Articles | Volume 17, issue 5
https://doi.org/10.5194/hess-17-1765-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-1765-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections
B. Orlowsky
Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstr. 16, 8092 Zurich, Switzerland
S. I. Seneviratne
Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstr. 16, 8092 Zurich, Switzerland
Related authors
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Martin Hirschi, Bas Crezee, Pietro Stradiotti, Wouter Dorigo, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2023-2499, https://doi.org/10.5194/egusphere-2023-2499, 2023
Short summary
Short summary
Based on surface and root-zone soil moisture, we compare the ability of selected long-term reanalysis and merged remote-sensing products to represent major agroecological drought events. While all products capture the investigated droughts, they particularly show differences in the drought magnitudes. Globally, the diverse and regionally contradicting dry-season soil moisture trends of the products is an important factor governing their drought representation and monitoring capability.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023, https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Kathrin Wehrli, Mathias Hauser, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, https://doi.org/10.5194/esd-11-855-2020, 2020
Short summary
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Jakob Zscheischler, Rene Orth, and Sonia I. Seneviratne
Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, https://doi.org/10.5194/bg-14-3309-2017, 2017
Short summary
Short summary
We use newly established methods to compute bivariate return periods of temperature and precipitation and relate those to crop yield variability in Europe. Most often, crop yields are lower when it is hot and dry and higher when it is cold and wet. The variability in crop yields along a specific climate gradient can be captured well by return periods aligned with these gradients. This study provides new possibilities for investigating the relationship between crop yield variability and climate.
Martin Hirschi, Dominik Michel, Irene Lehner, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 21, 1809–1825, https://doi.org/10.5194/hess-21-1809-2017, https://doi.org/10.5194/hess-21-1809-2017, 2017
Short summary
Short summary
We compare lysimeter and eddy covariance (EC) flux measurements of evapotranspiration at a research catchment in Switzerland. The measurements are compared on various timescales, and with respect to a 40-year long-term lysimeter time series. Overall, the lysimeter and EC measurements agree well, especially on the annual timescale. Furthermore, we identify that lack of reliable EC data during/after rainfall events significantly contributes to an underestimation of EC evapotranspiration.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
S. J. Sutanto, B. van den Hurk, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, E. M. Blyth, J. Wenninger, and G. Hoffmann
Hydrol. Earth Syst. Sci., 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-2014, https://doi.org/10.5194/hess-18-2815-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-13191-2013, https://doi.org/10.5194/hessd-10-13191-2013, 2013
Manuscript not accepted for further review
R. Orth and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3895–3911, https://doi.org/10.5194/hess-17-3895-2013, https://doi.org/10.5194/hess-17-3895-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Daytime-only mean data enhance understanding of land–atmosphere coupling
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Uncertainties and their interaction in flood hazard assessment with climate change
Bias-correcting input variables enhances forecasting of reference crop evapotranspiration
Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies
At which timescale does the complementary principle perform best in evaporation estimation?
Uncertainty in nonstationary frequency analysis of South Korea's daily rainfall peak over threshold excesses associated with covariates
Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products
A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context
Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality
Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations
Cross-validating precipitation datasets in the Indus River basin
Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network
Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China
Dual-polarized quantitative precipitation estimation as a function of range
Reconstruction of droughts in India using multiple land-surface models (1951–2015)
Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system
Exploratory studies into seasonal flow forecasting potential for large lakes
Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
Providing a non-deterministic representation of spatial variability of precipitation in the Everest region
Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Characteristics of rainfall events in regional climate model simulations for the Czech Republic
The rainfall erosivity factor in the Czech Republic and its uncertainty
Hierarchy of climate and hydrological uncertainties in transient low-flow projections
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands
Uncertainties in calculating precipitation climatology in East Asia
Measurement and interpolation uncertainties in rainfall maps from cellular communication networks
Characterization of precipitation product errors across the United States using multiplicative triple collocation
Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework
Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties
Multi-objective parameter optimization of common land model using adaptive surrogate modeling
Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data
Evaluation of high-resolution precipitation analyses using a dense station network
Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China
Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region
Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison
Comparison of drought indicators derived from multiple data sets over Africa
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023, https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Short summary
The present study refers to the region of Bologna, where the availability of a 209-year-long daily rainfall series allows us to make a unique assessment of global climate models' reliability and their predicted changes in rainfall and multiyear droughts. Our results suggest carefully considering the impact of uncertainty when designing climate change adaptation policies for droughts. Rigorous use and comprehensive interpretation of the available information are needed to avoid mismanagement.
