  

 

12.Pg. 6976. Ln 24: A plot showing these oscillations will be illustrative. 

A Figure is added to the supplementary information that illustrates regions in the Skjern 

River sub-catchment were changes in DTWT oscillate.  

 

Fig. S1. Delineating four regions in the modelling domain according to percent changes in 

mean annual DTWT values from six cycles of ParFlow.CLM simulations. Red region 

represents grid cells where percent changes in DTWT values oscillate between negative and 

positive values, while the green region corresponds to grid cells with stable decline in 

DTWT. In grey regions, percent changes in DTWT have reached zero and black region 

corresponds to the channel network, where DTWT is zero.   
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13.Pg. 6977, Ln 19: Show the formulation of semi-variograms calculations. 

The formulation of semi-variograms are included in the revised manuscript. See page 11-

Lines 14-23:  

 

To investigate this result further, three empirical semi-variograms were generated. As the 

impact of an east-west spatial trend in the mean annual DTWT values was evident in the 

semi-variograms, the trend should first be removed from the mean annual DTWT values.  To 

remove the trend, a plane was fitted to the observed mean annual DTWT values, with an 

equation of the form:  

z = ax + by + c                                                                                                                (6) 

where a, b and c are fitted coefficients, x and y are the coordinates of every grid cell, and z is 

the mean annual DTWT. Residuals are computed by subtracting the estimated mean annual 

DTWT from Equation 6 from the observed mean annual DTWT values. Finally, the semi-

variogram of the residuals as a function of distance is calculated. 

 

14. Pg. 6979, Ln 2: Is this the result from the simulation using the initial condition from 

the different methods ? 

yes. To clarify this point, the manuscript is revised as follows (Page 13, Lines 14-18): 

At equilibrium, differences in simulated DTWT from the last day of the ParFlow.CLM 

simulations after re-initializations (hydrostatic equilibrium and adjusted pressure head 

distribution) and the baseline spin-up approach varied by up to 2 m inside the catchment 

boundary (Fig. 6), although most areas were within 0.5m.  

15.Pg. 6980, Ln 11: Is it the case in reality? 

In our simulations, we assumed that the Baldry sub-catchment is covered by the plantation 

forest as indicated in the methodology section. In reality half of the catchment is covered by 

pasture and stage recordings at the catchment outlet indicate 335 days of no flow in 2004. 

 

16.Pg. 6980, Ln 17: “simulation year”. Is the computation time same for each year of 

simulation. Does is also exhibit some pattern? 

We do not have the exact computation time for each year of simulation. In general, the 

computational time slightly decreases as the system equilibrates but the reduction in 

computational time is not significant. 

 

17.Pg. 6981: Ln 1-7: Far-fetching conclusions. Please remove it. 

We removed this statement and revised the manuscript as follows: 

Previous efforts in calibrating coupled or integrated hydrologic models required a spin-up 

process after every parameter update (Stisen et al., 2011; Weill et al., 2013). Development of 

a computationally efficient spin-up approach will enable this type of systematic calibration of 

integrated or coupled hydrologic models.  

 

18.Pg. 6981: Ln 9: “reducing number of years to ...” 

It is revised. 

 

19.Pg. 6981: Ln 10: “spin-up years” 

It is revised. 
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Abstract 17 

One of the main challenges in catchment scalethe application of coupled or /integrated 18 

hydrologic models, is specifying a catchment’s initial conditions in terms of soil moisture and 19 

depth to water table (DTWT) distributions. One approach to reduce uncertainty in model 20 

initialization is to run the model recursively using either a single or multiple years of forcing 21 

data until the system equilibrates with respect to state and diagnostic variables. However, 22 

such “spin-up” approaches often require many years of simulations, making them 23 

computationally intensive. In this study, a new hybrid approach was developed to reduce the 24 

computational burden of the spin-up procedure time for an integrated groundwater-surface 25 

water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLMmodel 26 

simulations and an empirical DTWT function. The methodology is examined in across two 27 

distinct catchments located in the a temperate region of Denmark and a semi-arid regions of 28 

Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced 29 



 2

the spin-up period time required for an integrated groundwater-surface water-land surface 1 

model (ParFlow.CLM)by  ParFlow.CLM by up to 50%., To generalize results to different 2 

climate and catchment conditions, and wwe outline a methodology that is applicable to other 3 

coupled/ or integrated modelling frameworks when initialization from an equilibrium state is 4 

required. 5 

 6 

1 Introduction 7 

The issue of model initialization is important for hydrologic simulation and predictions, as the 8 

model initial state has a major impact on a catchment’s modelled response (Berthet et al., 9 

2009). In coupled/ or integrated surface-subsurface models, uncertainty in a catchment 10 

antecedent condition is of particlular importance because as both the soil moisture distribution 11 

and depth to water table (DTWT) need to be specified at the start of a simulation (Ivanov et 12 

al., 2004; Noto et al., 2008).  13 

 14 

Since there is often no a priori information on the spatial pattern of water table and soil 15 

moisture distributions is generally unavailable, various approaches have been developed to 16 

determine the initial DTWT variation. Sivapalan et al. (1987) used a topography-soil index to 17 

map the spatial distribution of initial DTWT. In another approach, Troch et al. (1993) used 18 

recession flow analysis to estimate the effective water table height of a catchment. Regardless 19 

of the choice of initial DTWT, the uncertainty involved is such that a period of spin-up is 20 

always required (Cloke et al., 2003), as the applied atmospheric forcing is often inconsistent 21 

with the hydrodynamic initialization of the catchment inferred from limited observations 22 

