Articles | Volume 17, issue 10
https://doi.org/10.5194/hess-17-4209-2013
https://doi.org/10.5194/hess-17-4209-2013
Research article
 | 
28 Oct 2013
Research article |  | 28 Oct 2013

Improving uncertainty estimation in urban hydrological modeling by statistically describing bias

D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann

Related authors

Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024,https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
Hydrol. Earth Syst. Sci., 27, 2935–2950, https://doi.org/10.5194/hess-27-2935-2023,https://doi.org/10.5194/hess-27-2935-2023, 2023
Short summary
Improving hydrologic models for predictions and process understanding using neural ODEs
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022,https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
Hydrol. Earth Syst. Sci., 27, 2935–2950, https://doi.org/10.5194/hess-27-2935-2023,https://doi.org/10.5194/hess-27-2935-2023, 2023
Short summary
All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Agnethe Nedergaard Pedersen, Annette Brink-Kjær, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 26, 5879–5898, https://doi.org/10.5194/hess-26-5879-2022,https://doi.org/10.5194/hess-26-5879-2022, 2022
Short summary
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 25, 193–216, https://doi.org/10.5194/hess-25-193-2021,https://doi.org/10.5194/hess-25-193-2021, 2021
Short summary
The potential of historical hydrology in Switzerland
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017,https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 21, 1077–1091, https://doi.org/10.5194/hess-21-1077-2017,https://doi.org/10.5194/hess-21-1077-2017, 2017
Short summary

Cited articles

Aho, A., Kernighan, B., and Weinberger, P.: The AWK programming language, Addison-Wesley Longman Publishing Co., Inc., 1987.
Bareš, V., Stránský, D., Kopecká, J., and Fridrich, J.: Monitoring povodi a stokove sito Města Hostivice – lokalita Sadová [Monitoring a sewer watershed in Hostivice municipality – Sadová district], Tech. rep., Czech Technical University in Prague, 2010 (in Czech).
Bates, B. and Campbell, E.: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937–947, 2001.
Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C., and Tu, J.: A framework for validation of computer models, Technometrics, 49, 138–154, 2007.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Download