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023, https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Short summary
Land–atmosphere (L–A) interactions typically focus on daytime processes connecting the land state with the overlying atmospheric boundary layer. However, much prior L–A work used monthly or daily means due to the lack of daytime-only data products. Here we show that monthly smoothing can significantly obscure the L–A coupling signal, and including nighttime information can mute or mask the daytime processes of interest. We propose diagnosing L–A coupling within models or archiving subdaily data.
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022, https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Short summary
Precipitation forecasting has potential uncertainty due to data and model uncertainties. Here, an integrated predictive uncertainty modeling framework is proposed by jointly considering data and model uncertainties through an uncertainty propagation theorem. The results indicate an effective predictive uncertainty estimation for precipitation forecasting, indicating the great potential for uncertainty quantification of numerous predictive applications.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022, https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary
Short summary
The development of high-resolution global precipitation forecasts and the lack of reliable precipitation forecasts over Africa motivates this work to evaluate the precipitation forecasts from the Global Forecast System (GFS) over the Niger river basin in Africa. The GFS forecasts, at a 15 d accumulation timescale, have an acceptable performance; however, the forecasts are highly biased. It is recommended to apply bias correction to GFS forecasts before their application.
Hadush Meresa, Conor Murphy, Rowan Fealy, and Saeed Golian
Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, https://doi.org/10.5194/hess-25-5237-2021, 2021
Short summary
Short summary
The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain employed in assessing local-scale changes. Understanding and quantifying this cascade is essential for developing effective adaptation actions. We find that not only do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be very different on a catchment-by-catchment basis.
Qichun Yang, Quan J. Wang, Kirsti Hakala, and Yating Tang
Hydrol. Earth Syst. Sci., 25, 4773–4788, https://doi.org/10.5194/hess-25-4773-2021, https://doi.org/10.5194/hess-25-4773-2021, 2021
Short summary
Short summary
Forecasts of water losses from land surface to the air are highly valuable for water resource management and planning. In this study, we aim to fill a critical knowledge gap in the forecasting of evaporative water loss. Model experiments across Australia clearly suggest the necessity of correcting errors in input variables for more reliable water loss forecasting. We anticipate that the strategy developed in our work will benefit future water loss forecasting and lead to more skillful forecasts.
Mostafa Tarek, François Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, https://doi.org/10.5194/hess-25-3331-2021, 2021
Short summary
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Okjeong Lee, Jeonghyeon Choi, Jeongeun Won, and Sangdan Kim
Hydrol. Earth Syst. Sci., 24, 5077–5093, https://doi.org/10.5194/hess-24-5077-2020, https://doi.org/10.5194/hess-24-5077-2020, 2020
Short summary
Short summary
The uncertainty of the model interpreting rainfall extremes with temperature is analyzed. The performance of the model focuses on the reliability of the output. It has been found that the selection of temperatures suitable for extreme levels plays an important role in improving model reliability. Based on this, a methodology is proposed to quantify the degree of uncertainty inherent in the change in rainfall extremes due to global warming.