(Ajami et al., 2014).  23 

 24 

The two most common initialization approaches in coupled/ or integrated distributed 25 

hydrologic models are as follows: (1) initial depth to water table is specified at a certain 26 

uniform depth below the land surface (Kollet and Maxwell, 2008), with and the impact of 27 

initialization is reduced through recursive simulations over either a single or multiple years of 28 

forcing data, until equilibrium conditions are reached, which are: usually related to spin-up 29 

criteria based on changes in groundwater heads (Refsgaard, 1997) or changes in water and 30 

energy balances (Kollet and Maxwell, 2008); or (2) the model is initialized from a fully 31 
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saturated condition and simulations are continued until modelled baseflow matches the 1 

observations (Jones et al., 2008). Equilibrium based initializations have been utilized 2 

previously for exploring land surface-groundwater coupling (Kollet and Maxwell, 2008) and 3 

assessing the impact of climate change on groundwater-land surface interactions using an 4 

integrated hydrologic model (Ferguson and Maxwell, 2010).   5 

 6 

Results of a ParFlow.CLM spin-up study for a catchment in Denmark showed that at least 20 7 

years of recursive simulations were required to reach equilibrium in subsurface storages, 8 

defined as occurring when percent changes in monthly unsaturated and saturated zone 9 

storages were less than 0.1% and 0.01% respectively (Ajami et al., 2014). For reference, 20 10 

years of spin-up simulations required 20,000 service units (a service unit is equivalent to 1 11 

hour of time used by one processor) on a high performance parallel computing cluster: 12 

equivalent to over 26 days of computation using 32 processors. The challenge lies in 13 

designing methodologies to reduce spin-up period time in computationally intensive 14 

integrated hydrologic models such as ParFlow.CLM (Ashby and Falgout, 1996; Jones and 15 

Woodward, 2001; Kollet and Maxwell, 2006) when initialization from equilibrium states is 16 

required for transient simulations. In integrated hydrologic models like ParFlow, numerical 17 

solution of the Richards equation in 3D increases computational time (Kim et al., 1997; 18 

Maxwell et al., 2014) in comparison to approaches that use a 1D Richards equation for the 19 

vadoze zone and a 2D groundwater flow formulation for simulating subsurface flow. 20 

 21 

The objective of the current study is to develop a hybrid spin-up approach that significantly 22 

reduces the number of years of spin-up time required for model state equilibrium. The 23 

equilibrium based initialization represents a correct initial state for catchments in which the 24 

land use does not change over time and the inter-annual variability of atmospheric forcing is 25 

very small: assumptions that are common to most simulation frameworks. This technical note 26 

provides a method for improving the efficiency of this commonly used initialization 27 

technique. The performance of the proposed approach in reducing the spin-up period time for 28 

a catchment scale application of the ParFlow.CLM model is evaluated against a the standard 29 

continuous recursive simulation approach that is commonly applied for land surface model 30 

spin-up, and referred to here as a the baseline spin-up approach.  31 
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2 Data and methodology 1 

The hybrid approach consists of three main stages: a two-stage model simulation step and an 2 

intermediate state-updating step using the DTWT function. Figure 1 illustrates this hybrid 3 

spin-up approach. The applicability utility of the proposed scheme is examined compared 4 

against the equilibrated initial condition for a sub-catchment of the Skjern River basin in 5 

Denmark, using the ParFlow.CLM model asof the sub-catchment of the Skjern River basin in 6 

Denmark, developed by Ajami et al. (2014) using that employed a traditional baseline spin-up 7 

approach. FurtherAn additional assessment of , performance of the hybrid approach in 8 

reducing the spin-up period time is evaluated undertaken by developing a ParFlow.CLM 9 

model for a semi-arid catchment in Australia.  10 

 11 

2.1 Overview of the ParFlow.CLM models   12 

ParFlow is a 3D variably saturated groundwater flow model that solves the mixed form of the 13 

three-dimensional Richards equation for the subsurface (Ashby and Falgout, 1996; Jones and 14 

Woodward, 2001; Maxwell et al., 2014). ParFlow has a fully integrated overland flow 15 

simulator (Kollet and Maxwell, 2006) and performs routing of the ponded water on the land 16 

surface via the kinematic wave equation. The Common Land Model (CLM 3.0) (Dai et al., 17 

2003) is integrated into ParFlow to simulate water and energy fluxes at the land surface 18 

(Maxwell and Miller, 2005; Kollet and Maxwell, 2008). ParFlow.CLM versions 605 and 653 19 

were used for the Skjern River and Baldry simulations respectively, which are described 20 

below. The terrain following grid of Maxwell (2013) is not implemented in these modelling 21 

set-ups.  22 

 23 

2.1.1 Sub-catchment of the Skjern River Basin, Denmark 24 

The sub-catchment of the Skjern River basin in western Denmark has an area of 208 km2 25 

(Fig. 2) that and is characterized by mild topography and a temperate climate (Jensen and 26 

Illangasekare, 2011). Agricultural land is the dominant cover type (78%), with the remainder 27 

of the catchment area covered by evergreen needle leaf forest. To reduce the impact of 28 

boundary conditions on catchment scale fluxes, the computational domain is extended beyond 29 

the delineated catchment boundary. As such, Tthe catchment’s ParFlow.CLM model domain 30 
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covered a 28 km by 20 km area that encompasses the Skjern River sub-catchment (Fig. 2). 1 

The modelling grid had a horizontal resolution of 500 m and a vertical discretization of 0.5 m. 2 

