Articles | Volume 14, issue 2
https://doi.org/10.5194/hess-14-351-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-14-351-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A contribution to understanding the turbidity behaviour in an Amazon floodplain
E. Alcântara
Brazilian Institute for Space Research, Remote Sensing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
E. Novo
Brazilian Institute for Space Research, Remote Sensing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
J. Stech
Brazilian Institute for Space Research, Remote Sensing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
J. Lorenzzetti
Brazilian Institute for Space Research, Remote Sensing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
C. Barbosa
Brazilian Institute for Space Research, Image Processing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
A. Assireu
Brazilian Institute for Space Research, Remote Sensing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
A. Souza
Brazilian Institute for Space Research, Image Processing Division, P.O. Box 12227-010, São José dos Campos, SP, Brazil
ETEP Faculdades, P.O. Box 12242-800, São José dos Campos, SP, Brazil
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Soil moisture: variable in space but redundant in time
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Surface water acidification and critical loads: exploring the F-factor
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437, https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Short summary
We use a 3-year timeseries of tracer data in streamflow and soils to illustrate how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, waters in deep subsurface layers are even older, thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. Petrone and F. Preti
Hydrol. Earth Syst. Sci., 14, 239–250, https://doi.org/10.5194/hess-14-239-2010, https://doi.org/10.5194/hess-14-239-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
L. Rapp and K. Bishop
Hydrol. Earth Syst. Sci., 13, 2191–2201, https://doi.org/10.5194/hess-13-2191-2009, https://doi.org/10.5194/hess-13-2191-2009, 2009
Cited articles
Alcântara, E. H.: Analysis of turbidity in Curuai floodplain through the integration of telemetric and MODIS/Terra image data (MSc. Dissertation), INPE: São José dos Campos, Brazil, 220 pp., 2006 (in Portuguese).
Alcântara, E. H., Stech, J. L., Novo, E. M. L. M., Shimabukuro, Y. E., and Barbosa, C. C. F.: Turbidity in the Amazon floodplain assessed through a spatial regression model applied to fraction images derived from MODIS/Terra. IEEE Trans. Geo. Rem. Sens. 46, 2895–2905, 2008.
Alcântara, E. H., Barbosa, C. C. F., Stech, J. L., Novo, E. M. L. M., and Shimabukuro, Y. E.: Improving the spectral unmixing algorithm to map water turbidity distributions. Environ. Modell. Softw., 24, 1051–1061, 2009.
Barbosa, C. C. F.: Sensoriamento remoto da dinâmica de circulação da água do sistema planície de Curuai/ Rio Amazonas (PhD. Thesis), INPE: São José dos Campos, Brazil, 255 pp., 2005.
Barroux, G.: Bio-geochemical study of a lake system from the Amazonian floodplain: the case of "Lago Grande de Curuaí", Pará-Brazil (PhD Thesis), UPS: Toulouse, France , 304 pp., 2006 (in French).
Bellehumeur, C., Marcotte, D., and Legendre, P.: Estimation of regionalized phenomena by geostatistical methods: lake acidity on the Canadian Shield, Environ. Geol., 39, 211–220, 2000.
Bonnet, M. P., Barroux, G., Martinez, J. M., Seyler, F., Moreira-Turcq, P., Cochonneau, G., Melack, J. M., Boaventura, G., Maurice-Bourgoin, L., León, J. G., Roux, E., Calmant, S., Kosuth, P., Guyot, J. L., and Seyler, P.: Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí), J. Hydrol., 349, 18–30, 2008.
Booth, J. G., Miller, R. L., McKee, B. A., and Leathers, R. A.: Wind-induced bottom sediment resuspension in a microtidal coastal environment, Cont. Shelf Res., 20, 785–806, 2000.
Burrough, P. A.: GIS and Geostatistics: Essential partners for spatial analysis. Environ. Ecol. Stat. 8, 361–377, 2001.
Burrough, P. A. and Mcdonnell, R. A.: Principles of geographical information systems, 2rd Ed., Oxford University Press, New York, USA, 356 pp., 1998.
Carper, G. L. and Bachmann, R. W.: Wind resuspension of sediments in a prairie lake, Can. J. Fish. Aquat. Sci. 41, 1763–1767, 1984.