Chao Gao, Martijn J. Booij, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 24, 3251–3269, https://doi.org/10.5194/hess-24-3251-2020, https://doi.org/10.5194/hess-24-3251-2020, 2020
Short summary
Short summary
This paper studies the impact of climate change on high and low flows and quantifies the contribution of uncertainty sources from representative concentration pathways (RCPs), global climate models (GCMs) and internal climate variability in extreme flows. Internal climate variability was reflected in a stochastic rainfall model. The results show the importance of internal climate variability and GCM uncertainty in high flows and GCM and RCP uncertainty in low flows especially for the far future.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Thanh Le and Deg-Hyo Bae
Hydrol. Earth Syst. Sci., 24, 1131–1143, https://doi.org/10.5194/hess-24-1131-2020, https://doi.org/10.5194/hess-24-1131-2020, 2020
Short summary
Short summary
Here we investigate the response of global evaporation to main climate modes, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). Our results indicate that ENSO is an important driver of evaporation for many regions, while the impacts of NAO and IOD are substantial. This study allows us to obtain insight about the predictability of evaporation and, hence, may help to improve the early-warning systems of climate extremes.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, https://doi.org/10.5194/hess-24-427-2020, 2020
Short summary
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Aifeng Lv, Bo Qu, Shaofeng Jia, and Wenbin Zhu
Hydrol. Earth Syst. Sci., 23, 883–896, https://doi.org/10.5194/hess-23-883-2019, https://doi.org/10.5194/hess-23-883-2019, 2019
Short summary
Short summary
ENSO-related changes in daily precipitation regimes are currently ignored by the scientific community. We analyzed the anomalies of daily precipitation and hydrological extremes caused by different phases of ENSO events, as well as the possible driving mechanisms, to reveal the influence of ENSO on China's daily precipitation regimes. Our results provide a valuable tool for daily precipitation prediction and enable the prioritization of adaptation efforts ahead of extreme events in China.
Micheal J. Simpson and Neil I. Fox
Hydrol. Earth Syst. Sci., 22, 3375–3389, https://doi.org/10.5194/hess-22-3375-2018, https://doi.org/10.5194/hess-22-3375-2018, 2018
Short summary
Short summary
Many researchers have expressed that one of the main difficulties in modeling watershed hydrology is that of obtaining continuous, widespread weather input data, especially precipitation. The overarching objective of this study was to provide a comprehensive study of three weather radars as a function of range. We found that radar-estimated precipitation was best at ranges between 100 and 150 km from the radar, with different radar parameters being superior at varying distances from the radar.
Vimal Mishra, Reepal Shah, Syed Azhar, Harsh Shah, Parth Modi, and Rohini Kumar
Hydrol. Earth Syst. Sci., 22, 2269–2284, https://doi.org/10.5194/hess-22-2269-2018, https://doi.org/10.5194/hess-22-2269-2018, 2018
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia
Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, https://doi.org/10.5194/hess-22-1831-2018, 2018
Short summary
Short summary
We investigate the relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1–7). For this purpose, we develop and implement a regional hydrologic ensemble prediction system (RHEPS). Overall analysis shows that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
Kevin Sene, Wlodek Tych, and Keith Beven
Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, https://doi.org/10.5194/hess-22-127-2018, 2018
Short summary
Short summary
The theme of the paper is exploration of the potential for seasonal flow forecasting for large lakes using a range of stochastic transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.
Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Jonathon S. Wright, Chengwei Li, Menglei Han, and Yishan Li
Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, https://doi.org/10.5194/hess-21-5805-2017, 2017
Short summary
Short summary
In this paper, we show that CLDAS has the highest spatial and temporal resolution, and it performs best in terms of precipitation, while it overestimates the shortwave radiation. CMFD also has high resolution and its shortwave radiation data match well with the station data; its annual-mean precipitation is reliable but its monthly precipitation needs improvements. Both GLDAS and CN05.1 over mainland China need to be improved. The results can benefit researchers for forcing data selection.
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Short summary
Meteorological forecasting agencies constantly work on pushing the limit of predictability farther in time. However, some end users need proof that climate model outputs are ready to be implemented operationally. We show that bias correction is crucial for the use of ECMWF System4 forecasts for the studied area and there is a potential for the use of 1-month-ahead forecasts. Beyond this, forecast performance is equivalent to using past climatology series as inputs to the hydrological model.
Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala
Hydrol. Earth Syst. Sci., 21, 4879–4893, https://doi.org/10.5194/hess-21-4879-2017, https://doi.org/10.5194/hess-21-4879-2017, 2017
Short summary
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
Vojtěch Svoboda, Martin Hanel, Petr Máca, and Jan Kyselý
Hydrol. Earth Syst. Sci., 21, 963–980, https://doi.org/10.5194/hess-21-963-2017, https://doi.org/10.5194/hess-21-963-2017, 2017
Short summary
Short summary
The study presents validation of precipitation events as simulated by an ensemble of regional climate models for the Czech Republic. While the number of events per season, seasonal total precipitation due to heavy events and the distribution of rainfall depths are simulated relatively well, event maximum precipitation and event intensity are strongly underestimated. This underestimation cannot be explained by scale mismatch between point observations and area average (climate model simulations).