Catchment topography was determined via a 500 m digital elevation model (DEM) and the 3 

bottom elevation of the domain was a uniform -75 m, resulting in a 56   40   406 dimension 4 

grid.  5 

 6 

At the land surface, the ParFlow free-surface overland flow boundary condition was assigned. 7 

A no-flow boundary condition was specified for the sides and bottom boundary. Spatially 8 

uniform hourly atmospheric forcing (air temperature, wind speed, specific humidity, air 9 

pressure, precipitation, incoming shortwave and downward longwave radiation) for the year 10 

2003 were was used for spin-up. In 2003, annual precipitation was 801.6 mm and minimum 11 

and maximum daily air temperature were 261.2 K and 295.2 K respectively. Initial DTWT 12 

was assigned uniformly at 3m below the land surface. Ground surface temperature was set to 13 

the mean annual air temperature (281 K) at the start of a simulation. Prescribed subsurface 14 

hydraulic parameters include the saturated hydraulic conductivity (0.3 m h-1), porosity (0.39), 15 

van Genuchten parameters (α=1.5 m-1 and n =2), and relative residual saturation (0.1). 16 

 17 

2.1.2 Baldry sub-catchment, Australia 18 

The Baldry sub-catchment, located in central west New South Wales of Australia, has an area 19 

of 1.9 km2 with an elevation range from 443 m to 500 m inside the catchment boundary (Fig. 20 

2). For the spin-up experiment, the catchment land cover was assumed to be evergreen 21 

broadleaf forest representing eucalyptus plantation.  22 

 23 

The ParFlow.CLM model of the site was set up over a 2.9 by 2.9 km area encompassing the 24 

Baldry sub-catchment (Fig. 2) in order to reduce the impact of boundary conditions on 25 

catchment scale fluxes. Catchment topography was represented using a 60 m pre-processed 26 

DEM. The bottom elevation of the modelling grid was a uniform 400 m resulting in a 27 

subsurface thickness of 43 to 101 m across the computational domain. The modelling grid had 28 

a 60 m resolution in the x and y directions and its a vertical discretization was of 0.5 m, 29 

resulting in a 48   48   203 dimension grid.  30 
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As for the Skjern River implementation, At the land surface, the ParFlow free-surface 1 

overland flow boundary condition was assigned at the land surface. A no-flow boundary 2 

condition was specified for the lateral and bottom boundaries of the computational domain 3 

(gray domain in Fig. 2).  Hourly forcing data for the year 2004 were obtained from a weather 4 

station at the site. For the hourly downward longwave radiation, the Modern Era 5 

Retrospective Analysis for Research and Applications (MERRA) reanalyses data interpolated 6 

to 0.25°   0.25° resolution was were used (Decker et al., 2012). In 2004, annual precipitation 7 

was 674.8 mm, and minimum and maximum daily air temperature were 277 K and 305.5 K 8 

respectively. Prescribed subsurface hydraulic parameters include the saturated hydraulic 9 

conductivity (0.18 m h-1), porosity (0.25), van Genuchten parameters (α=1.5 m-1 and n =2), 10 

and relative residual saturation (0.1). The model was initialized with a uniform DTWT of 2m 11 

below the land surface. Ground surface temperature was set to mean annual air temperature 12 

288.1 [K].  13 

 14 

2.2  Development of empirical DTWT functions for model re-initialization 15 

Analysis of ParFlow.CLM spin-up behavior via using the baseline spin-up approach for the 16 

sub-catchment of the Skjern River identified that percentage changes in subsurface storages 17 

and DTWT had the form of an exponential decay for a model initialized from a uniform 3 m 18 

DTWT (Ajami et al., 2014).  Due to spatial adjustment of the water table during the spin-up, 19 

groundwater levels declined near the catchment divide and reached the land surface along the 20 

channel network causing an overall decline in mean annual DTWT relative to the initial 21 

condition. Using the functional relationships between the number of simulation years and the 22 

percentage change of a variable, Ajami et al. (2014) developed produced a series of spin-up 23 

functions based on 16 years of initial ParFlow.CLM simulations. These spin-up functions 24 

were used to predict the number of years required until the model equilibrated, based on a 25 

predefined threshold i.e. 0.1% or 0.01% change for a given variable. Sensitivity of spin-up 26 

functions across multiple criteria and variables showed that the estimated spin-up period 27 

based on mean annual DTWT were more stable when compared to other spin-up criteria, such 28 

as changes in the mean DTWT for the last day of recursive simulations (Ajami et al., 2014).     29 

 30 
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Conversely, tThe inverse of a spin-up function for DTWT predicts percent changes in DTWT 1 

as a function of simulation years, which hereinafter is referred to as the empirical DTWT 2 

function. In this study, we examined the capabilities of empirical DTWT functions as a means 3 

for updating DTWT and hence groundwater storage after just a few initial ParFlow.CLM 4 

spin-up simulations. The expectation is that this state updating should reduce the total number 5 

of spin-up years of simulation, substantially reducing the computational burden. To do this, a 6 

series of spin-up simulations were performed based on an arbitrary initial state (DTWT was of 7 

3 m below the land surface for the Skjern River sub-catchment sub-catchments,  as in Ajami 8 

et al. (2014)), in order to identify the minimum number of data points required to develop an 9 

empirical DTWT function (stage 1 of model simulation).  10 

 11 

Due to the anticipated large changes in mean annual DTWT values between the first and 12 

second year of the spin-up simulation, the first year of data is removed from the analysis. As a 13 

minimum of four data points (i.e. 6 cycles of ParFlow.CLM simulations) are required to fit a 14 

double exponential function, six years of spin-up simulations are performed using a single 15 

year of forcing data. To assess the sensitivity of DTWT functions to the number of 16 