CERC: Shore protection manual, 1rd Ed, US Army Coastal Engineering Center, Viksburg, USA, 603 pp., 1984.
Cózar, A., Gálvez, J. A., Hull, V., García, C. M., and Loiselle, S. A.: Sediment resuspension by Wind in a shallow lake of Esteros Del Iberá (Argentina): a model based on turbidimetry, Ecol. Model. 186, 63–76, 2005.
De Leo, G. A. and Ferrari, I.: Disturbance and diversity in a river zooplankton community: a neutral model analysis, Coenoses., 8, 121–129, 1993.
Dekker, A. G., Vos, R. J., and Peters, S. W. M.: Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data, Int. J. Remote Sens. 23, 15–35, 2002.
Farge, M.: Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech. 24, 395–457, 1992.
George, D. G.: The airborne remote sensing of phytoplankton chlorophyll in the lakes and tarns of the English Lake District, Int. J. Remote Sens. 18, 1961–1975, 1997.
Goovaerts, P.: Geostatistics for natural resources evaluation, Oxford University Press, New York, USA, 483 pp., 1997.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinaer Proc. Geoph. 11, 561–566, 2004.
Han, L. and Rundquist, D. C.: The impact of a wind-roughened water surface on remote measurements of turbidity, Int. J. Remote Sens. 19, 195–201, 1998.
Hedger, R. D., Atkinson, P. M., and Malthus, T. J.: Optimizing sampling strategies for estimating mean water quality in lakes using geostatistical techniques with remote sensing, Lakes & Reservoirs, Res. Manage., 6, 279–288, 2001.
Isaaks, E. H. and Srivastava, M. R.: An introduction to applied geostatistics, Oxford University Press, New York, USA, 561 pp., 1989.
Jerosch, K., Schlüter, M., and Pesch, R.: Spatial analysis of marine categories information using indicator Kriging applied to georeferenced video mosaics of the deep-sea Håkon Mosby Mud Volcano, Ecol. Inform., 1, 391–406, 2006.
Junk, W. J.: The Central Amazon Floodplain: ecology of a pulsing system, 1rd Ed., Springer Verlag, Berlin, Germany, 525 pp., 1997.
Justus, C. G. and Mikhail, A.: Height variation of wind speed and wind distribution statistics, Geophys. Res. Lett., 3, 264–264, 1976.
Kirk, J. T. O.: Light and photosynthesis in aquatic environments, 1rd Ed., Cambridge University Press, Cambridge, USA, 401 pp., 1983.
Kumar, P. and Foufoula-Georgiou, E.: Wavelet analysis for geophysical application, Rev. Geophys., 35, 385–412, 1997.
Lima, I. B. T., Carvalho, J. C., Ramos, F. M., Rosa, R. R., Sych, R. A., and Novo, E. L. M. M.: Detecting climatic and tidal influence on the Amazon River level by wavelet analysis, Int. Ver. The., 29, 1785–1788, 1995.
Lou, J., Schwab, D. J., Beletsky, D., and Hawley, N.: A model of sediment resuspension and transport dynamics in southern Lake Michigan, J. Geophys. Res., 105, 6591–6610, 2000.
Maia, P. D., Maurice, L., Cossa, D., Portugal, R. A., Etcheber, H., Souza, J. R., Guimarães, E. M., and Boaventura, G. R.: Is the Curuai floodplain (Middle Amazon, Brazil) an efficient trap for particulate mercury?, Geophys. Res. Abstr., 10, 12238, 2008.
Martinez, J.-M. and Le-Toan, T.: Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data, Remote Sens. Environ. 108, 209–223, 2006.
Maraun, D. and Kurths, J.: Cross wavelet analysis: significance testing and pitfalls, Nonlinear Proc. Geophy., 11, 505–514, 2004.
Massei, N., Dupont, J. P., Mahler, B. J., Laignel, B., Fournier, M., Valdes, D., and Ogier, S.: Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses, J. Hydrol., 329, 244–257, 2006.
Maurice-Bourgoin, L., Bonnet, M. P., Martinez, J. M., Kosuth, P., Cochonneau, G., Moreira-Turcq, P., Guyot, J. L., Vauchel, P., Filizola, N., and Seyler, P.: Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon River, Brazil, J. Hydrol., 335, 140–156, 2007.