Martin Hanel, Petr Máca, Petr Bašta, Radek Vlnas, and Pavel Pech
Hydrol. Earth Syst. Sci., 20, 4307–4322, https://doi.org/10.5194/hess-20-4307-2016, https://doi.org/10.5194/hess-20-4307-2016, 2016
Short summary
Short summary
The paper is focused on assessment of the contribution of various sources of uncertainty to the estimated rainfall erosivity factor. It is shown that the rainfall erosivity factor can be estimated with reasonable precision even from records shorter than recommended, provided good spatial coverage and reasonable explanatory variables are available. The research was done as an update of the R factor estimates for the Czech Republic, which were later used for climate change assessment.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016, https://doi.org/10.5194/hess-20-1719-2016, 2016
Vincent Roth and Tatenda Lemann
Hydrol. Earth Syst. Sci., 20, 921–934, https://doi.org/10.5194/hess-20-921-2016, https://doi.org/10.5194/hess-20-921-2016, 2016
Short summary
Short summary
The Soil and Water Assessment Tool (SWAT) suggests using the CFSR global rainfall data for modelling discharge and soil erosion in data-scarce parts of the world. These data are freely available and ready to use for SWAT modelling. However, simulations with the CFSR data in the Ethiopian Highlands were unable to represent the specific regional climates and showed high discrepancies. This article compares SWAT simulations with conventional rainfall data and with CFSR rainfall data.
J. Kim and S. K. Park
Hydrol. Earth Syst. Sci., 20, 651–658, https://doi.org/10.5194/hess-20-651-2016, https://doi.org/10.5194/hess-20-651-2016, 2016
Short summary
Short summary
This study examined the uncertainty in climatological precipitation in East Asia, calculated from five gridded analysis data sets based on in situ rain gauge observations from 1980 to 2007. It is found that the regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or very high elevations. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over such regions in East Asia.
M. F. Rios Gaona, A. Overeem, H. Leijnse, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 3571–3584, https://doi.org/10.5194/hess-19-3571-2015, https://doi.org/10.5194/hess-19-3571-2015, 2015
Short summary
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
M. S. Raleigh, J. D. Lundquist, and M. P. Clark
Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, https://doi.org/10.5194/hess-19-3153-2015, 2015
Short summary
Short summary
A sensitivity analysis is used to examine how error characteristics (type, distributions, and magnitudes) in meteorological forcing data impact outputs from a physics-based snow model in four climates. Bias and error magnitudes were key factors in model sensitivity and precipitation bias often dominated. However, the relative importance of forcings depended somewhat on the selected model output. Forcing uncertainty was comparable to model structural uncertainty as found in other studies.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao
Hydrol. Earth Syst. Sci., 19, 2409–2425, https://doi.org/10.5194/hess-19-2409-2015, https://doi.org/10.5194/hess-19-2409-2015, 2015
S. O. Los
Hydrol. Earth Syst. Sci., 19, 1713–1725, https://doi.org/10.5194/hess-19-1713-2015, https://doi.org/10.5194/hess-19-1713-2015, 2015
Short summary
Short summary
The study evaluates annual precipitation (largely rainfall) amounts for the tropics and subtropics; precipitation was obtained from ground observations, satellite observations and numerical weather forecasting models.
- Annual precipitation amounts from ground and satellite observations were the most realistic.
- Newer weather forecasting models better predicted annual precipitation than older models.
- Weather forecasting models predicted inaccurate precipitation amounts for Africa.
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
C. H. Wu, G. R. Huang, and H. J. Yu
Hydrol. Earth Syst. Sci., 19, 1385–1399, https://doi.org/10.5194/hess-19-1385-2015, https://doi.org/10.5194/hess-19-1385-2015, 2015
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
P. López López, J. S. Verkade, A. H. Weerts, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, https://doi.org/10.5194/hess-18-3411-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
Cited articles
Adler, R., Huffman, G., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Barriopedro, D., Gouveia, C. M., Trigo, R. M., and Wang, L.: The 2009/10 Drought in China: Possible Causes and Impacts on Vegetation, J. Hydrometeorol., 13, 1251–1267, https://doi.org/10.1175/JHM-D-11-074.1, 2012.