ParFlow.CLM cycles, various exponential functions with single (Eq. 1) or double exponential 17 

(Eq. 2) terms are fit to the ParFlow.CLM cycles 2 to 6: 18 

)exp(bxay               (1) 19 

)exp()exp( dxcbxay            (2) 20 

where y is the percentage change in DTWT, x is the number of simulation years, and a, b, c, d 21 

are the fitting parameters. Coefficient of determination and root mean square error are used as 22 

goodness of fit measures. This means that a minimum of four data points (i.e. 6 cycles of 23 

ParFlow.CLM simulations) are required to fit a double exponential function to percentage 24 

change values. Therefore, six years of spin-up simulations were performed using forcing data 25 

for the year 2003. Further, the performances of global versus local scales DTWT functions are 26 

evaluated. In this analysis, a domain based global DTWT function is based on percent 27 

changes in mean annual DTWT values from all the grid cells inside the computational 28 

domain, while a catchment based DTWT function is based on the grid cells inside the 29 

catchment boundary.  Local DTWT functions are developed for every grid cell based on 30 

percent changes in mean annual DTWT values at that grid cell.Percent changes in catchment 31 

and domain averaged annual DTWT values, as well as changes in DTWT at every grid cell, 32 
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were used to fit exponential functions at the global and local scales respectively, using single 1 

(Eq. 1) or double exponential (Eq. 2) terms:  2 

)exp(bxay                         (1) 3 

)exp()exp( dxcbxay                     (2) 4 

where y is the percentage change in DTWT, x is the number of simulation years, and a, b, c, d are the 5 

fitting parameters.  6 

 7 

These The empirical DTWT functions calculated above estimate percentage changes in mean 8 

annual DTWT as a function of simulation years. Depending on the number of ParFlow.CLM 9 

cycles used to fit the DTWT functions (i.e. 2 to 6, cycles), To predict spatially distributed 10 

mean annual DTWT estimate from a global DTWT function, the mean annual DTWT from 11 

the last final cycle of the ParFlow.CLM spin-up simulation for every grid cell was is used as 12 

the initial value to successively estimate DTWT distributions as a function of simulation year. 13 

These DTWT distributions are based on the predicted percent change values from the global 14 

DTWT function. Sensitivity of DTWT functions to the number of ParFlow.CLM cycles was 15 

also examined by developing a number of DTWT functions using data from 2 to 6 cycles of 16 

ParFlow.CLM. To assess the performance of these DTWT functions, estimated mean annual 17 

DTWT from the DTWT functions were compared against mean annual DTWT from the 18 

ParFlow.CLM model of Ajami et al. (2014) that had been spun-up for 20 years. . Root mean 19 

square difference (RMSD), mean absolute error (MAE) and bias were computed to find the 20 

best performing DTWT function. These objective functions are calculated as follows:  21 

 22 
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where N is the number of grid cells in the domain, B is the mean annual DTWT from the 1 

baseline simulation of Ajami et al. (2014) for every grid cell, and M is the estimated mean 2 

annual DTWT at a grid cell obtained from a DTWT function.  3 

 4 

In the state updating stage, the best performing empirical DTWT function (a double 5 

exponential DTWT function as discussed in section 3.1) was used to estimate percentage 6 

changes in DTWT as a function of simulation years, until percentage changes reached the 7 

0.01% threshold. Using the percent change values and mean annual DTWT distribution from 8 

the sixth cycle of the ParFlow.CLM spin-up simulation, spatially distributed DTWT was 9 

predicted for the entire computational domain.  10 

 11 

In the second stage of model simulations, the ParFlow.CLM was re-initialized using newly 12 

estimated DTWT values from a double exponential DTWT function, and spin-up simulations 13 

were continued until equilibration based on subsurface storage spin-up criteria. The second 14 

stage of spin-up simulations was necessary to ensure equilibrium after re-initialization, 15 

especially for the unsaturated zone storage. 16 

 17 

One issue with the re-initialization of DTWT using the DTWT function is that the distribution 18 

of soil moisture above the water table cannot be estimated. Here, we considered two 19 

approaches to define pressure head distribution above the water table: (1) implementing the 20 

commonly used hydrostatic equilibrium assumption, where pressure head at the water table 21 

was linearly decreased as a function of elevation head towards the land surface; and (2) 22 

adjusting the pressure head distribution of the unsaturated zone from the last day of the sixth 23 

cycle of ParFlow.CLM spin-up simulations based on new DTWT values from the DTWT 24 

function. In the adjusted pressure head approach, the hydrostatic equilibrium assumption is 25 

used in regions between the new DTWT and the initial DTWT. The ParFlow.CLM pressure 26 

head distribution is adjusted to begin at the new pressure head from the initial WT such that 27 

the vertical profile is maintained (Fig. 3). This adjustment may represent a lack of consistency 28 

in the proposed approach as the DTWT function estimates mean annual DTWT, while 29 

pressure head adjustments in the unsaturated zone are taken from the last day of the sixth 30 

cycle of ParFlow.CLM. While it is possible to use DTWT values from the last day of 31 

simulations to develop a DTWT function, estimated DTWT values from such a function 32 

exhibit larger variability and result in a larger bias.  33 
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For the Skjern River sub-catchment, percent bias  between the estimated DTWT values from 1 

the DTWT functions and the baseline simulation of Ajami et al. (2014) were -4% and -1.6% 2 

for the DTWT functions based on the last day and mean annual DTWT values respectively. 3 