Meade, R. H., Dunne, T., Richey, J. E., Santos, U. M., and Salati, E.: Storage and remobilization of suspended sediment in the lower Amazon River of Brazil, Science, 228, 488–490, 1985.
Moreira-Turcq, P. F., Jouanneau, B., Turcq, B., Seyler, P., Weber, O., and Guyot, J. L.: Carbon sedimentation at Lago Grande de Curuaí, a floodplain lake in the low Amazon region: insight into sedimentation rates, Palaeogeogr. Palaeocl., 214, 27–70, 2004.
Meyers, S. D., Kelly, B. G., and O'Brien, J. J.: An introduction to wavelet analysis in Oceanography and Meteorology: with application to the dispersion of Yanai Waves, Mon. Weather Rev., 121, 2858–2866, 1993.
Mertes, L. A. K., Dunne, T., and Martinelli, L. A.: Channel-floodplain geomorphylogy along the Solimões-Amazon River, Brazil, GSA Bulletin, 108, 1089–1107, 1996.
Miquelis, A., Rougier, C., and Pourriot, R.: Impact of turbulence and turbidity on the grazing rate of the rotifer Brachionus calyciflorus (Pallas), Hydrobiologia, 386, 203–211, 1998.
Newcombe, C. P. and Jensen, J. O. T.: Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact, N. Am. J. Fish. Manage., 16, 693–727, 1996.
Novo, E. L. M. M., Barbosa, C. C. F., Freitas, R. M., Shimabukuro, Y. E., Melack, J. M., and Pereira-Filho, W.: Seasonal changes in chlorophyll distribution in Amazon floodplain lakes derived from MODIS images, Limnology, 7, 153–161, 2006.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in fortran 77: the art of scientific computing. Vol. 1 of Fortran numerical recipes, Cambridge University Press, UK, 933 pp., 1992.
Roozen, F. C. J. M., Van-Geest, G. J., Ibelings, B. W., Roijackers, R., Scheffer, M., and Buijse, A. D.: Lake age and water level affect the turbidity of floodplain lakes along the lower Rhine, Freshwater Biol., 48, 519–531, 2003.
Stech, J. L. and Lorenzzetti, J. A.: The response of the south Brazil bight to the passage of wintertime cold fronts, J. Geophys. Res., 97, 9507–9520, 1992.
Stech, J. L., Lima, I. B. T., Novo, E. M. L. M., Silva, C. M., Assireu, A. T., Lorenzzetti, J. A., Carvalho, J. C., Barbosa, C. C. F., and Rosa, R. R.: Telemetric Monitoring System for meteorological and limnological data acquisition, Verh. Internat. Verein. Limnol. 29, 1747–1750, 2006.
Stevens, C. and Imberger, J.: The initial response of a stratified lake to a surface shear stress, J. Fluid Mech. 312, 39–66, 1996.
Tundisi, J. G., Matsumura-Tundisi, T., Arantes-Junior, J. D., Tundisi, J. E. M., Manzini, N. F., and Ducrot, R.: The response of Carlos Botelho (Lobo, Broa) reservoir to the passage of cold fronts as reflected by physical, chemical and biological variables, Braz. J. Biol., 64, 177–186, 2004.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Torrence, C. and Webster, P.: Interdecadal changes in the ENSO-Monsoon system, J. Climate. 12, 2679–2690, 1999.
Tyler, A. N., Svab, E., Preston, E., Présing, M., and Kovács, W. A.: Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment, Int. J. Remote. Sens., 27, 1521–1537, 2006.
Valdés-Galicia, J. F. and Velasco, V. M.: Variations of mid-term periodicities in solar activity physical phenomena, Adv. Space Res., 41, 297–305, 2008.
Wetzel, R. G.: Limnology – Lake and River Ecosystems, 3rd Ed., Academic Press, San Diego, USA, 1006 pp., 2001.
Zhang, Y., Pulliainen, J. T., Koponen, S. S., and Hallikainen, M. T.: Water quality retrievals from combined Landsat TM data and ERS-2 data in the Gulf of Finland, IEEE Trans. Geosci. Remote, 41, 622–629, 2003.