Burke, E. J. and Brown, S. J.: Evaluating Uncertainties in the Projection of Future Drought, J. Hydrometeorol., 9, 292–299, https://doi.org/10.1175/2007JHM929.1, 2008.
Dai, A.: Drought under global warming: a review, Wiley Interdisciplinary Reviews: Climate Change, 2, 1757–7799, https://doi.org/10.1002/wcc.81, 2011.
Dai, A.: Increasing drought under global warming in observations and models, Nature Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dirmeyer, P. A., Schlosser, C. A., and Brubaker, K. L.: Precipitation, recycling and land memory: An integrated analysis, J. Hydrometeorol., 10, 278–288, 2009.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Bloh, W. V., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-Carbon Cycle Feedback Analysis: Results from the CMIP Model Intercomparison, J. Climate, 19, 3337–3353, 2006.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictionsm, B. Am. Meteorol. Soc., 90, 1095–1107, 2009.
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087, 2012.
Heim, R.: A review of twentieth-century drought indices used in the United States, B. Am. Meteorol. Soc., 83, 1149–1166, 2002.
Held, I. M., Delworth, T. L., Lu, J., Findell, K. L., and Knutson, T. R.: Simulation of Sahel drought in the 20th and 21st centuries, P. Natl. Acad. Sci., 102, 17891–17896, https://doi.org/10.1073/pnas.0509057102, 2005.
Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O. B., Formayer, H., Orlowsky, B., and Stepanek, P.: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe, Nat. Geosci., 4, 17–21, https://doi.org/10.1038/ngeo1032, 2011.
Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., and Pegion, P.: On the increased frequency of Mediterranean drought, J. Climate, 25, 2146–2161, 2012{a}.
Hoerling, M., Kumar, A., Dole, R., Nielsen-Gammon, J. W., Eischeid, J., Perlwitz, J., Quan, X.-W., Zhang, T., Pegion, P., and Chen, M.: Anatomy of an Extreme Event, J. Climate, online first, https://doi.org/10.1175/JCLI-D-12-00270.1, 2012{b}.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012.
Lenton, T., Held, H., Kriegler, E., Hall, J., Lucht, W., Rahmstorf, S., and Schellnhuber, H.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci., 105, 1786–1793, 2008.
Lewis, S., Brando, P., Phillips, O., van der Heijden, G., and Nepstad, D.: The 2010 Amazon Drought, Science, 331, 554–554, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W., McCabe, M. F., Evans, J., and van Dijk, A.: Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280–297, 2012.
Lloyd-Hughes, B. and Saunders, M.: A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592, 2002.
Lyon, B. and DeWitt, D. G.: A recent and abrupt decline in the East African long rains, Geophys. Res. Lett., 39, L02702, https://doi.org/10.1029/2011GL050337, 2012.
Marengo, J., Nobre, C., Tomasella, J., Oyama, M., Sampaio de Oliveira, G., de Oliveira, R., Camargo, H., Alves, L., and Brown, I.: The drought of Amazonia in 2005, J. Climate, 21, 495–516, 2008.
McGrath, G. S., Sadler, R., Fleming, K., Tregoning, P., Hinz, C., and Veneklaas, E. J.: Tropical cyclones and the ecohydrology of Australia's recent continental-scale drought, Geophys. Res. Lett., 39, L03404, https://doi.org/10.1029/2011GL050263, 2012.
McKee, T. B., Oeskin, N. J. D., and Kleist, J. K.: The relationship of drought frequency and duration to time scales, in: 8th Conference on applied climatology, 179–184, American Meteorological Society, Anaheim, Canada, 1993.
Mitchell, T. and Jones, P.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, 2005.
Monfreda, C., Ramankutty, N., and Foley, J.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Glob. Biogeochem. Cy., 22, 1–19, 2008.
Monteith, J.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, 2010.