   4 

2.3. Evaluation Evaluating of the hybrid spin-up approach 5 

The Pperformance of the hybrid spin-up approach in reducing the spin-up timeperiod  is 6 

evaluated by developing a ParFlow.CLM model for the Baldry sub-catchment. The baseline 7 

spin-up simulations were performed using spatially uniform, hourly forcing data for the year 8 

2004 and an arbitrary initial state (DTWT of 2 m below the land surface). The equilibrium 9 

condition was achieved when percent changes in catchment averaged monthly groundwater 10 

storages were below 0.1% threshold level. Similar to the Skjern River sub-catchment, 11 

sensitivity of empirical DTWT functions to the number of ParFlow.CLM cycles (i.e. cycles 2 12 

to 6) are explored and assessed against the baseline spin-up simulations of Baldry sub-13 

catchment. In the next step, the hybrid spin-up approach outlined in section 2.2 was 14 

implemented to re-initialize the ParFlow.CLM using a domain based double exponential 15 

DTWT function to estimate spatially distributed DTWT and the adjusted pressure head 16 

distribution approach above the water table. Recursive simulations after re-initialization 17 

continued until equilibrium condition was achieved. 18 

 19 

3 Results 20 

3.1  Performance of empirical DTWT functions in predicting DTWT in the 21 

Skjern River sub-catchment  22 

Optimum parameter values for single and double exponential DTWT functions were obtained 23 

using nonlinear least squares method. Performance of the single and double exponential 24 

DTWT functions in predicting 14 years of DTWT were compared against ParFlow.CLM 25 

baseline spin-up simulations (years 7 through 20) of Ajami et al. (2014) to find the optimum 26 

empirical DTWT function for the Skjern River sub-catchment. Post-simulation analysis 27 

indicates that global DTWT functions based on domain or catchment averaged percentage 28 

change values are better predictors of DTWT response compared to local DTWT functions 29 
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developed for every grid cell. Instability of local DTWT functions occurs in grid cells where 1 

percent changes in DTWT oscillate between positive and negative values  through initial spin-2 

up simulations. Spatial distribution of these grid cells are shown in Fig S1.  3 

 4 

Calculated root mean square difference (RMSD) and percent bias relative to the baseline spin-5 

up simulations indicate that global double exponential functions using ParFlow.CLM spin-up 6 

simulations 2 to 6 provide a better fit compared to various single exponential functions 7 

obtained from different spin-up simulation years (e.g. 2 to 3, 2 to 4, etc.). Because the first six 8 

cycles of ParFlow.CLM simulations were the same between the baseline spin-up simulations 9 

and DTWT distributions from DTWT functions presented in Fig 4, comparisons were made 10 

with simulations 7 to 20 of the baseline spin-up approach of Ajami et al. (2014).  11 

 12 

Only for the mean absolute error (MAE) do single exponential functions based on simulations 13 

2 to 6 perform better than the double exponential functions (Fig. 3b). Because the first six 14 

cycles of ParFlow.CLM simulations were the same between the baseline spin-up simulations 15 

and DTWT distributions presented in Fig 3, comparisons were made with simulations 7 to 20 16 

of the baseline spin-up approach of Ajami et al. (2014). As can be seen from Fig. 34a, the 17 

mean annual DTWT over the domain derived from the single exponential functions (fitted to 18 

percentage change data from simulations 2 to 6) under-predict the baseline spin-up 19 

simulations, due to their consistent small underestimates in comparison to double exponential 20 

functions fitted to the same data points.  Only for the mean absolute error (MAE) calculated at 21 

each pixel do single exponential functions based on simulations 2 to 6 perform slightly better 22 

and produce smaller errors on average than the double exponential functions (Fig. 3b4b). It 23 

should be noted that the percent bias in mean annual DTWT for simulation cycle 20 is -1.6% 24 

for the domain based double exponential function and -6.2% for the single exponential 25 

function, with both functions derived from simulation cycles 2 to 6. Therefore, single 26 

exponential functions are not further examined in re-initializations of the DTWT. In terms of 27 

mean DTWT across the domain (Fig. 3a4a), the catchment delineated double exponential 28 

DTWT function provides a better prediction and the smallest mean bias when compared to the 29 

function based on the entire model domain. However, Figure 3b 4b indicates that the mean 30 

absolute error values are slightly smaller for the domain based double exponential function.  31 

The higher MAE of the catchment based double exponential function is a result of slightly 32 

more regions with over and underestimated DTWT values that contribute to a good overall 33 
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mean DTWT (Fig. 4a), but contain more errors spatially compared to the domain based 1 

double exponential function. 2 

 3 

To investigate this result further, three empirical semi-variograms were generated. As the 4 

impact of an east-west spatial trend in the mean annual DTWT values was evident in the 5 

semi-variograms, the trend should first beby removed ing the trend from the mean annual 6 

DTWT values. using a polynomial function and calculating the semi-variance of the residuals 7 

as a function of distance. To remove the trend, a plane was fitted to the observed mean annual 8 

DTWT values, with an equation of the form:  9 

z = ax + by + c                                                                                                                (6) 10 

where a, b and c are fitted coefficients, x and y are the coordinates of every grid cell, and z is 11 

the mean annual DTWT. Residuals are computed by subtracting the estimated mean annual 12 

DTWT from Equation 6 from the observed mean annual DTWT values. Finally, the semi-13 

variogram of the residuals as a function of distance is calculated. The semi-variance is a 14 

measure for of spatial variance of a variable and presents average (dis-)similarity between 15 

data pairs at a given distance. Investigating the empirical semi-variograms of mean annual 16 