Mueller, B. and Seneviratne, S.: Hot days induced by precipitation deficits at the global scale, P. Natl. Acad. Sci., 109, 12398–12403, 2012.
Orlowsky, B. and Seneviratne, S. I.: Global changes in extreme events: Regional and seasonal dimension, Climatic Change, 110, 669–696, 2012.
Orth, R. and Seneviratne, S.: Analysis of soil moisture memory from observations in Europe, J. Geophys. Res., 117, D15115, https://doi.org/10.1029/2011JD017366, 2012.
Palmer, W. C.: Meteorological drought, US Department of Commerce, Weather Bureau Washington, DC, USA, 1965.
Peterson, T., Stott, P., and Herring, S.: Explaining extreme events of 2011 from a climate perspective, B. Am. Meteorol. Soc., 93, 1041–1067, 2012.
Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., and Cramer, W.: Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters, Glob. Biogeochem. Cy., 16, 2476–2495, https://doi.org/10.1111/j.1365-2486.2009.02157.x, 2010.
Seneviratne, S. I.: Climate science: Historical drought trends revisited, Nature, 491, 338–339, https://doi.org/10.1038/491338a, 2012.
Seneviratne, S. I., Corti, T., Davin, E. L., Jaeger, E. B., Hirschi, M., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, 2010.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), edited by: Field, C. B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., 109–230, Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012.
Sheffield, J. and Wood, E.: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations, Clim. Dynam., 31, 79–105, https://doi.org/10.1007/s00382-007-0340-z, 2008{a}.
Sheffield, J. and Wood, E. F.: Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950–2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle, J. Climate, 21, 432–458, https://doi.org/10.1175/2007JCLI1822.1, 2008{b}.
Sheffield, J. and Wood, E. F.: Drought: past problems and future scenarios., Earthscan Publications Ltd, 2011.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global drought over the past 60 years, Nature, 491, 435–438, https://doi.org/10.1038/nature11575, 2012.
Shongwe, M., van Oldenborgh, G., van den Hurk, B., and van Aalst, M.: Projected changes in mean and extreme precipitation in Africa under global warming, Part II: East Africa, J. Climate, 24, 3718–3733, https://doi.org/10.1175/2010JCLI2883.1, 2011.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.: Climate extreme indices in the CMIP5 multi-model ensemble. Part 1: Model evaluation in the present climate, J. Geophys. Res., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203, 2013a.
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.: Climate extreme indices in the CMIP5 multi-model ensemble. Part 2: Future climate projections, J. Geophys. Res., 118, 2473–2493, https://doi.org/10.1002/jgrd.50188, 2013b.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Sun, C. and Yang, S.: Persistent severe drought in southern China during winter and spring 2011: Large-scale circulation patterns and possible impacting factors, J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500, 2012.
Taylor, I. H., Burke, E., McColl, L., Falloon, P., Harris, G. R., and McNeall, D.: Contributions to uncertainty in projections of future drought under climate change scenarios, Hydrol. Earth Syst. Sci. Discuss., 9, 12613–12653, https://doi.org/10.5194/hessd-9-12613-2012, 2012.
Taylor, K. E., Balaji, V., Hankin, S., Juckes, M., Lawrence, B., and Pascoe, S.: CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies, PCMDI, available at: http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf (last access: March 2013), version 1.2, 2011.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A.: Going to the extremes – An intercomparison of model-simulated historical and future changes in extreme events, Climatic Change, 79, 185–211, 2006.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55–94, 1948.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, 2011.
Wang, G.: Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment, Clim. Dynam., 25, 739–753, https://doi.org/10.1007/s00382-005-0057-9, 2005.
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer drought severity index, J. Climate, 17, 2335–2351, 2004.
Wilby, R. L.: When and where might climate change be detectable in UK river flows?, Geophys. Res. Lett., 33, L19407, https://doi.org/10.1029/2006GL027552, 2006.
Xie, P. and Arkin, P.: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Zhang, X., Zwiers, F., Hegerl, G., Lambert, F., Gillett, N., Solomon, S., Stott, P., and Nozawa, T.: Detection of human influence on twentieth-century precipitation trends, Nature, 448, 461–465, 2007.