DTWT values (Fig. 3c4c) indicates that the domain based double DTWT function is a better 17 

predictor of mean annual DTWT, because the spatial structure of DTWT is sufficiently 18 

reproduced by the domain based function, and the catchment based function had has a higher 19 

variance compared to the baseline simulations. Therefore, it is recommended to use the 20 

domain based DTWT function, as it contains data from high elevation regions on the eastern 21 

side of the domain that contribute to topographicallyy driven flow and equilibrates slower 22 

than in other regions (Ajami et al., 2014). In summary, double exponential functions are 23 

chosen as they have less bias compared to single exponential functions and there is very little 24 

difference in terms of MAE amongst predictions. The choice is further supported by the 25 

RMSD and semi-variograms.  26 

 27 

  28 
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3.2 Impact of unsaturated zone re-initialization on ParFlow.CLM spin-up  1 

Impacts of re-initializing the unsaturated zone using the hydrostatic equilibrium versus 2 

adjusted vertical pressure distribution on the spin-up time period were also explored using the 3 

ParFlow.CLM simulations of the Skjern River sub-catchment. As can be seen from Fig. 43, 4 

the difference between the two initialization methods is more pronounced in areas of deep 5 

water table, where hydrostatic pressure head distribution results in a drier unsaturated zone 6 

compared to adjusted pressure head distribution. Results indicate that after re-initialization, 7 

the system equilibrated after 6 additional years of spin-up simulation when using the 8 

hydrostatic equilibrium option. With the adjusted pressure head distribution option, only 4 9 

additional years of spin-up simulation were required. Therefore, depending on the pressure 10 

head distribution above the water table, either 10 or 12 years of ParFlow.CLM simulations 11 

were sufficient to ensure subsurface storage equilibrium, reducing the spin-up time by 40% or 12 

50%, compared to the baseline spin-up approach.  13 

 14 

The Improved improved performance of the adjusted pressure distribution is related to the 15 

fact that information about soil moisture distribution from stage 1 of spin-up simulations is 16 

preserved in this approach. In both initialization approaches, the groundwater storage was 17 

equilibrated at the 0.01% threshold level, based on changes in mean monthly values. In 18 

comparison to the baseline spin-up approach, both groundwater and unsaturated zone storages 19 

of the equilibrium year are closely reproduced by the adjusted pressure head distribution 20 

option (Fig. 5). While in both re-initializations, DTWT and subsequently groundwater storage 21 

volume were the same at the start of the simulations, unsaturated zone storage of the 22 

hydrostatic equilibrium option was drier than the adjusted pressure head option. Additional 23 

ParFlow.CLM simulations after re-initialization ensured equilibrium of groundwater storage. 24 

As can be seen from Fig. 6a, hydrostatic re-initialization results in a deeper WT at equilibrium 25 

(simulation 12) relative to the baseline equilibrium year (simulation 20). For the hydrostatic 26 

equilibrium Higher DTWT values of the hydrostatic option at equilibrium correspond to 27 

smaller groundwater storage and subsequently larger , increases in unsaturated zone storage 28 

compared to the baseline spin-up (Fig. 5). It should be noted that in ParFlow.CLM, 29 

groundwater and unsaturated zone storages are not explicitly determined by fixed size 30 

compartments and the extent of an unsaturated zone is determined by the location of the water 31 

table. Percent changes in mean annual unsaturated zone storage between the last two years of 32 
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recursive simulations were 0.1% for the hydrostatic equilibrium and 0.3% for the adjusted 1 

pressure head re-initializations, indicating  resulted in unsaturated zone equilibrium at 2 

different threshold levels.  3 

 4 

Changes in annual water balance after re-initialization were also compared against the 5 

baseline spin-up approach of Ajami et al. (2014). While changes in annual evapotranspiration 6 

were approximately 1 mm between the two spin-up approaches (annual baseline 7 

evapotranspiration of 447.3 mm), percent bias in annual discharge against observations 8 

decreased by about 2% compared to the baseline approach (Table 1). In the hybrid approach, 9 

changes in groundwater storage were positive, because after re-initialization, DTWT 10 

decreased as simulations proceed and the system reached equilibrium (Fig. 5). At equilibrium, 11 

dDifferences in simulated DTWT from the last day of the ParFlow.CLM simulations after re-12 

initializations (hydrostatic equilibrium and adjusted pressure head distribution) and the 13 

baseline spin-up approach varied by up to 2 m inside the catchment boundary (Fig. 6), 14 

although most areas were within 0.5m. Differences were more pronounced in areas of higher 15 

elevation in the catchment. Figure 6 shows that the hydrostatic equilibrium pressure head 16 

adjustment leads to a clear bias with consistent over estimation of the DTWT, while the 17 

adjusted vertical pressure distribution produces a distribution of pressure head errors centred 18 

on the expected value.  19 

 20 

3.3 Evaluation of the hybrid spin-up approach over the Baldry sub-catchment   21 

Similar to the Skjern River sub-catchment, percent changes in monthly groundwater storages 22 

were used to assess the equilibrium condition. However, for the Baldry sub-catchment, a 23 

threshold level of 0.1% was chosen as the convergence criterion. Results indicated that 28 24 

years of recursive simulations were required until the model equilibrated based on monthly 25 

groundwater storage changes. For reference, 28 years of baseline spin-up simulations for 26 

Baldry required 37000 service units, which is equivalent to 24 days of computation using 64 27 

processors of a high performance computing cluster.  28 

 29 
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To obtain optimum parameter values for single and double exponential DTWT functions 1 

nonlinear least squares method is used. Similar to the Skjern River sub-catchment, a double 2 

exponential DTWT function using simulations 2 to 6 resulted in WT distributions with the 3 

smallest RMSD and percent bias, relative to the baseline spin-up simulations. For Baldry, a 4 

domain based double exponential function had the closest mean over the domain (Fig. 5 

S1aS2a) and the smallest mean absolute error relative to the baseline simulation (Fig. 6 

S1bS2b). However, DTWT semi-variograms showed higher variances in the domain based 7 

double exponential function relative to the catchment based function (Fig. S2c). Despite the 8 

slight differences in the predictive power of DTWT functions between the two catchments, a 9 

double exponential function seems to perform best based on most of the criteria.  10 

 11 

To re-initialize the ParFlow.CLM model of the Baldry sub-catchment, the new DTWT 12 

distribution obtained from the domain based double exponential function was used. After re-13 

initialization with the adjusted pressure head distribution, only 8 additional simulation yearss 14 

were required until percent changes in monthly groundwater storages reached below the 0.1% 15 

level. This result indicates a 50% reduction in the spin-up period time of a semi-arid 16 

catchment when the hybrid spin-up approach is used. 17 

 18 

Comparison of WT distributions from the last day of equilibrium simulations (baseline 19 

simulation and the hybrid approach) illustrated differences of up to 1 m (Fig. 7). However, for 20 

the majority of cells inside the catchment, differences were up to less than 0.5 m. Similar to 21 

the Skjern River sub-catchment, the largest differences in WT distribution were observed in 22 

higher elevation areas in the southern part of the catchment. Lower WT levels in the hybrid 23 

spin-up approach resulted in larger unsaturated zone storage compared to the baseline spin-up 24 

(Fig. S2S3). In this semi-arid catchment, no stream flow was generated at the catchment’s 25 

outlet for the equilibrium year. The difference in annual evapotranspiration was only 0.2 mm 26 

between the two equilibrium simulations (Table 2).  27 

 28 

4  Summary 29 

We present a hybrid approach for reducing the number period of spin-up simulations 30 

ofrequired to reach equilibrium with the integrated hydrological model ParFlow.CLM. In the 31 
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case of the Skjern River and the Baldry sub-catchments, the simulation period  time year 1 

decreased by 50% compared to the baseline spin-up approach when an adjusted pressure head 2 

distribution was specified above the water table. Although, ParFlow.CLM was used as a 3 

modelling platform, the developed methodology is applicable to other coupled or /integrated 4 

hydrologic models.  5 

 6 

Therefore, aA general approach to spin-up should include the following steps: (1) perform six 7 

years of hydrologic model simulations with DTWT initialized via an expert 8 

knowledge/informed guess (here 2m and 3m below the land surface for the Baldry and Skjern 9 

River sub-catchments respectively); (2) calculate a global double exponential DTWT function 10 

using domain wide data and estimate the new DTWT for the desired equilibration level; (3) 11 

implement the adjusted pressure head approach for the unsaturated zone initialization; and (4) 12 

continue spin-up simulations until desired equilibration level is reached. Beyond being used 13 

to define initial states of the model, this process has the potential to assist in parameter 14 

calibration. Previous efforts in calibrating coupled or /integrated hydrologic models required a 15 

spin-up process after every parameter update (Stisen et al., 2011; Weill et al., 2013). 16 

Development of a computationally efficient spin-up the hybrid spin-up approach could be one 17 

step towards is required for  will enableing this type of systematic calibration of integrated or 18 

/coupled hydrologic models.  19 

 20 

However, further refinement is required to facilitate automatic calibration approaches. 21 

Additional experiments across multiple catchments with different climate and subsurface 22 

heterogeneity and DTWT initializations are also required to assess the efficiency of the 23 

proposed approach in reducing number of yearsthe simulation period time to equilibration in a 24 

variety of settings. In addition, the role of topography and spatially distributed forcing should 25 

be further examined. Reducing the required spin-up time years of coupled or integrated/ 26 

coupled hydrologic models will expand their application for hydrological investigations and 27 

facilitate the use of these models to investigate both real world and theoretical system 28 

behavior. 29 

 30 

 31 

 32 

 33 
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Table 1. Skjern River sub-catchment annual water balance for the equilibrium year after the 1 

baseline spin-up approach and the hybrid approach using the hydrostatic equilibrium and 2 

adjusted pressure head distribution options above the water table. Annual precipitation is 3 

801.6 mm.  4 

Simulation Name 

Number of  

simulations 

%bias1 

 Q 
ET   
[mm/y] 

 dS2 
GW3 

[mm] 

dS UZ4  

[mm] 

ParFlow baseline 
simulation 20 20.3 447.3 -3.3 -0.2 

 

ParFlow+DTWT 
function (Hydrostatic 
equilibrium) 12 18.1 446.8 3.3 -0.7 

 

ParFlow+DTWT 
function (Adjusted 
Pressure) 10 18.5 446.3 3 -1.6 

1Percent bias is based on observed discharge at the gauge shown in Fig. 2;.  5 

2changes in storage; 3groundwater storage; 4unsaturated zone storage 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 2. Baldry sub-catchment annual water balance for the equilibrium year after the 1 

baseline spin-up approach and the hybrid approach with the adjusted pressure head 2 

distribution option above the water table. Annual precipitation is 674.8 mm.  3 

Simulation Name 

Number of  

Simulations 
ET   
[mm/y] 

 dS1 
GW2 

[mm] 

dS UZ3  

[mm] 

ParFlow baseline 
simulation 28 519.2 -12 4.4 

 

ParFlow+DTWT function 
(Adjusted Pressure) 14 519 -0.2 1.0 

1changes in storage; 2groundwater storage; 3unsaturated zone storage 4 

 5 

6 
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 1 

Figure 1. The hybrid spin-up approach consists of three main steps: (1) initial ParFlow.CLM 2 

spin-up simulations based an arbitrary DTWT distribution, (2) state updating step by 3 

developing a DTWT function based on percent changes in mean annual DTWT in initial spin-4 

up simulations, and (3) stage 2 of ParFlow.CLM spin-up simulations until desired 5 

equilibration level is reached. 6 

7 
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 1 

 2 

Figure 2. Sub-catchment of the Skjern river basin located in western Denmark (reproduced 3 

from Ajami et al. 2014) (left), and Baldry sub-catchment in Australia (right). Modelling 4 

domains  are extended beyond the catchment boundary to remove the impact of boundary 5 

conditions on catchment fluxes.  6 
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 14 

 15 
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 17 

 18 
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 1 

 2 

Figure 3. Adjusted pressure head distribution above the estimated DTWT from the DTWT 3 

function. Pressure head distribution of the last day of ParFlow.CLM spin-up simulation 6 was 4 

adjusted at every grid cell based on the position of DTWT estimated from the DTWT 5 

function. In this approach, the hydrostatic equilibrium assumption is used in regions between 6 

the new DTWT and the initial DTWT. The ParFlow.CLM pressure head distribution is 7 

adjusted to begin at the new pressure head from the initial WT such that the vertical profile is 8 

maintained. Hydrostatic pressure distribution is shown as a reference for the new DTWT, 9 

which is lower than the WT in simulation 6. 10 

11 
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Figure 34. a) Comparison between the simulated mean annual DTWT obtained from the 3 

baseline spin-up approach of ParFlow.CLM of the Skjern River sub-catchment and empirical 4 

DTWT functions. The single exponential model was formulated using the domain and 5 

catchment averaged data from spin-up simulations 2 to 6; b) estimated mean absolute error 6 

based on simulated DTWT from the baseline spin-up together with both catchment and 7 

domain averaged single and double exponential functions; and c) experimental semi-8 

variograms of mean annual DTWT from ParFlow.CLM equilibrium year (after 20 years of 9 

simulations) and DTWT from catchment and domain averaged double exponential functions, 10 

showing that catchment based semi-variances are higher than the baseline simulation. Exp1 11 

and Exp2 refer to single and double exponential functions respectively. 12 
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Figure 5. Comparison of a) unsaturated and b) groundwater storages of ParFlow.CLM 2 

equilibrium year using the hybrid and baseline spin-up approaches (Ajami et al., 2014). The 3 

equilibrium year corresponds to simulation cycles of 10, 12 and 20 for the adjusted pressure 4 

head, hydrostatic equilibrium, and baseline simulations, respectively. The dynamics of 5 

groundwater and unsaturated zone storages are closely reproduced by the adjusted pressure 6 

head distribution approach relative to the baseline spin-up approach for the Skjern River sub-7 

catchment. 8 

9 
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Figure 6. Differences in equilibrium DTWT between ParFlow.CLM simulations after re-3 

initializations and ParFlow.CLM after 20 years of baseline spin-up simulations in (m), where 4 

a) is based on hydrostatic pressure distribution above the water table for the initial condition, 5 

while b) is based on adjusted pressure head distribution above the water table for the Skjern 6 

River sub-catchment. White regions correspond to grid cells where the differences in 7 

equilibrium DTWT are less than 0.5. 8 

9 
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Figure 7. Differences in equilibrium DTWT of Baldry ParFlow.CLM simulations after re-2 

initialization with the adjusted pressure head distribution above the water table and 3 

ParFlow.CLM after 28 years of baseline spin-up simulations in (m). The contours of DTWT 4 

overestimation are along the direction of flow lines from high elevation areas toward the 5 

catchment outlet. 6 
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Fig. S1. Delineating four regions in the modelling domain according to percent changes in 3 

mean annual DTWT values from six cycles of ParFlow.CLM simulations. Red region 4 

represents grid cells where percent changes in DTWT values oscillate between negative and 5 

positive values, while the green region corresponds to grid cells with stable decline in DTWT. 6 

In grey regions, percent changes in DTWT have reached zero and black region corresponds to 7 

the channel network, where DTWT is zero.   8 
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Fig. S2. a) Comparison between the simulated mean annual DTWT obtained from the 2 

baseline spin-up approach of ParFlow.CLM and empirical DTWT functions for the Baldry 3 

sub-catchment. The single exponential model was formulated using the domain and 4 

catchment averaged data from spin-up simulations 2 to 6; b) estimated mean absolute error 5 

based on simulated DTWT from the baseline spin-up together with both catchment and 6 

domain averaged single and double exponential functions; and c) experimental semi-7 

variograms of mean annual DTWT from ParFlow.CLM equilibrium year (after 28 years of 8 

simulations) and DTWT from catchment and domain averaged double exponential functions.  9 

DTWT distributions from the DTWT functions had higher variances relative to the baseline 10 

simulation. Exp1 and Exp2 refer to single and double exponential functions respectively. 11 
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Fig. S3. a) Comparison of unsaturated zone storage dynamics of the equilibrium year 2 

obtained from the hybrid spin-up approach and the baseline spin-up simulations in Baldry 3 

sub-catchment. b) Differences in groundwater storages of the equilibrium year obtained from 4 

the baseline spin-up simulation and the hybrid approach. 5 
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